Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Loreggia, Andrea (2016) Iterative Voting, Control and Sentiment Analysis. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
2400Kb

Abstract (inglese)

In multi-agent systems agents often need to take a collective decision based on the preferences of individuals. A voting rule is used to decide which decision to take, mapping the agents' preferences over the possible candidate decisions into a winning decision for the collection of agents. In these kind of scenarios acting strategically can be seen in two opposite way. On one hand it may be desirable that agents do not have any incentive to act strategically. That is, to misreport their preferences in order to influence the result of the voting rule in their favor or acting on the structure of the election to change the outcome. On the other hand manipulation can be used to improve the quality of the outcome by enlarging the consensus of the winner. These two different scenarios are studied in this thesis. The first one by modeling and describing a natural form of control named ``replacement control'' and characterizing for several voting rules its computational complexity. The second scenario is studied in the form of iterative voting frameworks where individuals are allowed to change their preferences to change the outcome of the election. Computational social choice techniques can be used in very different scenarios. This work reports a first attempt to introduce the use of voting procedures in the field of sentiment analysis. In this area computer scientists extract the opinion of the community about a specific item. This opinion is extracted aggregating the opinion expressed by each individual which leaves a text in a blog or social network about the given item. We studied and proposed a new aggregation method which can improve performances of sentiment analysis, this new technique is a new variance of a well-known voting rule called Borda.

Abstract (italiano)

Nei sistemi multi agente spesso nasce la necessità di prendere decisioni collettive basate sulle preferenze dei singoli individui. A tal fine può essere utilizzata una regola di voto che, aggregando le preferenze dei singoli agenti, trovi una soluzione che rappresenti la collettività. In questi scenari la possibilità di agire in modo strategico può essere vista da due diversi e opposti punti di vista. Da una parte può essere desiderabile che gli agenti non abbiano alcun incentivo ad agire strategicamente, ovvero che gli agenti non abbiano incentivi a riportare in modo scorretto le proprie preferenze per influenzare il risultato dell'elezione a proprio favore, oppure che non agiscano sulla struttura del sistema elettorale stesso per cambiarne il risultato finale. D'altra parte l'azione strategica può essere utilizzata per migliorare la qualità del risultato o per incrementare il consenso del vincitore. Questi due diversi scenari sono studiati ed analizzati nella tesi. Il primo modellando e descrivendo una forma naturale di controllo chiamato "replacement control" descrivendo la complessità computazione di tale azione strategica per diverse regole di voto. Il secondo scenario è studiato nella forma dei sistemi di voto iterativi nei quali i singoli individui hanno la possibilità di cambiare le proprie preferenze al fine di influenzare il risultato dell'elezione. Le tecniche di Computational Social Choice inoltre possono essere usate in diverse situazioni. Il lavoro di tesi riporta un primo tentativo di introdurre l'uso di sistemi elettorali nel campo dell'analisi del sentimento. In questo contesto i ricercatori estraggono le opinioni della comunità riguardanti un particolare elemento di interesse. L'opinione collettiva è estratta aggregando le opinioni espresse dai singoli individui che discutono o parlano dell'elemento di interesse attraverso testi pubblicati in blog o social network. Il lavoro di tesi studia una nuova procedura di aggregazione proponendo una nuova variante di una regola di voto ben conosciuta qual è Borda. Tale nuova procedura di aggregazione migliora le performance dell'analisi del sentimento classica.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Rossi, Francesca
Dottorato (corsi e scuole):Ciclo 28 > Scuole 28 > SCIENZE MATEMATICHE > INFORMATICA
Data di deposito della tesi:28 Gennaio 2016
Anno di Pubblicazione:28 Gennaio 2016
Parole chiave (italiano / inglese):iterative voting, control, sentiment analysis, voting theory, computational social choice, computational complexity
Settori scientifico-disciplinari MIUR:Area 01 - Scienze matematiche e informatiche > INF/01 Informatica
Struttura di riferimento:Dipartimenti > Dipartimento di Matematica
Codice ID:9273
Depositato il:17 Ott 2016 16:37
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] David J. Abraham, Avrim Blum, and Tuomas Sandholm. Clearing algorithms for barter exchange markets: enabling nationwide kidney exchanges. In Jeffrey K. MacKie-Mason, David C. Parkes, and Paul Resnick, editors, ACM Conference on Electronic Commerce, pages 295–304. ACM, 2007. Cerca con Google

[2] Stéphane Airiau and Ulle Endriss. Iterated majority voting. In Proceedings of the 1st International Conference on Algorithmic Decision Theory (ADT-2009), 2009. [3] Krzysztof R. Apt and Sunil Simon. A classification of weakly acyclic games. In Maria Serna, editor, SAGT, volume 7615 of Lecture Notes in Computer Science, pages 1–12. Springer, 2012. Cerca con Google

[4] Marta Arias, Argimiro Arratia, and Ramon Xuriguera. Forecasting with twitter data. ACM TIST, 5(1):8, 2013. Cerca con Google

[5] Kenneth J. Arrow. Social Choice and Individual Values. John Wiley & Sons Inc., New York London Sydney, 1963. Cerca con Google

[6] Kenneth J. Arrow, Amartya K. Sen, and Kotaro Suzumura, editors. Handbook of social choice and welfare. Elsevier, Amsterdam [u.a.], 1. ed. edition, 2002. Cerca con Google

[7] Stefano Baccianella, Andrea Esuli, and Fabrizio Sebastiani. Sentiwordnet 3.0: An enhanced lexical resource for sentiment analysis and opinion mining. In Proceedings of LREC-2010, 2010. Cerca con Google

[8] Ramnath Balasubramanyan, Bryan R. Routledge, and Noah A. Smith. From tweets to polls : Linking text sentiment to public opinion time series. In Proceedings of the International AAAI Conference on Weblogs and Social Media, 2010. Cerca con Google

[9] John J. Bartholdi and James B. Orlin. Single transferable vote resists strategic voting. Social Choice and Welfare, 8:341–354, 1991. Cerca con Google

[10] John J. Bartholdi, Craig A. Tovey, and Michael A. Trick. How hard is it to control an election. Mathematical and Computer Modeling, pages 27–40, 1992. Cerca con Google

[11] John J. Bartholdi, Craig A. Tovey III, and Michael A. Trick. The computational difficulty of manipulating an election. Social Choice and Welfare, 6(3):227–241, 1989. Cerca con Google

[12] Dorothea Baumeister, Gábor Erdélyi, Olivia Johanna Erdélyi, and Jörg Rothe. Computational aspects of manipulation and control in judgment aggregation. In Patrice Perny, Marc Pirlot, and Alexis Tsoukiàs, editors, ADT, volume 8176 of Lecture Notes in Computer Science, pages 71–85. Springer, 2013. Cerca con Google

[13] James Bennett and Stan Lanning. The Netflix prize. In Proceedings of the KDD Cup and workshop, 2007. Cerca con Google

[14] Sven Berg. Paradox of voting under an urn model: The effect of homogeneity. Public Choice, 47(2):377–387, 1985. Cerca con Google

[15] Nadja Betzler, Rolf Niedermeier, and Gerhard J.Woeginger. Unweighted coalitional manipulation under the borda rule is np-hard. In Proceedings of IJCAI-2011, 2011. Cerca con Google

[16] Steven Brams and M. Remzi Sanver. Voting systems that combine approval and preference. In StevenJ. Brams,WilliamV. Gehrlein, and FredS. Roberts, editors, The Mathematics of Preference, Choice and Order. Springer-Verlag Berlin Heidelberg, 2009. Cerca con Google

[17] Steven J. Brams and Peter C. Fishburn. Voting procedures. In Kenneth Arrow, Amartya Sen, and Kotaro Suzumura, editors, Handbook of Social Choice and Welfare. Elsevier, 2002. Cerca con Google

[18] Steven J. Brams and Peter C. Fishburn. Approval voting. Springer, 2nd edition, 2007. Cerca con Google

[19] Felix Brandt, Vincent Conitzer, and Ulle Endriss. Computational social choice. In G. Weiss, editor, Multiagent Systems, pages 213–283. MIT Press, 2013. Cerca con Google

[20] Andrea Ceron, Luigi Curini, Stefano M. Iacus, and Giuseppe Porro. Every tweet counts? How sentiment analysis of social media can improve our knowledge of citizens’ political preferences with an application to Italy and France. New Media & Society, 2013. Cerca con Google

[21] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Allan Kielstra, Kemal Ebcioglu, Christoph von Praun, and Vivek Sarkar. X10: an objectoriented approach to non-uniform cluster computing. In Proceedings OOPSLA-2005, 2005. Cerca con Google

[22] Yann Chevaleyre, Ulle Endriss, Jérôme Lang, and Nicolas Maudet. Preference handling in combinatorial domains: From ai to social choice. AI Magazine, Special Issue on Preferences, 29(4):37–46, 2008. Cerca con Google

[23] Vincent Conitzer and Tuomas Sandholm. Complexity of manipulating elections with few candidates. In Rina Dechter and Richard S. Sutton, editors, AAAI/IAAI, pages 314–319. AAAI Press / The MIT Press, 2002. Cerca con Google

[24] Vincent Conitzer and Tuomas Sandholm. Common voting rules as maximum likelihood estimators. In Proceedings of UAI-2005, 2005. Cerca con Google

[25] Stephen A. Cook. The complexity of theorem proving procedures. In Proceedings of the Third Annual ACM Symposium, pages 151–158, New York, 1971. ACM. Cerca con Google

[26] John Cullinan, SamuelK. Hsiao, and David Polett. A Borda count for partially ordered ballots. Social Choice and Welfare, pages 1–14, 2013. Cerca con Google

[27] Jessica Davies, George Katsirelos, Nina Narodytska, and Toby Walsh. Complexity of and algorithms for borda manipulation. In Proceedings of AAAI-2011, 2011. Cerca con Google

[28] Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data processing on large clusters. Communications of the ACM, 51(1):107–113, 2008. Cerca con Google

[29] John Duggan and Thomas Schwartz. Strategic manipulability without resoluteness or shared beliefs: Gibbard-satterthwaite generalized. Social Choice and Welfare, 17(1):85–93, 2000. Cerca con Google

[30] Cynthia Dwork, Ravi Kumar, Moni Naor, and D Sivakumar. Rank aggregation methods for the Web. In Proceedings of the 10th international conference on World Wide Web, pages 613–622, New York, NY, USA, 2001. Cerca con Google

[31] David Easley and Jon Kleinberg. Networks, Crowds, and Markets: Reasoning About a Highly Connected World. Cambridge University Press, 2010. Cerca con Google

[32] Edith Elkind, Piotr Faliszewski, and Arkadii M. Slinko. Cloning in elections: Finding the possible winners. J. Artif. Intell. Res. (JAIR), 42:529–573, 2011. Cerca con Google

[33] Ulle Endriss. Judgment aggregation. In Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang, and Ariel Procaccia, editors, Handbook of Computational Social Choice. Cambridge University Press, 2015. Cerca con Google

[34] Ulle Endriss and Raquel Fernández. Collective annotation of linguistic resources: Basic principles and a formal model. In Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (ACL-2013), August 2013. Cerca con Google

[35] Gábor Erdélyi, Michael R. Fellows, Jörg Rothe, and Lena Schend. Control complexity in bucklin and fallback voting: A theoretical analysis. Journal of Computer and System Sciences, 81(4):632–660, 2015. Cerca con Google

[36] Gábor Erdélyi, Michael R. Fellows, Jörg Rothe, and Lena Schend. Control complexity in bucklin and fallback voting: An experimental analysis. Journal of Computer and System Sciences, 81(4):661–670, 2015. Cerca con Google

[37] Andrea Esuli and Fabrizio Sebastiani. Sentiment quantification. IEEE Intelligent Systems, 25(4):72–75, 2010. Cerca con Google

[38] Ronald Fagin, Ravi Kumar, Mohammad Mahdian, D. Sivakumar, and Erik Vee. Comparing partial rankings. SIAM Journal on Discrete Mathematics, 20:47–58, 2006. Cerca con Google

[39] Piotr Faliszewski, Edith Hemaspaandra, and Lane A. Hemaspaandra. How hard is bribery in elections? J. Artif. Intell. Res. (JAIR), 35:485–532, 2009. Cerca con Google

[40] Piotr Faliszewski, Edith Hemaspaandra, and Lane A. Hemaspaandra. Using complexity to protect elections. Commun. ACM, 53(11):74–82, 2010. Cerca con Google

[41] Piotr Faliszewski, Edith Hemaspaandra, and Lane A. Hemaspaandra. Multimode control attacks on elections. J. Artif. Intell. Res. (JAIR), 40:305–351, 2011. Cerca con Google

[42] Piotr Faliszewski, Edith Hemaspaandra, Lane A. Hemaspaandra, and Jörg Rothe. Llull and copeland voting computationally resist bribery and constructive control. J. Artif. Intell. Res. (JAIR), 35:275–341, 2009. Cerca con Google

[43] Piotr Faliszewski, Edith Hemaspaandra, LaneA. Hemaspaandra, and Jörg Rothe. A richer understanding of the complexity of election systems. In S.S. Ravi and SandeepK. Shukla, editors, Fundamental Problems in Computing, pages 375–406. Springer Netherlands, 2009. Cerca con Google

[44] Piotr Faliszewski and Ariel D. Procaccia. AI’s war on manipulation: Are we winning? AI Magazine, 31(4):53–64, 2010. Cerca con Google

[45] Peter C. Fishburn. Paradoxes of voting. The American Political Science Review, 68(2):pp. 537–546, 1974. Cerca con Google

[46] Murthy Ganapathibhotla and Bing Liu. Mining opinions in comparative sentences. In Proceedings of COLING-2008, 2008. Cerca con Google

[47] Michael R. Garey and David S. Johnson. Computers and intractability: a guide to the theory of NP-completeness. W.J. Freeman and Company, San Francisco, CA, 1979. Cerca con Google

[48] Ashutosh Garg, T. S. Jayram, Shivakumar Vaithyanathan, and Huaiyu Zhu. Generalized opinion pooling. In Proceedings of the AAAI Spring Symposium on Exploring Attitude and Affect in Text: Theories and Applications, 2004. Cerca con Google

[49] Allan Gibbard. Manipulation of voting schemes: A general result. Econometrica, 41(4):587–601, 1973. Cerca con Google

[50] Jorge Godoy, Dominique Gruyer, Alain Lambert, and Jorge Villagra. Development of an particle swarm algorithm for vehicle localization. In Intelligent Vehicles Symposium, pages 1114–1119. IEEE, 2012. Cerca con Google

[51] David E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading, MA, 1989. Cerca con Google

[52] Umberto Grandi, Andrea Loreggia, Francesca Rossi, and Vijay Saraswat. From sentiment analysis to preference aggregation. In Proceedings of the International Symposium on Artificial Intelligence and Mathematics (ISAIM-2014), 2014. Cerca con Google

[53] Umberto Grandi, Andrea Loreggia, Francesca Rossi, Kristen Brent Venable, and Toby Walsh. Restricted manipulation in iterative voting: Condorcet efficiency and borda score. In Patrice Perny, Marc Pirlot, and Alexis Tsoukiàs, editors, ADT, volume 8176 of Lecture Notes in Computer Science, pages 181–192. Springer, 2013. Cerca con Google

[54] Mingyu Guo and Vincent Conitzer. Computationally feasible automated mechanism design: General approach and case studies. In Maria Fox and David Poole, editors, AAAI. AAAI Press, 2010. Cerca con Google

[55] Edith Hemaspaandra, Lane A. Hemaspaandra, and Jörg Rothe. Anyone but him: The complexity of precluding an alternative. Artif. Intell., 171(5-6):255–285, 2007. Cerca con Google

[56] Mehran Hojati. Optimal political districting. Computers OR, 23(12):1147–1161, 1996. Cerca con Google

[57] Matthew O. Jackson. Social and economic networks. Princeton University Press, Princeton, NJ, 2008. Cerca con Google

[58] Nitin Jindal and Bing Liu. Mining comparative sentences and relations. In Proceedings of the 21st National Conference on Artificial Intelligence (AAAI-2006), 2006. Cerca con Google

[59] Toshihiro Kamishima, Hideto Kazawa, and Shotaro Akaho. A survey and empirical comparison of object ranking methods. In Johannes Fürnkranz and Eyke Cerca con Google

Hüllermeier, editors, Preference Learning, pages 181–201. Springer-Verlag, 2010. Cerca con Google

[60] Richard M. Karp. Reducibility among combinatorial problems. In R.E. Miller and J.W. Thatcher, editors, Complexity of Computer Computations. Plenum Press, New York, 1972. Cerca con Google

[61] James Kennedy and Russell C. Eberhart. Particle swarm optimization. In Proceedings of the IEEE International Conference on Neural Networks, pages 1942–1948, 1995. Cerca con Google

[62] Jérôme Lang and Lirong Xia. Voting in combinatorial domains. In Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang, and Ariel Procaccia, editors, Handbook of Computational Social Choice. Cambridge University Press, 2015. Cerca con Google

[63] Jérôme Lang, Nicolas Maudet, and Maria Polukarov. New results on equilibria in strategic candidacy. In Berthold Vöcking, editor, SAGT, volume 8146 of Lecture Notes in Computer Science, pages 13–25. Springer, 2013. Cerca con Google

[64] Jean-François Laslier and M. Remzi Sanver, editors. Handbook of Approval Voting. Springer, 2010. Cerca con Google

[65] Omer Lev and Jeffrey S. Rosenschein. Convergence of iterative voting. In Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems (AAMAS-2012), 2012. Cerca con Google

[66] Andrew Lin. The complexity of manipulating k-approval elections. In Joaquim Filipe and Ana L. N. Fred, editors, ICAART (2), pages 212–218. SciTePress, 2011. Cerca con Google

[67] Bing Liu. Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data (Data-Centric Systems and Applications). Springer-Verlag New York, Inc., 2006. Cerca con Google

[68] Bing Liu. Sentiment Analysis and Opinion Mining. Synthesis Lectures on Human Language Technologies. Morgan and Claypool Publishers, 2012. Cerca con Google

[69] Andrea Loreggia. Iterative voting and multi-mode control in preference aggregation. Master’s thesis, University of Padova, 2012. Cerca con Google

[70] Andrea Loreggia, Nina Narodytska, Francesca Rossi, K. Brent Venable, and Toby Walsh. Controlling elections by replacing candidates or votes. In Proceedings of the 2015 International Conference on Autonomous Agents and Multiagent Systems, AAMAS ’15, pages 1737–1738, Richland, SC, 2015. International Foundation for Autonomous Agents and Multiagent Systems. Cerca con Google

[71] Andrew Mao, Ariel D. Procaccia, and Yiling Chen. Better human computation through principled voting. In Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence (AAAI-2013), 2013. Cerca con Google

[72] Nicholas Mattei and Toby Walsh. Preflib: A library for preferences http://www.preflib.org. In Patrice Perny, Marc Pirlot, and Alexis Tsoukiàs, editors, ADT, volume 8176 of Lecture Notes in Computer Science, pages 259–270. Springer, 2013. Vai! Cerca con Google

[73] Nicolas Maudet, Jérôme Lang, Yann Chevaleyre, and Guillaume Ravilly-Abadie. Compiling the votes of a subelectorate. In Proceedings of IJCAI-2009, 2009. Cerca con Google

[74] Reshef Meir, Maria Polukarov, Jeffrey S. Rosenschein, and Nicholas R. Jennings. Convergence to equilibria in plurality voting. In Proceedings of the Twenty-fourth conference on Artificial Intelligence (AAAI-2010), 2010. Cerca con Google

[75] Curtis Menton. Normalized range voting broadly resists control. Theory Comput. Syst., 53(4):507–531, 2013. Cerca con Google

[76] P.T. Metaxas, E. Mustafaraj, and D. Gayo-Avello. How (not) to predict elections. In Proceedings of PASSAT-2011 and SOCIALCOM-2011, 2011. Cerca con Google

[77] Gilad Mishne. Predicting movie sales from blogger sentiment. In In AAAI 2006 Spring Symposium on Computational Approaches to Analysing Weblogs (AAAI-CAAW), 2006. Cerca con Google

[78] Hervé Moulin. Condorcet’s principle implies the no show paradox. Journal of Economic Theory, 45(1):53–64, 1988. Cerca con Google

[79] Lihi Naamani Dery, Meir Kalech, Lior Rokach, and Bracha Shapira. Iterative voting under uncertainty for group recommender systems. In Proceedings of the fourth ACM conference on Recommender systems (RECSYS-2010), 2010. Cerca con Google

[80] Nina Narodytska and Toby Walsh. Manipulating two stage voting rules. In Proceedings of the Twelft International conference on Autonomous Agents and Multi-Agent Systems (AAMAS-2013), 2013. Cerca con Google

[81] Svetlana Obraztsova and Edith Elkind. Optimal manipulation of voting rules. In Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems (AAMAS-2012), 2012. Cerca con Google

[82] Svetlana Obraztsova, Evangelos Markakis, Maria Polukarov, Zinovi Rabinovich, and Nick Jennings. On the convergence of iterative voting: How restrictive should restricted dynamics be? In Proceedings of the 5th International Workshop on Computational Social Choice (COMSOC-2014), 2014. Cerca con Google

[83] Bo Pang and Lillian Lee. Opinion mining and sentiment analysis. Foundations and Trends in Information Retrieval, 2(1-2):1–135, 2008. Cerca con Google

[84] Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan. Thumbs up? sentiment classification using machine learning techniques. In Proceedings of EMNLP-2002, pages 79–86, 2002. Cerca con Google

[85] Maria Silvia Pini, Francesca Rossi, Kristen Brent Venable, and Toby Walsh. Incompleteness and incomparability in preference aggregation: Complexity results. Artificial Intelligence, 175(7-8):1272–1289, 2011. Cerca con Google

[86] Zinovi Rabinovich, Svetlana Obraztsova, Omer Lev, Evangelos Markakis, and Jeffrey Rosenschein. Analysis of equilibria in iterative voting schemes. In Proceedings of the 5th International Workshop on Computational Social Choice (COMSOC-2014), 2014. Cerca con Google

[87] Annemieke Reijngoud and Ulle Endriss. Voter response to iterated poll information. In Proceedings of the 11th International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS-2012), June 2012. Cerca con Google

[88] Reyhaneh Reyhani and Mark C. Wilson. Best reply dynamics for scoring rules. In Proceedings of the 20th European Conference on Artificial Intelligence (ECAI-2012), pages 672–677, 2012. Cerca con Google

[89] Federica Ricca, Andrea Scozzari, and Bruno Simeone. Political districting: from classical models to recent approaches. 4OR, 9(3):223–254, 2011. Cerca con Google

[90] Francesca Rossi, Kristen Brent Venable, and Toby Walsh. A Short Introduction to Preferences: Between Artificial Intelligence and Social Choice. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan and Claypool Publishers, 2011. Cerca con Google

[91] Nathan F. Russell. Complexity of Control of Borda Count Elections, 2007. Cerca con Google

[92] Mark Allen Satterthwaite. Strategy-proofness and Arrow’s conditions: Existence and correspondence theorems for voting procedures and social welfare functions. Journal of Economic Theory, 10(2):187 – 217, 1975. Cerca con Google

[93] Yoav Shoham and Kevin Leyton-Brown. Multiagent Systems - Algorithmic, Game-Theoretic, and Logical Foundations. Cambridge University Press, 2009. Cerca con Google

[94] Piotr Skowron, Piotr Faliszewski, and Arkadii Slinko. Achieving fully proportional representation is easy in practice. In In Proc. of the 2013 AAMAS, AAMAS ’13, pages 399–406, Richland, SC, 2013. International Foundation for Autonomous Agents and Multiagent Systems. Cerca con Google

[95] Sydney Coordinated Adaptive Traffic System. SCATS: How it works | Adaptive control. , 2014. Cerca con Google

[96] Alan D. Taylor. Social choice and the mathematics of manipulation. Cambridge University Press, 2005. Cerca con Google

[97] David R. M. Thompson, Omer Lev, Kevin Leyton-Brown, and Jeffrey S. Rosenschein. Empirical analysis of plurality election equilibria. In The Twelfth International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS-2013), 2013. Cerca con Google

[98] Frank van Harmelen, Frank van Harmelen, Vladimir Lifschitz, and Bruce Porter. Handbook of Knowledge Representation. Elsevier, 2007. Cerca con Google

[99] Toby Walsh. An empirical study of the manipulability of single transferable voting. In Helder Coelho, Rudi Studer, and Michael Wooldridge, editors, ECAI, volume 215 of Frontiers in Artificial Intelligence and Applications, pages 257–262. IOS Press, 2010. Cerca con Google

[100] Toby Walsh. Is computational complexity a barrier to manipulation? Annals of Mathematics and Artificial Intelligence, 62(1-2):7–26, June 2011. Cerca con Google

[101] Lirong Xia and Vincent Conitzer. A maximum likelihood approach towards aggregating partial orders. In Proceedings of IJCAI-2011, 2011. Cerca con Google

[102] Lirong Xia, Michael Zuckerman, Ariel D. Procaccia, Vincent Conitzer, and Jeffrey S. Rosenschein. Complexity of unweighted coalitional manipulation under some common voting rules. In Proceedings of the 21st International Joint Conference on Artificial Intelligence (IJCAI-2009), 2009. Cerca con Google

[103] H. Peyton Young. An axiomatization of Borda’s rule. Journal of Economic Theory, 9(1):43–52, 1974. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record