Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Rizzolo, Rolando (2016) Fuel models development to support spatially-explicit forest fire modelling in eastern Italian Alps. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
5Mb

Abstract (inglese)

Forest fires in the Alps can have severe impacts on mountain forests reducing their protection capacity against rock falls and avalanches and increasing flood runoff, mud and debris flows (Moody and Martin 2001, Robichaud et al. 2007). Due to climate change, several studies have shown that the impact of forest fires in the Alpine environment will increase in the coming decades (Elkin et al. 2013, Lorz et al. 2010, Wastl et al. 2012).
A key issue in modern forest fire management is the accurate mapping of forest fuels in order to determine spatial fire hazard, plan mitigation efforts, and active fire management (Krasnow et al. 2009). Several surface fuel description systems are currently used by land management agencies in the USA, Europe, Canada and Australia, and most of these systems have the same categories, components and description variables (Sandberg et al. 2001, Scott and Burgan 2005).
A generalized description of fuels based upon average fuel properties is called a “fuel model”. A fuel model is a set of fuelbed inputs (e.g. load, bulk density, fuel particle size, heat content and moisture of extinction) used by a specific software for predicting the fire behaviour (e.g. FARSITE). Standard fuel models were developed in the USA by Anderson (1982) and more recently by Scott and Burgan (2005). Standard fuel models that fit the main local vegetation characteristics can be used as input for fire spread modelling and in combination with custom fuel models when available (Duguy et al. 2007, Arca et al. 2009, Jahdi et al. 2015). However, the Standard or custom fuel models have seldom been applied in the Alps.
In this study we tested the possibility of defining some custom fuel models for the Eastern Italian Alps, which might allow a more reliable fire behaviour prediction when fire simulator systems are used.
The custom fuel models definition was done by means of three steps: In the first step we studied local fire regime and fire behaviour and we tested the hypothesis that the decrease in burned area is related to an improvement in fire-fighting efficiency since the beginning of the 3rd millennium. In the second step fuel properties were measured in the field and analyzed. In the third step we made three fuel model sets based on three different approaches (Forest type association, Prometheus classification, Cluster classification). Then, using FARSITE (Finney 2004), we simulated ten fires that occurred in the Veneto Region from 2003 to 2013. Every fire was simulated using the three custom model sets and the Standard fuel models (Anderson 1982, Scott and Burgan 2005). Lastly, the fuel model set having the higher accuracy was adjusted in order to improve its performance in simulating real fire behaviour.
In the Veneto Region, there was a decreasing number of fires per year from 1981 to 2004 and a much more evident decrease in the annual burned area. Fires in both mountain areas and the lowlands usually behave as surface fires and the burned area is seldom larger than ten hectares.
We tested the hypothesis that the decrease in burned area is related to an improvement in fire-fighting efficiency since the beginning of the 3rd millennium. The power-law distribution of burned areas seems to confirm that suppression efficiency has been improved because the exponent of the power-law distribution was much higher in the last decade than in the previous two.
In mountain areas fuel load paralleled what is reported in the literature for similar forests, but in the lowlands fuel load appeared much higher, probably because those forests are affected by phytosanitary problems that cause a higher amount of deadwood.
We found significant differences in fuel load among vegetation types (chestnut, hop hornbeam forests, conifer plantations and shrubland), The most significant difference was litter load (p<0.001 in the lowlands; p=0.0015 in mountain areas). Significant differences were also found between forest managements (coppiced, high forest, unmanaged). Mainly shrubs load (p<0.0018 in the lowlands) and herbs (p=0.0029 in mountain areas).
The fuel distribution in size classes was never normal but, as commonly reported in the literature, it followed a logarithmic or a power-law trend.
The tests on fire behaviour fuel models showed that Prometheus and Cluster fuel model sets led to inaccurate fire behaviour predictions. Standard fuel models (Anderson 1982, Scott and Burgan 2005) generally performed well and Forest type fuel models were the best in predicting fire behaviour, despite a frequent underestimation of flame height and rate of spread. By using a calibration process, we modified the Forest type fuel models and improved the performance in FARSITE. The resulting Calibrated fuel models could be suggested for further fire behaviour applications in the Eastern Italian Alps.

Abstract (italiano)

Nelle Alpi gli incendi boschivi possono avere un impatto severo sulle foreste montane riducendo la loro capacità di protezione contro frane, valanghe e colate di fango e detriti (Moody and Martin 2001, Robichaud et al. 2007). A causa dei cambiamenti climatici, molti studi hanno evidenziato che l’impatto degli incendi boschivi in ambiente alpino sarà destinato ad aumentare nei prossimi anni (Elkin et al. 2013, Lorz et al. 2010, Wastl et al. 2012).
Un argomento chiave nella moderna gestione degli incendi boschivi è l’accurata mappatura dei combustibili forestali in modo da realizzare carte di rischio, piani antincendi boschivi ed interventi di riduzione del rischio incendi (Krasnow et al. 2009). Esistono vari sistemi di classificazione dei combustibili forestali utilizzati dai vari enti che si occupano di incendi in USA, Europa, Canada e Australia. Molti di questi sistemi hanno le stesse categorie, componenti e variabili (Sandberg et al. 2001, Scott and Burgan 2005).
Un modello di combustibile è una descrizione generale delle proprietà dei combustibili forestali (es. carico, densità, contenuto calorico, ed umidità di estinzione) utilizzata nei software di predizione del comportamento del fuoco (es. FARSITE). I modelli di combustibile Standard sono stati sviluppati negli stati uniti da Anderson (1982) e più recentemente da Scott e Burgan (2005). I modelli di combustibile Standard che rispecchiano le caratteristiche della vegetazione locale possono essere utilizzati come input per la modellizazione del fuoco, anche in combinazione con modelli di combustibile locali (Duguy et al. 2007, Arca et al. 2009, Jahdi et al. 2015). Ciononostante i modelli di combustibile sia Standard e sia locali sono stati raramente applicati nelle Alpi.
In questo studio abbiamo studiato la possibilità di definire dei modelli di combustibile locale per le Alpi Orientali Italiane, al fine di permettere un migliore l’utilizzo dei software di propagazione del fuoco.
La definizione dei modelli di combustibile locali è stata attraverso tre fasi di lavoro: Nella prima fase abbiamo studiato il regime degli incendi ed il comportamento del fuoco ed abbiamo testato l’ipotesi che la diminuzione dell’area bruciata sia in relazione con il miglioramento dell’efficienza del sistema antincendi boschivi che è avvenuto a partire dall’inizio del terzo millennio.. Nella seconda parte abbiamo misurato in bosco e analizzato le principali proprietà dei combustibili forestali. Nella terza parte abbiamo realizzato tre gruppi di modelli di combustibile utilizzando tre diversi sistemi di classificazione (associazione alla tipologia forestale, classificazione Prometheus, classificazione per cluster). Quindi, utilizzando FARSITE (Finney 2004), abbiamo simulato dieci incendi avvenuti nella Regione del Veneto dal 2003 al 2013. Ogni incendio è stato simulato utilizzando sia i tre gruppi di modelli locali e sia i modelli Standard (Anderson 1982, Scott and Burgan 2005). Infine il gruppo di modelli con la migliore accuratezza nella simulazione dell’area bruciata è stato migliorato in modo da aumentare le sue capacità di simulare il reale comportamento del fuoco.
Nella Regione del Veneto c’è stata una diminuzione del numero di incendi per anno dal 1981 al 2004 ed una ancora più evidente diminuzione nell’area bruciata annuale. Sia in montagna che in pianura gli incendi sono generalmente di superficie e raramente superano i dieci ettari.
La distribuzione potenza assunta dalle aree bruciate sembra confermare il miglioramento dell’efficienza del sistema antincendio in quanto l’esponente della distribuzione è stato molto più alto nell’ultima decade rispetto alle due precedenti.
Nelle aree montane il carico di combustibili è in linea con quanto riportato in letteratura per tipologie forestali simili, mentre nei Colli Euganei è superiore al normale, probabilmente a causa di problemi fitosanitari che causano una elevata disponibilità di legno morto.
Abbiamo trovato differenze significative nel carico di combustibili fra le tipologie forestali (castagneti, orno ostrieti, impianti di conifera, cespuglieti), la differenza principale riguarda il carico di lettiera (p<0,001 in pianura, p=0,0015 in montagna). Sono state notate anche differenze significative fra i tipi di gestione forestale (ceduo, fustaia, abbandono), principalmente carico di cespugli (p=0,0018 in pianura) ed erbe (p=0,0029 in montagna).
La distribuzione dei carichi di combustibile distinti per classi diametriche non era mai normale ma sempre logaritmica o potenza, come normalmente riportato in letteratura.
I test dei modelli di combustibile hanno mostrato che i gruppi Prometheus e Cluster non hanno simulato accuratamente il comportamento del fuoco. I Modelli Standard (Anderson 1982, Scott and Burgan 2005) hanno funzionato generalmente bene, ed i modelli di combustibile per tipologia forestale hanno dato la migliore predizione dell’area bruciata, nonostante una frequente sottostima dell’altezza di fiamma e della velocità di avanzamento. Infine attraverso il processo di calibrazione abbiamo migliorato i modelli “Tipologia forestale” in modo da ottenere una migliore simulazione del comportamento del fuoco. Ottenendo così un nuovo gruppo di modelli Calibrati.
Per le future applicazione di simulazione del comportamento del fuoco suggeriamo di utilizzare i modelli di combustibile Calibrati

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Michele, Scotton
Correlatore:Tommaso, Anfodillo
Dottorato (corsi e scuole):Ciclo 28 > Scuole 28 > SCIENZE DELLE PRODUZIONI VEGETALI
Data di deposito della tesi:28 Gennaio 2016
Anno di Pubblicazione:29 Gennaio 2016
Parole chiave (italiano / inglese):forest fire, farsite, fire behaviour, forest fuels
Settori scientifico-disciplinari MIUR:Area 07 - Scienze agrarie e veterinarie > AGR/05 Assestamento forestale e selvicoltura
Struttura di riferimento:Dipartimenti > Dipartimento di Agronomia Animali Alimenti Risorse Naturali e Ambiente
Codice ID:9265
Depositato il:21 Ott 2016 16:37
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Ager AA, Vaillant NM, Finney MA (2010) A comparison of landscape fuel treatment strategies to mitigate wildland fire risk in the urban interface and preserve old forest structure. For Ecol Manage 259:1556-1570 Cerca con Google

Ager AA, Finney MA, Kerns BK, Maffei H (2007) Modeling wildfire risk to northern spotted owl (Strix occidentalis caurina) habitat in Central Oregon, USA. For Ecol Manage 246:45-56 Cerca con Google

Albini FA (1976) Estimating wildfire behavior and effects. " General technical report/Intermountain forest and range experiment station. USDA (no. INT-30) Cerca con Google

Anderson L, Clark R, Findley J, Hanes R, Mahafey L, Miller M (2006) Fuel and Fire Effects Monitoring Guide:674 p. Cerca con Google

Anderson HE (1982) Aids to determining fuel models for estimating fire behavior. USDA Forest Service general technical report INT-122:28 p. Cerca con Google

Andrews PL (2009) BehavePlus fire modeling system, version 5.0: Variables. USDA Forest Service, Rocky Mountain Research Station. General Technical Report RMRS-GTR-213WWW Revised. (Fort Collins, CO). Cerca con Google

Andrews PL, Queen LP (2001) Fire modeling and information system technology. Int J Wildland Fire 10:343-352 Cerca con Google

Arca B, Bacciu V, Pellizzaro G, Salis M, Ventura A, Duce P, Spano D, Brundu G (2009) Fuel model mapping by IKONOS imagery to support spatially explicit fire simulators:2-5 Cerca con Google

Arca B, Bacciu V, Duce P, Pellizzaro G, Salis M, Spano D (2007a) Use of FARSITE simulator to produce fire probability maps in a Mediterranean area. Proceedings of the 7th Symposyum on Fire and Forest Meteorology ‘(Bar Harbor, ME) Cerca con Google

Arca B, Duce P, Laconi M, Pellizzaro G, Salis M, Spano D (2007b) Evaluation of FARSITE simulator in Mediterranean maquis. Int J Wildland Fire 16:563-572 Cerca con Google

Arpaci A, Malowerschnig B, Sass O, Vacik H (2014) Using multi variate data mining techniques for estimating fire susceptibility of Tyrolean forests. Appl Geogr 53:258 Cerca con Google

Arpaci A, Vacik H, Valese E (2011a) Potential Fire Intensities in the Alpine Region based on characteristic fuels in Austria and Italy. Proceedings of the 5th International Wildland Fire Conference 913 Cerca con Google

Arpaci A, Valese E, Vacik H (2011b) Potential fire intensities in the Alpine region based on characteristic fuels in Austria and Italy. Proceedings of the 5th International Wildland Fire Conference, Sun City, South Africa. 913 pp Cerca con Google

ARPAV (2016) commenti meteoclimatici. In: . http://www.arpa.veneto.it/temi-ambientali/climatologia/dati/commenti-meteoclimatici. Accessed january 7, 2016 2016 Vai! Cerca con Google

Ascoli D, Vacchiano G, Motta R, Bovio G (2015) Building Rothermel fire behaviour fuel models by genetic algorithm optimisation. Int J Wildland Fire 24:317-328 Cerca con Google

Ascoli D, Bovio G, Ceccato R, Marzano R (2007) Comportamento del fuoco e gestione della biomassa nei vili taglia fuoco: Valutazione sperimentale del carico di combustibile compatibile con l'attacco diretto. L’Italia Forestale e Montana 62:369-383 Cerca con Google

Bacciu V, Arca B, Pellizzaro G, Salis M, Ventura A, Spano D, Duce P (2009) Mediterranean maquis fuel model development and mapping to support fire modeling 11:13148 Cerca con Google

Baeza M, Raventós J, Escarré A, Vallejo V (2006) Fire risk and vegetation structural dynamics in Mediterranean shrubland. Plant Ecol 187:189-201 Cerca con Google

Bailey RL, Dell T (1973) Quantifying diameter distributions with the Weibull function. For Sci 19:97-104 Cerca con Google

Boboulos M, Purvis MR, Penchev SI (2013) Fuel model development for the Greek East‐Mediterranean forest litter layer. Fire Mater 37:597-611 Cerca con Google

Boschetti M, Bocchi S, Brivio PA (2007) Assessment of pasture production in the Italian Alps using spectrometric and remote sensing information. Agric , Ecosyst Environ 118:267-272 Cerca con Google

Bounous G (2002) Il Castagno: coltura, ambiente ed utilizzazioni in Italia e nel mondo. Edagricole Cerca con Google

Bovio G, Ascoli D (2013) La tecnica del fuoco prescritto. Aracne Cerca con Google

Brang P, Schönenberger W, Frehner M, Schwitter R, Thormann J, Wasser B (2006) Management of protection forests in the European Alps: an overview. Forest Snow and Landscape Research 80:23-44 Cerca con Google

Brown JK, Oberheu RD, Johnston CM (1981) Handbook for inventorying surface fuels and biomass in the Interior West. USDA For.Serv.Gen.Tech.Rep.INT-129 Cerca con Google

Brown JK (1970) Ratios of surface area to volume for common fine fuels. For Sci 16:101-105 Cerca con Google

Burgan RE, Rothermel RC (1984) BEHAVE: fire behavior prediction and fuel modeling system--FUEL subsystem. General technical report/Intermountain Forest and Range Experiment Station. USDA (no. INT-167) Cerca con Google

Burgan RE (1987) A comparison of procedures to estimate fine dead fuel moisture for fire behaviour predictions. Suid-Afrikaanse bosboutydskrif 142:34 Cerca con Google

Byram GM (1959) Combustion of forest fuels. Forest fire: Control and use 1:61-89 Cerca con Google

Cai L, He HS, Wu Z, Lewis BL, Liang Y (2014) Development of standard fuel models in boreal forests of Northeast China through calibration and validation. PLoS One 9:e94043 Cerca con Google

Camia A (1994) Impianti di pino strobo (Pinus strobus L.) e incendi boschiviin piemonte: Modelli di combustibile ed effetto dei diradamenti sul comportamento atteso del fuoco. Dissertation or Thesis, Turin University Cerca con Google

Carvalho JP, Carola M, Tomé JA (2006) Forest Fire Modelling using Rule-Based Fuzzy Cognitive Maps and Voronoi Based Cellular Automata:217-222 Cerca con Google

Chiaudani A (2008) Agroclimatologia statica e dinamica del Veneto: analisi del periodo 1956-2004. Dissertation or Thesis, Università di Padova Cerca con Google

Cochrane M, Moran C, Wimberly M, Baer A, Finney M, Beckendorf K, Eidenshink J, Zhu Z (2012) Estimation of wildfire size and risk changes due to fuels treatments. Int J Wildland Fire 21:357-367 Cerca con Google

Cohen J (1960) A coefficient of agreement for nominal scales. Educational and psychological measurement 20:37-46 Cerca con Google

Conedera M, Cesti G, Pezzatti G, Zumbrunnen T, Spinedi F (2006) Lightning-induced fires in the Alpine region: An increasing problem. For Ecol Manage 234:S68 Cerca con Google

Conedera M, Corti G, Piccini P, Ryser D, Guerini F, Ceschi I (2004) La gestione degli incendi boschivi in Canton Ticino: tentativo di una sintesi storica| Forest fire management in Canton Ticino: attempting a historical overview. Schweizerische Zeitschrift fur Forstwesen 155:263-277 Cerca con Google

Conedera M, Tinner W (2000) The interaction between forest fires and human activity in southern Switzerland. In: Biomass Burning and its Inter-Relationships with the Climate System. Springer, pp 247-261 Cerca con Google

Conedera M (1996) Incendi boschivi al Sud delle Alpi: passato, presente e possibili sviluppi futuri. vdf Hochschulverlag AG Cerca con Google

Congalton RG (1991) Remote sensing and geographic information system data integration: error sources and research issue. Photogrammetric Engineering & Remote Sensing 57:677-687 Cerca con Google

Conover WJ, Iman RL (1981) Rank transformations as a bridge between parametric and nonparametric statistics. The American Statistician 35:124-129 Cerca con Google

Coronella MT, Belcaro P, Molin D, Pesce C, Vegro L (2014) Rapporto statistico:168-183 Cerca con Google

Corpo Forestale (2016) Gli incendi in cifre. In: . http://www.corpoforestale.it/flex/cm/pages/ServeBLOB.php/L/IT/IDPagina/9098. Accessed 1/10 2016 Vai! Cerca con Google

Cruz MG, Alexander ME (2010) Assessing crown fire potential in coniferous forests of western North America: a critique of current approaches and recent simulation studies. Int J Wildland Fire 19:377-398 Cerca con Google

Cruz MG, Alexander ME, Fernandes PA (2008) Development of a model system to predict wildfire behaviour in pine plantations. Australian Forestry 71:113-121 Cerca con Google

Dal Prà L (2013) Confronto del Carico di combustibili Vegetali nei boschi termofili della Lessinia (Vr) nelle diverse stagioni. Dissertation or Thesis, Padua University Cerca con Google

Debrando V, Caruso F, Pelfini F, Ricaldone C, Ghigo O (2007) Piano Regionale AIB 2007-2010:156 pp Cerca con Google

Del Favero R (2006) Carta regionale dei tipi forestali: documento base. Regione del Veneto, Mestre-Venezia Cerca con Google

Del Favero R, Carraro G, Ciancio O (2004) Biodiversità e indicatori nei tipi forestali del Veneto. Regione del Veneto, Venezia Cerca con Google

Dimitrakopoulos A, C SI (2002) Mediterranean fuel models and potential fire behaviour in Greece. Int J Wildland Fire 11:127-130 Cerca con Google

Doyle J, Carlson JM (2000) Power laws, highly optimized tolerance, and generalized source coding. Phys Rev Lett 84:5656 Cerca con Google

Duguy B, Alloza JA, Röder A, Vallejo R, Pastor F (2007) Modelling the effects of landscape fuel treatments on fire growth and behaviour in a Mediterranean landscape (eastern Spain). Int J Wildland Fire 16:619-632 Cerca con Google

Eastaugh CS, Vacik H (2012) Fire size/frequency modelling as a means of assessing wildfire database reliability. Austrian journal of forest science 129:228 Cerca con Google

Elkin C, Gutiérrez AG, Leuzinger S, Manusch C, Temperli C, Rasche L, Bugmann H (2013) A 2 C warmer world is not safe for ecosystem services in the European Alps. Global Change Biol 19:1827-1840 Cerca con Google

Fernandes P, Luz A, Loureiro C, Ferreira-Godinho P, Botelho Hn (2006) Fuel modelling and fire hazard assessment based on data from the Portuguese National Forest Inventory. For Ecol Manage 234:S229 Cerca con Google

Fernandes PM (2009) Combining forest structure data and fuel modelling to classify fire hazard in Portugal. Ann For Sci 66:1-9 Cerca con Google

Fernández-Alonso JM, Alberdi I, Álvarez-González JG, Vega JA, Cañellas I, Ruiz-González AD (2013) Canopy fuel characteristics in relation to crown fire potential in pine stands: analysis, modelling and classification. European Journal of Forest Research 132:363-377 Cerca con Google

Filippi J, Mallet V, Nader B (2014) Evaluation of forest fire models on a large observation database. Natural Hazards and Earth System Sciences 14:3077-3091 Cerca con Google

Finney MA, Grenfell IC, McHugh CW, Seli RC, Trethewey D, Stratton RD, Brittain S (2011) A method for ensemble wildland fire simulation. Environmental Modeling & Assessment 16:153-167 Cerca con Google

Finney MA (2001) Design of regular landscape fuel treatment patterns for modifying fire growth and behavior. For Sci 47:219-228 Cerca con Google

Finney MA (2000) Efforts at Comparing Simulated and Observed Fire Growth Patterns. USDA Forest Service, Rocky Mountain Research Station. Technical Report INT-95066-RJVA.(Missoula, MT) Cerca con Google

Finney MA (1998) FARSITE users guide and technical documentation. USDA Forest Service Research Paper RMRS-RP-4 Cerca con Google

Finney MA, Ryan KC (1995) Use of the FARSITE fire growth model for fire prediction in US National Parks Cerca con Google

Finney MA (2004) FARSITE: Fire area simulator: model development and evaluation. S Department of Agriculture, Forest Service, Rocky Mountain Research Station RMRS-RP-4 Cerca con Google

Flannigan M, Wotton B (2001) Climate, weather and area burned. Forest fires.New York: Academic Press.p 351:73 Cerca con Google

Flannigan M, Harrington J (1988) A study of the relation of meteorological variables to monthly provincial area burned by wildfire in Canada (1953-80). J Appl Meteorol 27:441-452 Cerca con Google

Forthofer J, Butler B (2015) Windninja. US Forest Service Joint Fire Science Program. Rocky Mountain Research Station Cerca con Google

Forthofer JM (2007) . Dissertation or Thesis, Colorado State University Cerca con Google

Franca A, Sanna F, Nieddu S, Re G, Pintus G, Ventura A, Duce P, Salis M, Arca B (2012) Effects of grazing on the traits of a potential fire in a Sardinian wooded pasture. New approaches for grassaland research in a context of climate and socioeconomic changes.Z.Acar, A Lòpez-Francos, C.Porqueddu (eds) Zaragoza: CIHEAM/Ondokuz Mayis University 541:307-311 Cerca con Google

Giakoumakis M, Gitas I, San-Miguel J (2002) Object-oriented classification modelling for fuel type mapping in the Mediterranean, using LANDSAT TM and IKONOS imagery—preliminary results. Forest Fires Research & Wildland Fire Safety.Millpress, Rotterdam:1-13 Cerca con Google

Goatin N (2011) Modelli di combustibile nei boschi termofili della Lessinia (VR) per la predizione del comportamento del fronte di fiamma. Dissertation or Thesis, Padua University Cerca con Google

Goldammer JG, Bruce M (2004) The use of prescribed fire in the land management of Western and Baltic Europe: An overview. International Forest Fire News 30:2-13 Cerca con Google

Graziosi I, Santi F (2008) Chestnut gall wasp (Dryocosmus kuriphilus): spreading in Italy and new records in Bologna province. Bulletin of Insectology 61:343-348 Cerca con Google

Hernando C, Guijarro M, De los Santos J (2008) Determinación de la relación superficie/volumen de las acículas muertas. Forest Systems 4:73-85 Cerca con Google

ISTAT (2011) 15° censimento generale delle abitazioni e della popolazione. ISTAT Cerca con Google

Jahdi R, Salis M, Darvishsefat A, Mostafavi M, Alcasena F, Etemad V, Lozano O, Spano D (2015) Calibration of FARSITE simulator in northern Iranian forests. Natural Hazards and Earth System Science 15:443-459 Cerca con Google

Keane RE (2013) Describing wildland surface fuel loading for fire management: a review of approaches, methods and systems. Int J Wildland Fire 22:51-62 Cerca con Google

Keane RE, Gray K, Bacciu V, Leirfallom S (2012) Spatial scaling of wildland fuels for six forest and rangeland ecosystems of the northern Rocky Mountains, USA. Landscape Ecol 27:1213-1234 Cerca con Google

Keane RE (2008) Biophysical controls on surface fuel litterfall and decomposition in the northern Rocky Mountains, USA. Canadian journal of forest research 38:1431-1445 Cerca con Google

Keane RE, Rollins MG, McNicoll CH, Parsons RA (2002) Integrating ecosystem sampling, gradient modeling, remote sensing, and ecosystem simulation to create spatially explicit landscape inventories. US Department of Agriculture, Forest Service, Rocky Mountain Research Station RMRS-GTR-92 Cerca con Google

Koutsias N (2003) Classification analyses of vegetation for delineating forest fire fuel complexes in a Mediterranean test site using satellite remote sensing and GIS. Int J Remote Sens 24:3093 Cerca con Google

Krasnow K, Schoennagel T, Veblen TT (2009) Forest fuel mapping and evaluation of LANDFIRE fuel maps in Boulder County, Colorado, USA. For Ecol Manage 257:1603-1612 Cerca con Google

Kruskal WH, Wallis WA (1952) Use of ranks in one-criterion variance analysis. Journal of the American statistical Association 47:583-621 Cerca con Google

Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics:159-174 Cerca con Google

Legendre P, Legendre L (1998) Numerical ecology: second English edition. Developments in environmental modelling 20 Cerca con Google

Lorz C, Fürst C, Galic Z, Matijasic D, Podrazky V, Potocic N, Simoncic P, Strauch M, Vacik H, Makeschin F (2010) GIS-based probability assessment of natural hazards in forested landscapes of central and south-eastern Europe. Environ Manage 46:920-930 Cerca con Google

Lutes DC, Keane RE, Caratti JF (2009) A surface fuel classification for estimating fire effects. Int J Wildland Fire 18:802-814 Cerca con Google

Malamud B, Morein G, Turcotte DL (2005) Log-periodic behavior in a forest-fire model. Nonlinear Processes in Geophysics 12:575-585 Cerca con Google

Marchetti M, Lozupone G (1995) I modelli di combustibile nella realta'italiana. Primi risultati di una analisi quantitativa. Monti e Boschi 1:51-55 Cerca con Google

McArthur AG (1967) Fire behaviour in eucalypt forests Cerca con Google

Mitsopoulos I, Dimitrakopoulos A (2014) Estimation of canopy fuel characteristics of Aleppo pine (Pinus halepensis Mill.) forests in Greece based on common stand parameters. European journal of forest research 133:73-79 Cerca con Google

Molina JR, y Silva FR, Herrera M (2011) Potential crown fire behavior in Pinus pinea stands following different fuel treatments. Forest Systems 20:266-267 Cerca con Google

Moody JA, Martin DA (2001) Initial hydrologic and geomorphic response following a wildfire in the Colorado Front Range. Earth Surf Process Landforms 26:1049-1070 Cerca con Google

Müller MM, Vacik H, Diendorfer G, Arpaci A, Formayer H, Gossow H (2013) Analysis of lightning-induced forest fires in Austria. Theoretical and Applied Climatology 111:183-193 Cerca con Google

Parresol BR, Blake JI, Thompson AJ (2012) Effects of overstory composition and prescribed fire on fuel loading across a heterogeneous managed landscape in the southeastern USA. For Ecol Manage 273:29-42 Cerca con Google

Pastor E, Zarate L, Planas E, Arnaldos J (2003) Mathematical models and calculation systems for the study of wildland fire behaviour. Progress in Energy and Combustion Science 29:139-153 Cerca con Google

Pausas J (2004) La recurrencia de incendios en el monte mediterráneo. Avances en el estudio de la gestión del monte mediterráneo:47-64 Cerca con Google

Pereira J, Sequeira N, Carreiras J (1995) Structural-properties and dimensional relations of some Mediterranean shrub fuels. Int J Wildland Fire 5:35-42 Cerca con Google

Perry G (1998) Current approaches to modelling the spread of wildland fire: a review. Prog Phys Geogr 22:222-245 Cerca con Google

Pezzatti G, Bajocco S, Torriani D, Conedera M (2009) Selective burning of forest vegetation in Canton Ticino (southern Switzerland). Plant biosystems 143:609-620 Cerca con Google

Pierce AD, McDaniel S, Wasser M, Ainsworth A, Litton CM, Giardina CP, Cordell S (2014) Using a prescribed fire to test custom and standard fuel models for fire behaviour prediction in a non‐native, grass‐invaded tropical dry shrubland. Applied Vegetation Science 17:700-710 Cerca con Google

Pyne SJ, Andrews PL, Laven RD (1996) Introduction to wildland fire. John Wiley and Sons, New York Cerca con Google

Rapp M, Bachelier G (1971) Cycle de la matière organique et des éléments minéraux dans quelques écosystèmes méditerranéens 40:22 pp Cerca con Google

Reed WJ, McKelvey KS (2002) Power-law behaviour and parametric models for the size-distribution of forest fires. Ecol Model 150:239-254 Cerca con Google

Regione Veneto (1999) Piano Regionale antincendi Boschivi. Regione del Veneto, Venezia Cerca con Google

Reineking B, Weibel P, Conedera M, Bugmann H (2010) Environmental determinants of lightning-v. human-induced forest fire ignitions differ in a temperate mountain region of Switzerland. Int J Wildland Fire 19:541-557 Cerca con Google

Riano D, Meier E, Allgöwer B, Chuvieco E, Ustin SL (2003) Modeling airborne laser scanning data for the spatial generation of critical forest parameters in fire behavior modeling. Remote Sens Environ 86:177-186 Cerca con Google

Ricotta C, Avena G, Marchetti M (1999) The flaming sandpile: self-organized criticality and wildfires. Ecol Model 119:73-77 Cerca con Google

Robichaud P, Elliot W, Pierson F, Hall D, Moffet C (2007) Predicting postfire erosion and mitigation effectiveness with a web-based probabilistic erosion model. Catena 71:229-241 Cerca con Google

Rothermel (1983) How to predict the spread and intensity of forest and range fires Cerca con Google

Rothermel RC (1972) A mathematical model for predicting fire spread in wildland fuels. Intermountain forest and range experiment station. USDA (INT-115) Cerca con Google

Sah JP, Ross MS, Koptur S, Snyder JR (2004) Estimating aboveground biomass of broadleaved woody plants in the understory of Florida Keys pine forests. For Ecol Manage 203:319-329 Cerca con Google

Salis M, Ager AA, Alcasena FJ, Arca B, Finney MA, Pellizzaro G, Spano D (2015) Analyzing seasonal patterns of wildfire exposure factors in Sardinia, Italy. Environ Monit Assess 187:1-20 Cerca con Google

Salis M, Ager AA, Finney MA, Alcasena Urdiroz F, Arca B, Muñoz Lozano O, Santoni P, Spano D (2014) Application of simulation modeling for wildfire risk assessment and management. Parte: http://hdl.handle.net/10316.2/34013 Vai! Cerca con Google

Salis M, Ager AA, Arca B, Finney MA, Bacciu V, Duce P, Spano D (2013) Assessing exposure of human and ecological values to wildfire in Sardinia, Italy. Int J Wildland Fire 22:549-565 Cerca con Google

Salis M (2008) Fire behaviour simulation in Mediterranean maquis using FARSITE (Fire Area Simulator). Dissertation or Thesis, Sassari University Cerca con Google

Salmaso P, Forese A, Avanzi E, Gasparini S, Brentan D, Burbello A, Bortolami P, Fuser S (2010) Carta della natura del Veneto alla scala 1:50,000. 2010:121 p. Cerca con Google

Sandberg DV, Ottmar RD, Cushon GH (2001) Characterizing fuels in the 21st century. Int J Wildland Fire 10:381-387 Cerca con Google

Santoni P, Filippi JB, Balbi J, Bosseur F (2011) Wildland Fire Behaviour Case Studies and Fuel Models for Landscape-Scale Fire Modeling. Journal of Combustion:Article ID 613424, 12 pages Cerca con Google

Schmidt DA, Taylor AH, Skinner CN (2008) The influence of fuels treatment and landscape arrangement on simulated fire behavior, Southern Cascade range, California. For Ecol Manage 255:3170-3184 Cerca con Google

Scott JH, Burgan RE (2005) Standard fire behavior fuel models: a comprehensive set for use with Rothermel's surface fire spread model. The Bark Beetles, Fuels, and Fire Bibliography:66 Cerca con Google

Scott JH, Reinhardt ED (2005) Stereo photo guide for estimating canopy fuel characteristics in conifer stands. USDA Forest Service, Rocky Mountain Research Station. General Technical Report RMRS-GTR-145 Cerca con Google

Stephens SL (1998) Evaluation of the effects of silvicultural and fuels treatments on potential fire behaviour in Sierra Nevada mixed-conifer forests. For Ecol Manage 105:21-35 Cerca con Google

Stratton RD (2006) Guidance on spatial wildland fire analysis: models, tools, and techniques:20 Cerca con Google

Stratton RD (2004) Assessing the effectiveness of landscape fuel treatments on fire growth and behavior. J For:32-40 Cerca con Google

Sullivan AL (2009) Wildland surface fire spread modelling, 1990–2007. 2: Empirical and quasi-empirical models. Int J Wildland Fire 18:369-386 Cerca con Google

Tardelli A, Rech F, Valese E (2012) Caratterizzazione della severità metereologica stagionale nella Regione del Veneto:unpublished Cerca con Google

Taylor SW, Woolford DG, Dean C, Martell DL (2013) Wildfire prediction to inform fire management: statistical science challenges. Statistical Science 28:586-615 Cerca con Google

Vacik H, Arndt N, Arpaci A, Koch V, Mueller M, Gossow H (2011) Characterisation of forest fires in Austria. Austrian Journal of Forest Science 128:1-31 Cerca con Google

Valese E, Conedera M, Held A, Ascoli D (2014) Fire, humans and landscape in the European Alpine region during the Holocene. Anthropocene 6:63-74 Cerca con Google

Valese E, Conedera M, Vacik H, Japelj A, Beck A, Cocca G, Cvenkel H, Di Narda N, Ghiringhelli A, Lemessi A (2011) Wildfires in the Alpine region: first results from the ALP FFIRS project. Proc. Fifth International Wildfire Conference, South Africa. Cerca con Google

Valese E, Beck A, Comini B, Conedera M, Cvenkel H, Di Narda N, Ghiringhelli A, Japelj A, Lemessi A, Mangiavillano A (2010) The Alpine Forest Fire Warning System (ALP FFIRS) project:5-19.11 Cerca con Google

Valese E (2008) Applicazione del Canadian Forest Fire Weather Index System nel contesto della Grande Regione Alpina (GAR): potenzialità e problematiche. Dissertation or Thesis, Padua University Cerca con Google

Van Wagner C, Forest P (1987) Development and Structure of the Canadian Forest FireWeather Index System Cerca con Google

Variara G (2014) Simulazione degli incendi di vegetazione con FARSITE (Fire Area Simulator): possibilità di utilizzo in Regione del Veneto. Dissertation or Thesis, Padua University Cerca con Google

Veneto R (2016) GeoPortale regionale. In: . http://idt.regione.veneto.it/app/metacatalog/index?deflevel=165. Accessed January 7 2016 Vai! Cerca con Google

Viegas D, Viegas M (1994) A relationship between rainfall and burned area for Portugal. Int J Wildland Fire 4:11-16 Cerca con Google

Waddell K (2002) Sampling coarse woody debris for multiple attributes in extensive resource inventories. Ecol Ind 1:139-153 Cerca con Google

Wagner CV (1978) Age-class distribution and the forest fire cycle. Canadian Journal of Forest Research 8:220-227 Cerca con Google

Wastl C, Schunk C, Leuchner M, Pezzatti GB, Menzel A (2012) Recent climate change: long-term trends in meteorological forest fire danger in the Alps. Agric For Meteorol 162:1-13 Cerca con Google

Woodall C, Monleon-Moscardo VJ, Inventory F (2008) Sampling protocol, estimation, and analysis procedures for the down woody materials indicator of the FIA program:72 Cerca con Google

Yarie J (1981) Forest fire cycles and life tables: a case study from interior Alaska. Canadian Journal of Forest Research 11:554-562 Cerca con Google

Zumbrunnen T, Pezzatti GB, Menéndez P, Bugmann H, Bürgi M, Conedera M (2011) Weather and human impacts on forest fires: 100 years of fire history in two climatic regions of Switzerland. For Ecol Manage 261:2188-2199 Cerca con Google

Zwillinger D, Kokoska S (1999) CRC standard probability and statistics tables and formulae. CRC Press Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record