Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Pevere, Ines (2016) Effects of agricultural management and landscape on farmland biodiversity and associated ecosystem services. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF - Versione sottomessa
897Kb
[img]
Anteprima
Documento PDF (Errata corrige)
161Kb

Abstract (inglese)

The next few decades will witness a rapidly increasing demand for agricultural products. By 2050 current food demand will be doubled by world population and socio-economic growth (FAO 2015). The expanding bio-based economy will increase the demand for agricultural products. Urban development will increasingly compete with agriculture for land use. The growing demand for agricultural products needs to be met largely through intensification (produce more from the same land surface) because there is little scope for an increase in agricultural area without doing irreparable damage to vital natural ecosystems. The steady increases in agricultural productivity per unit area seen through the latter part of the 20th century have now plateaued with little opportunity for further increases in efficiency through conventional methods. The dependency of conventional agriculture and food supply on non-renewable resources (e.g. fossil fuels, phosphate) makes it unsustainable in the long run.
Eco-functional intensification has been proposed as a promising solution (Niggli et al. 2008). Eco-functional intensification is the optimization of all provisioning, regulating and supporting ecosystem services in the agricultural production process (modified after Niggli et al. 2008). As such it advocates to maintain or enhance agricultural production through the promotion of biodiversity and associated ecosystem services. However, the implementation of ecological intensification into crop production systems is knowledge-intensive and it requires a comprehensive understanding of the relationships among multiple ecosystems services.
The aim of this thesis was to investigate how landscape structure (semi-natural habitats) and land-use (on-farm management) interact in the provisioning of some ecosystem services, that is pollination service and biological control. We explored the effects of field boundary quality, at local scale, on pollination service and pollinators community, assessing the quality of field boundaries, e.g. tree diversity, tree structural heterogeneity. Furthermore we assessed the relationship between farm management, semi-natural habitats and biological control then the combined effect of tillage management and urbanization on ground beetle communities (Coleoptera: Carabidae).
In chapter 2 we evaluated the potential interactions between pollination services and quality of semi-natural landscape elements. We tested whether abundance and richness of plant species at local scale can enhances richness and abundance of pollinators.
In chapter 3 we explored how local management practices, fertiliser and insecticide inputs and management for enhanced SOC, combined with land use at the landscape (1 km diameter circle) determined the crop yield, biological pest control, and abundance of predators. This experimental design allowed us to test for general interactive effects of management for ecosystem services and of efficiency of external inputs to crop yields.
In chapter 4 we explored the potential interactions between management intensity, landscape complexity and predators community. In a field experiment we tested the combined effect of tillage management (conventional vs. conservation tillage) and urbanization on ground beetle communities (Coleoptera: Carabidae).
Our study stresses the importance of considering both local management and landscape composition when planning strategies to support farmland biodiversity. These principles are taken up by the EU agricultural policy that through the mediation of the member states and their regions promotes the introduction of environmentally friendly farming systems, such as minimum tillage or no tillage (MT, NT) in order to increase the organic carbon into the soil and the related environmental benefits, such as conservation of nutrient cycling, species diversity and productivity.

Abstract (italiano)

I prossimi decenni saranno testimoni di un rapido aumento della domanda di prodotti agricoli. Entro il 2050 l’attuale domanda alimentare sarà raddoppiata a seguito della crescita della popolazione mondiale e della crescita socio-economica (FAO 2015). Lo sviluppo urbano sarà sempre più in concorrenza con l'agricoltura per l'uso del suolo. Si rende quindi necessario soddisfare la maggior parte della crescente domanda di prodotti agricoli attraverso l'intensificazione colturale (ossia produrre di più sulla stessa superficie agricola investita) poiché non vi è sufficiente spazio per incrementare la superficie agricola senza causare danni irreparabili agli ecosistemi naturali vitali. Il costante aumento della produttività agricola per unità di superficie, a cui si è assistito nell'ultima parte del 20° secolo si è ormai stabilizzata, con scarse possibilità di ulteriori aumenti di efficienza attraverso metodi convenzionali. La dipendenza dell'agricoltura convenzionale e dell’approvvigionamento alimentare sulle risorse non rinnovabili (ad esempio i combustibili fossili, fosfato) la rende insostenibile nel lungo periodo.
L ‘intensificazione eco-funzionale è stata proposta come una soluzione promettente (Niggli et al. 2008). Per Intensificazione Eco-funzionale si intende l'ottimizzazione dell’approvvigionamento, della regolazione e del mantenimento dei servizi ecosistemici nel processo di produzione agricola (Niggli et al. 2008). Come tale, promuove il mantenimento o la crescita della produzione agricola sostenendo la biodiversità e i connessi servizi ecosistemici. Tuttavia, l'implementazione della intensificazione ecologica nei sistemi di produzione delle colture agrarie specifiche conoscenze oltre che una comprensione globale delle relazioni tra i diversi servizi ecosistemici.
Lo scopo di questa tesi è stato quello di studiare come la struttura del paesaggio (habitat seminaturali) e l’uso del suolo (gestione in azienda) interagiscono nell’approvvigionamento di alcuni servizi ecosistemici, quali sono il servizio di impollinazione e il controllo biologico. Abbiamo indagato gli effetti del tipo di margine del campo coltivato, a scala locale, sul servizio di impollinazione e sulla comunità degli impollinatori, valutando le caratteristiche delle siepi presenti lungo i campi coltivati, ad esempio, la densità degli alberi, l’eterogeneità in termini di specie e di struttura. Inoltre, abbiamo indagato la relazione tra le pratiche gestionali agricole, gli habitat semi-naturali e il controllo biologico delle colture nonché l'effetto combinato dei tipi di lavorazione del suolo e del grado di urbanizzazione presente sulle comunità dei coleotteri Carabidi. (Coleoptera: Carabidae).
Nel capitolo 2 sono state valutate le potenziali interazioni tra impollinazione e la qualità degli elementi del paesaggio semi-naturale. Abbiamo testato se l'abbondanza e la ricchezza di specie vegetali, a scala locale, possono incentivare la ricchezza e l'abbondanza di impollinatori.
Nel capitolo 3 abbiamo esplorato come le pratiche locali di gestione agricola delle colture, (fertilizzanti e di insetticidi, pratiche colturali che favoriscono una maggiore SOC) in combinazione con il paesaggio influiscono sulla resa delle colture, sul controllo biologico dei parassiti e sull'abbondanza dei predatori. Questo modello sperimentale ha permesso di testare le generali conseguenze interattive, dovute ad una diversa gestione colturale, tra i servizi ecosistemici e il rendimento degli input esterni sui raccolti.
Nel capitolo 4 abbiamo esplorato le possibili interazioni tra intensità di gestione delle colture agrarie, la complessità del paesaggio e la comunità dei predatori. Attraverso un esperimento in campo abbiamo testato l'effetto combinato della gestione dell’aratura (lavorazione convenzionale rispetto a lavorazione conservativa) e della urbanizzazione sulle comunità di coleotteri Carabidi (Coleoptera: Carabidae).

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Marini, Lorenzo
Correlatore:Battisti, Andrea
Dottorato (corsi e scuole):Ciclo 28 > Scuole 28 > SCIENZE DELLE PRODUZIONI VEGETALI
Data di deposito della tesi:28 Gennaio 2016
Anno di Pubblicazione:28 Gennaio 2016
Parole chiave (italiano / inglese):biodiversity, Eco-functional intensification, landscape complexity, predators community, local scale, farmland biodiversity, management intensity, biological pest control, pollination services, richness and abundance of pollinators, bees community, ground beetle communities
Settori scientifico-disciplinari MIUR:Area 07 - Scienze agrarie e veterinarie > AGR/02 Agronomia e coltivazioni erbacee
Struttura di riferimento:Dipartimenti > Dipartimento di Agronomia Animali Alimenti Risorse Naturali e Ambiente
Codice ID:9274
Depositato il:21 Ott 2016 15:23
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Adams, D. C., & Otárola‐Castillo, E. (2013). geomorph: an R package for the collection and analysis of geometric morphometric shape data. Methods in Ecology and Evolution, 4(4), 393-399. Cerca con Google

Alaruikka, D., Kotze, D. J., Matveinen, K., & Niemelä, J. (2002). Carabid beetle and spider assemblages along a forested urban–rural gradient in southern Finland. Journal of Insect Conservation, 6(4), 195-206. Cerca con Google

Albrecht, M., Duelli, P., Müller, C., Kleijn, D., & Schmid, B. (2007). The Swiss agri‐environment scheme enhances pollinator diversity and plant reproductive success in nearby intensively managed farmland. Journal of Applied Ecology, 44, 813-822. Cerca con Google

Altieri, M.A. (1992) Agroecological foundations of alternative agriculture in California. Agriculture, Ecosystems and Environment. 39, 23-53 Cerca con Google

Andersson, G. K., Rundlöf, M., & Smith, H. G. (2012). Organic farming improves pollination success in strawberries. PloS one, 7(2), e31599. Cerca con Google

Andow, D. A. (1991). Vegetational diversity and arthropod population response. Annual review of entomology, 36(1), 561-586 Cerca con Google

Ball, B. C., Tebrügge, F., Sartori, L., Giráldez, J. V., & González, P. (1998). Influence of no-tillage on physical, chemical and biological soil properties. Experiences with the applicability of no-tillage crop production in the west-European countries, review papers, summaries and conclusions of the concerted action, 7-27. Cerca con Google

Barrios, E. (2007). Soil biota, ecosystem services and land productivity. Ecological economics, 64(2), 269-285. Cerca con Google

Barton, K. (2015). MuMIn: Multi-Model Inference. R package version 1.14.0. http://CRAN.R-project.org/package=MuMIn Vai! Cerca con Google

Bartomeus, I., Gagic, V., & Bommarco, R. (2014). Pollinators, pests and soil properties interactively shape oilseed rape yield. bioRxiv, 010181. Cerca con Google

Blanche, K. R., Ludwig, J. A., & Cunningham, S. A. (2006). Proximity to rainforest enhances pollination and fruit set in orchards. Journal of applied ecology, 43(6), 1182-1187. Cerca con Google

Belaoussoff, S., Kevan, P. G., Murphy, S., & Swanton, C. (2003). Assessing tillage disturbance on assemblages of ground beetles (Coleoptera: Carabidae) by using a range of ecological indices. Biodiversity & Conservation, 12(5), 851-882. Cerca con Google

Bell, J. R., Traugott, M., Sunderland, K. D., Skirvin, D. J., Mead, A., Kravar‐Garde, L., ... & Symondson, W. O. (2008). Beneficial links for the control of aphids: the effects of compost applications on predators and prey. Journal of Applied Ecology, 45(4), 1266-1273 Cerca con Google

Bengtsson, J., Ahnström, J., & WEIBULL, A. C. (2005). The effects of organic agriculture on biodiversity and abundance: a meta‐analysis. Journal of applied ecology, 42(2), 261-269. Cerca con Google

Benton, T. G., Vickery, J. A., & Wilson, J. D. (2003). Farmland biodiversity: is habitat heterogeneity the key?. Trends in Ecology & Evolution, 18(4), 182-188. Cerca con Google

von Berg, K., Thies, C., Tscharntke, T., & Scheu, S. (2009). Cereal aphid control by generalist predators in presence of belowground alternative prey: complementary predation as affected by prey density. Pedobiologia, 53(1), 41-48. Cerca con Google

Von Berg, K., Thies, C., Tscharntke, T., & Scheu, S. (2010). Changes in herbivore control in arable fields by detrital subsidies depend on predator species and vary in space. Oecologia, 163(4), 1033-1042. Cerca con Google

Bezemer, T. M., & van Dam, N. M. (2005). Linking aboveground and belowground interactions via induced plant defenses. Trends in Ecology & Evolution, 20(11), 617-624. Cerca con Google

Birkhofer, K., Bezemer, T. M., Bloem, J., Bonkowski, M., Christensen, S., Dubois, D., ... & Mäder, P. (2008). Long-term organic farming fosters below and aboveground biota: implications for soil quality, biological control and productivity. Soil Biology and Biochemistry, 40(9), 2297-2308. Cerca con Google

Bjornstad, O.N. (2013). ncf: spatial nonparametric covariance functions. R package version 1.1-5. http://CRAN.R-project.org/package=ncf Vai! Cerca con Google

Bommarco, R., Kleijn, D., & Potts, S. G. (2013). Ecological intensification: harnessing ecosystem services for food security. Trends in ecology & evolution, 28(4), 230-238. Cerca con Google

Bongaarts, J. (1996). Population pressure and the food supply system in the developing world. Population and Development Review, 483-503. Cerca con Google

Boreux, V., Kushalappa, C. G., Vaast, P., & Ghazoul, J. (2013). Interactive effects among ecosystem services and management practices on crop production: pollination in coffee agroforestry systems. Proceedings of the National Academy of Sciences, 110(21), 8387-8392. Cerca con Google

Boscutti, F., Sigura, M., Gambon, N., Lagazio, C., Krüsi, B. O., & Bonfanti, P. (2015). Conservation Tillage Affects Species Composition But Not Species Diversity: A Comparative Study in Northern Italy. Environmental management, 55(2), 443-452. Cerca con Google

Brady, M. V., Hedlund, K., Cong, R. G., Hemerik, L., Hotes, S., Machado, S., ... & Thomsen, I. K. Valuing Supporting Soil Ecosystem Services in Agriculture: a Natural Capital Approach. Cerca con Google

Bukovinszky, T., van Veen, F. F., Jongema, Y., & Dicke, M. (2008). Direct and indirect effects of resource quality on food web structure. Science, 319(5864), 804-807. Cerca con Google

Butler, S. J., Vickery, J. A., & Norris, K. (2007). Farmland biodiversity and the footprint of agriculture. Science, 315(5810), 381-384. Cerca con Google

Chaplin‐Kramer, R., O’Rourke, M. E., Blitzer, E. J., & Kremen, C. (2011). A meta‐analysis of crop pest and natural enemy response to landscape complexity. Ecology letters, 14(9), 922-932. Cerca con Google

.Clerck, F.; Estrada-Carmona N. Garbach K. Martinez-Salinas A. (2015) Biodiversity and ecosystem services of agricultural landscapes: reversing agriculture’s externalities. Conference and workshop papers – proceedings. FAO. 140-150. Cerca con Google

Croci, S., Butet, A., Georges, A., Aguejdad, R., & Clergeau, P. (2008). Small urban woodlands as biodiversity conservation hot-spot: a multi-taxon approach. Landscape Ecology, 23(10), 1171-1186. Cerca con Google

De Deyn, G. B., & Van der Putten, W. H. (2005). Linking aboveground and belowground diversity. Trends in Ecology & Evolution, 20(11), 625-633. Cerca con Google

Duffield, S. J., Bryson, R. J., Young, J. E. B., SYLVESTER‐BRADLEY, R., & Scott, R. K. (1997). The influence of nitrogen fertiliser on the population development of the cereal aphids Sitobion avenae (F.) and Metopolophium dirhodum (Wlk.) on field grown winter wheat. Annals of Applied Biology, 130(1), 13-26. Cerca con Google

Dale, V. H., & Polasky, S. (2007). Measures of the effects of agricultural practices on ecosystem services. Ecological economics, 64(2), 286-296. Cerca con Google

El Titi, A. (Ed.). (2002). Soil tillage in agroecosystems. CRC press. Cerca con Google

FAO. (2015) FAOSTAT homepage http://faostat.fao.org Vai! Cerca con Google

Foley, J. A., DeFries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., ... & Helkowski, J. H. (2005). Global consequences of land use. science, 309(5734), 570-574. Cerca con Google

Garibaldi, L. A., Steffan‐Dewenter, I., Kremen, C., Morales, J. M., Bommarco, R., Cunningham, S. A., ... & Holzschuh, A. (2011). Stability of pollination services decreases with isolation from natural areas despite honey bee visits. Ecology letters, 14(10), 1062-1072. Cerca con Google

Gaublomme, E., Hendrickx, F., Dhuyvetter, H., & Desender, K. (2008). The effects of forest patch size and matrix type on changes in carabid beetle assemblages in an urbanized landscape. Biological conservation, 141(10), 2585-2596. Cerca con Google

Geiger, F., Bengtsson, J., Berendse, F., Weisser, W. W., Emmerson, M., Morales, M. B., ... & Eggers, S. (2010). Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic and Applied Ecology, 11(2), 97-105. Cerca con Google

Gerisch, M. (2014). Non‐random patterns of functional redundancy revealed in ground beetle communities facing an extreme flood event. Functional Ecology, 28(6), 1504-1512. Cerca con Google

Gonthier, D. J., Ennis, K. K., Farinas, S., Hsieh, H. Y., Iverson, A. L., Batáry, P., ... & Perfecto, I. (2014). Biodiversity conservation in agriculture requires a multi-scale approach. Proceedings of the Royal Society of London B: Biological Sciences, 281(1791), 20141358. Cerca con Google

Green, Rhys E., et al. (2005) Farming and the fate of wild nature. Science . 307.5709, 550-555. Cerca con Google

Haenke S, Kovács-Hostyánszki A, Fründ J, Batáry P, Jauker B, Tscharntke T, Holzschuh A (2014). Landscape configuration of crops and hedgerows drives local syrphid fly abundance. Journal of Applied Ecology, 51, pp. 505-513. Cerca con Google

Halaj, J., & Wise, D. H. (2002). Impact of a detrital subsidy on trophic cascades in a terrestrial grazing food web. Ecology, 83(11), 3141-3151. Cerca con Google

Hasken, K. H., & Poehling, H. M. (1995). Effects of different intensities of fertilisers and pesticides on aphids and aphid predators in winter wheat. Agriculture, ecosystems & environment, 52(1), 45-50. Cerca con Google

Hatten, T. D., Bosque-Pérez, N. A., Labonte, J. R., Guy, S. O., & Eigenbrode, S. D. (2007). Effects of tillage on the activity density and biological diversity of carabid beetles in spring and winter crops. Environmental entomology, 36(2), 356-368. Cerca con Google

Hannon, L. E., & Sisk, T. D. (2009). Hedgerows in an agri-natural landscape: potential habitat value for native bees. Biological conservation, 142(10), 2140-2154 Cerca con Google

Holland, J. M., & Luff, M. L. (2000). The effects of agricultural practices on Carabidae in temperate agroecosystems. Integrated Pest Management Reviews, 5(2), 109-129. Cerca con Google

Holland, J. M. (2004). The environmental consequences of adopting conservation tillage in Europe: reviewing the evidence. Agriculture, Ecosystems & Environment, 103(1), 1-25. Cerca con Google

Holzschuh, A., Steffan‐Dewenter, I., & Tscharntke, T. (2008). Agricultural landscapes with organic crops support higher pollinator diversity. Oikos, 117(3), 354-361. Cerca con Google

Homburg, K., Homburg, N., Schäfer, F., Schuldt, A., & Assmann, T. (2014). Carabids. org–a dynamic online database of ground beetle species traits (Coleoptera, Carabidae). Insect conservation and diversity, 7(3), 195-205. Cerca con Google

Honěk, A. (1991). Nitrogen fertilization and abundance of the cereal aphids Metopolophium dirhodum and Sitobion avenae (Homoptera, Aphididae)/Einfluß der Stickstoffdüngung auf die Abundanz zweier Getreideblattlausarten Metopolophium dirhodum und Sitobion avenae (Homoptera, Aphididae). Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz/Journal of Plant Diseases and Protection, 655-660. Cerca con Google

House, G. J., & Alzugaray, M. D. R. (1989). Influence of cover cropping and no-tillage practices on community composition of soil arthropods in a North Carolina agroecosystem. Environmental entomology, 18(2), 302-307. Cerca con Google

Kennedy, C. M., Lonsdorf, E., Neel, M. C., Williams, N. M., Ricketts, T. H., Winfree, R., ... & Carvalheiro, L. G. (2013). A global quantitative synthesis of local and landscape effects on wild bee pollinators in agroecosystems. Ecology letters, 16(5), 584-599. Cerca con Google

Klein, A. M., Vaissiere, B. E., Cane, J. H., Steffan-Dewenter, I., Cunningham, S. A., Kremen, C., & Tscharntke, T. (2007). Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society of London B: Biological Sciences, 274(1608), 303-313. Cerca con Google

Kleijn, D., Rundlöf, M., Scheper, J., Smith, H. G., & Tscharntke, T. (2011). Does conservation on farmland contribute to halting the biodiversity decline?. Trends in Ecology & Evolution, 26(9), 474-481. Cerca con Google

Kleijn, D., Kohler, F., Báldi, A., Batáry, P., Concepción, E. D., Clough, Y., ... & Kovács, A. (2009). On the relationship between farmland biodiversity and land-use intensity in Europe. Proceedings of the Royal Society of London B: Biological Sciences, 276(1658), 903-909. Cerca con Google

Klein, A. M., Hendrix, S. D., Clough, Y., Scofield, A., & Kremen, C. (2015). Interacting effects of pollination, water and nutrients on fruit tree performance. Plant Biology, 17(1), 201-208. Cerca con Google

Kleijn, D., & Sutherland, W. J. (2003). How effective are European agri‐environment schemes in conserving and promoting biodiversity?. Journal of applied ecology, 40(6), 947-969. Cerca con Google

Kleijn, D., Baquero, R. A., Clough, Y., Diaz, M., Esteban, J. D., Fernández, F., ... & Knop, E. (2006). Mixed biodiversity benefits of agri‐environment schemes in five European countries. Ecology letters, 9(3), 243-254. Cerca con Google

Kohler, F., Verhulst, J., Van Klink, R., & Kleijn, D. (2008). At what spatial scale do high‐quality habitats enhance the diversity of forbs and pollinators in intensively farmed landscapes?. Journal of Applied Ecology, 45(3), 753-762. Cerca con Google

Kohler, F., Verhulst, J., Knop, E., Herzog, F., & Kleijn, D. (2007). Indirect effects of grassland extensification schemes on pollinators in two contrasting European countries. Biological Conservation, 135(2), 302-307. Cerca con Google

Kostenko, O., Voorde, T. F., Mulder, P. P., Putten, W. H., & Martijn Bezemer, T. (2012). Legacy effects of aboveground–belowground interactions. Ecology letters, 15(8), 813-821. Cerca con Google

Krauss, J., Bommarco, R., Guardiola, M., Heikkinen, R. K., Helm, A., Kuussaari, M., ... & Pöyry, J. (2010). Habitat fragmentation causes immediate and time‐delayed biodiversity loss at different trophic levels. Ecology letters, 13(5), 597-605. Cerca con Google

Kremen, C., Williams, N. M., Bugg, R. L., Fay, J. P., & Thorp, R. W. (2004). The area requirements of an ecosystem service: crop pollination by native bee communities in California. Ecology letters, 7(11), 1109-1119. Cerca con Google

Kremen, C., Williams, N. M., & Thorp, R. W. (2002). Crop pollination from native bees at risk from agricultural intensification. Proceedings of the National Academy of Sciences, 99(26), 16812-16816. Cerca con Google

Kromp, B. (1989). Carabid beetle communities (Carabidae, Coleoptera) in biologically and conventionally farmed agroecosystems. Agriculture, ecosystems & environment, 27(1), 241-251. Cerca con Google

Kromp, B. (1999). Carabid beetles in sustainable agriculture: a review on pest control efficacy, cultivation impacts and enhancement. Agriculture, Ecosystems & Environment, 74(1), 187-228. Cerca con Google

Krooss, S., & Schaefer, M. (1998). The effect of different farming systems on epigeic arthropods: a five-year study on the rove beetle fauna (Coleoptera: Staphylinidae) of winter wheat. Agriculture, ecosystems & environment, 69(2), 121-133. Cerca con Google

Isbell, F., Calcagno, V., Hector, A., Connolly, J., Harpole, W. S., Reich, P. B., ... & Weigelt, A. (2011). High plant diversity is needed to maintain ecosystem services. Nature, 477(7363), 199-202. Cerca con Google

Ishitani, M., Kotze, D. J., & Niemelä, J. (2003). Changes in carabid beetle assemblages across an urban‐rural gradient in Japan. Ecography, 26(4), 481-489. Cerca con Google

Jeanneret, P., Schüpbach, B., & Luka, H. (2003). Quantifying the impact of landscape and habitat features on biodiversity in cultivated landscapes. Agriculture, Ecosystems & Environment, 98(1), 311-320. Cerca con Google

Lang, A., Filser, J., & Henschel, J. R. (1999). Predation by ground beetles and wolf spiders on herbivorous insects in a maize crop. Agriculture, ecosystems & environment, 72(2), 189-199. Cerca con Google

Leps, J., De Bello, F., Lavorel, S., & Berman, S. (2006). Quantifying and interpreting functional diversity of natural communities: practical considerations matter. Preslia, 78(4), 481-501. Cerca con Google

Lindroth, C. H. (1992). Ground beetles (Carabidae) of Fennoscandia: a zoogeographical study: Part 3. General analysis with a discussion on biogeographical principles. Cerca con Google

Lövei, G. L., & Sunderland, K. D. (1996). Ecology and behavior of ground beetles (Coleoptera: Carabidae). Annual review of entomology, 41(1), 231-256. Cerca con Google

Losey, J. E., & Vaughan, M. (2006). The economic value of ecological services provided by insects. Bioscience, 56(4), 311-323. Cerca con Google

Lundin, O., Smith, H. G., Rundlöf, M., & Bommarco, R. (2013). When ecosystem services interact: crop pollination benefits depend on the level of pest control. Proceedings of the Royal Society of London B: Biological Sciences, 280(1753), 20122243. Cerca con Google

Mason, B. J. (1992). Preparation of soil sampling protocols: sampling techniques and strategies (No. PB-92-220532/XAB). Nevada Univ., Las Vegas, NV (United States). Environmental Research Center. Cerca con Google

Mason, N. W., Mouillot, D., Lee, W. G., & Wilson, J. B. (2005). Functional richness, functional evenness and functional divergence: the primary components of functional diversity. Oikos, 111(1), 112-118. Cerca con Google

Magdoff, F. & Weil R.R.(2004) SoilOrganicMatterinSustainableAgriculture. CRCPress. Cerca con Google

Mandelik, Y., Winfree, R., Neeson, T., & Kremen, C. (2012). Complementary habitat use by wild bees in agro-natural landscapes. Ecological Applications, 22(5), 1535-1546. Cerca con Google

Marini, L., Tamburini, G., Petrucco-Toffolo, E., Lindström, S. A., Zanetti, F., Mosca, G., & Bommarco, R. (2015). Crop management modifies the benefits of insect pollination in oilseed rape. Agriculture, Ecosystems & Environment, 207, 61-66. Cerca con Google

McKinney, M. L. (2008). Effects of urbanization on species richness: a review of plants and animals. Urban ecosystems, 11(2), 161-176. Cerca con Google

Menalled, F. D., Smith, R. G., Dauer, J. T., & Fox, T. B. (2007). Impact of agricultural management on carabid communities and weed seed predation. Agriculture, ecosystems & environment, 118(1), 49-54. Cerca con Google

Merckx, T., Marini, L., Feber, R. E., & Macdonald, D. W. (2012). Hedgerow trees and extended‐width field margins enhance macro‐moth diversity: implications for management. Journal of Applied Ecology, 49(6), 1396-1404. Cerca con Google

Muller, J. K. (1985). Konkurrenzvermeidung und Einnischung bei Carabiden (Coleoptera). Zeitschrift für Zoologische Systematik und Evolutionsforschung, 23(4), 299-314. Cerca con Google

Murphy, S. D., Clements, D. R., Belaoussoff, S., Kevan, P. G., & Swanton, C. J. (2006). Promotion of weed species diversity and reduction of weed seedbanks with conservation tillage and crop rotation. Weed Science, 54(1), 69-77 Cerca con Google

Niemelä, J., & Kotze, D. J. (2009). Carabid beetle assemblages along urban to rural gradients: A review. Landscape and Urban Planning, 92(2), 65-71. Cerca con Google

Niemelä, J., Kotze, D. J., Venn, S., Penev, L., Stoyanov, I., Spence, J., ... & De Oca, E. M. (2002). Carabid beetle assemblages (Coleoptera, Carabidae) across urban-rural gradients: an international comparison. Landscape Ecology, 17(5), 387-401. Cerca con Google

Niggli, U., Slabe, A., Schmid, O., Halberg, N., & Schlüter, M. (2008). Vision Research Agenda to 2025. Cerca con Google

Ngosong, C., Raupp, J., Scheu, S., & Ruess, L. (2009). Low importance for a fungal based food web in arable soils under mineral and organic fertilization indicated by Collembola grazers. Soil Biology and Biochemistry, 41(11), 2308-2317. Cerca con Google

Norris, Ken (2008) Agriculture and biodiversity conservation: opportunity knocks." Conservation letters 1.1 , 2-11. Cerca con Google

Öckinger, E., & Smith, H. G. (2007). Semi‐natural grasslands as population sources for pollinating insects in agricultural landscapes. Journal of applied ecology, 44(1), 50-59. Cerca con Google

Osborne, J. L. (1994). Evaluating a pollination system: Borago officinalis and bees (Doctoral dissertation, University of Cambridge). Cerca con Google

Palmu, E., Ekroos, J., Hanson, H. I., Smith, H. G., & Hedlund, K. (2014). Landscape-scale crop diversity interacts with local management to determine ground beetle diversity. Basic and Applied Ecology, 15(3), 241-249. Cerca con Google

Pfiffner, L., & Luka, H. (2003). Effects of low-input farming systems on carabids and epigeal spiders–a paired farm approach. Basic and Applied Ecology, 4(2), 117-127. Cerca con Google

Phelan, P. L., Norris, K. H., & Mason, J. F. (1996). Soil-management history and host preference by Ostrinia nubilalis: evidence for plant mineral balance mediating insect–plant interactions. Environmental Entomology, 25(6), 1329-1336. Cerca con Google

Pilon, N., Cardarelli, M. E., & Bogliani, G. (2013). Ground beetles (Coleoptera: Carabidae) of rice field banks and restored habitats in an agricultural area of the Po Plain (Lombardy, Italy). Biodiversity data journal, (1). Cerca con Google

Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team. 2015 nlme: linear and nonlinear mixed effects models. R package version 3.1-120. See http://CRAN.R-project.org/package=nlme. Vai! Cerca con Google

Pinheiro, José, et al. R Core Team (2014) nlme: linear and nonlinear mixed effects models. R package version 3.1–117. URL: http://cran. r-project. org/web/packages/nlme/index. html. Vai! Cerca con Google

Potts, S. G., Biesmeijer, J. C., Kremen, C., Neumann, P., Schweiger, O., & Kunin, W. E. (2010). Global pollinator declines: trends, impacts and drivers. Trends in ecology & evolution, 25(6), 345-353. Cerca con Google

Power, A. G. (2010). Ecosystem services and agriculture: tradeoffs and synergies. Philosophical transactions of the royal society B: biological sciences, 365(1554), 2959-2971. Cerca con Google

Pretty, J. (2008). Agricultural sustainability: concepts, principles and evidence. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 363(1491), 447-465. Cerca con Google

Purtauf, T., Dauber, J., & Wolters, V. (2005). The response of carabids to landscape simplification differs between trophic groups. Oecologia, 142(3), 458-464. Cerca con Google

R Development Core Team, R. (2015) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.r-project.org. Vai! Cerca con Google

R version 3.2.0 (2015-04-16) -- "Full of Ingredients" Copyright (C) 2015 The R Foundation for Statistical Computing. Vienna. ISBN 3-900051-07-0, http://www.Rproject.org Vai! Cerca con Google

Rainio, J., & Niemelä, J. (2003). Ground beetles (Coleoptera: Carabidae) as bioindicators. Biodiversity & Conservation, 12(3), 487-506. Cerca con Google

. Cerca con Google

Ray, D. K., Ramankutty, N., Mueller, N. D., West, P. C., & Foley, J. A. (2012). Recent patterns of crop yield growth and stagnation. Nature communications, 3, 1293. Cerca con Google

Regione Veneto (2009) Banca Dati della Copertura del Suolo della Regione Veneto. Regione del Veneto, Unità di Progetto per il SIT e la cartografia, Venezia. Cerca con Google

Ribera, I., Dolédec, S., Downie, I. S., & Foster, G. N. (2001). Effect of land disturbance and stress on species traits of ground beetle assemblages. Ecology, 82(4), 1112-1129. Cerca con Google

Ricketts, T. H., Daily, G. C., Ehrlich, P. R., & Michener, C. D. (2004). Economic value of tropical forest to coffee production. Proceedings of the National Academy of Sciences of the United States of America, 101(34), 12579-12582 Cerca con Google

Ricketts, T. H., Regetz, J., Steffan‐Dewenter, I., Cunningham, S. A., Kremen, C., Bogdanski, A., ... & Morandin, L. A. (2008). Landscape effects on crop pollination services: are there general patterns?. Ecology letters, 11(5), 499-515. Cerca con Google

Ricou, C., Schneller, C., Amiaud, B., Plantureux, S., & Bockstaller, C. (2014). A vegetation-based indicator to assess the pollination value of field margin flora. Ecological Indicators, 45, 320-331 Cerca con Google

Riedell, W. E., & Kieckhefer, R. W. (1993). Nitrogen fertilizer management and grain yield loss to Russian wheat aphids. Cereal Research Communications, 57-61. Cerca con Google

Rounsevell, M. D. A., Ewert, F., Reginster, I., Leemans, R., & Carter, T. R. (2005). Future scenarios of European agricultural land use: II. Projecting changes in cropland and grassland. Agriculture, Ecosystems & Environment, 107(2), 117-135. Cerca con Google

Rundlöf, M., & Smith, H. G. (2006). The effect of organic farming on butterfly diversity depends on landscape context. Journal of applied ecology, 43(6), 1121-1127. Cerca con Google

Sadler, J. P., Small, E. C., Fiszpan, H., Telfer, M. G., & Niemelä, J. (2006). Investigating environmental variation and landscape characteristics of an urban–rural gradient using woodland carabid assemblages. Journal of Biogeography, 33(6), 1126-1138. Cerca con Google

Schellhorn, N. A., Gagic, V., & Bommarco, R. (2015). Time will tell: resource continuity bolsters ecosystem services. Trends in ecology & evolution, 30(9), 524-530. Cerca con Google

Scheper, J., Holzschuh, A., Kuussaari, M., Potts, S. G., Rundlöf, M., Smith, H. G., & Kleijn, D. (2013). Environmental factors driving the effectiveness of European agri‐environmental measures in mitigating pollinator loss–a meta‐analysis. Ecology letters, 16(7), 912-920. Cerca con Google

Scheu, S. (2001). Plants and generalist predators as links between the below-ground and above-ground system. Basic and Applied Ecology, 2(1), 3-13. Cerca con Google

Schielzeth, H. (2010). Simple means to improve the interpretability of regression coefficients. Methods in Ecology and Evolution, 1(2), 103-113. Cerca con Google

Seppelt, R., Dormann, C. F., Eppink, F. V., Lautenbach, S., & Schmidt, S. (2011). A quantitative review of ecosystem service studies: approaches, shortcomings and the road ahead. Journal of applied Ecology, 48(3), 630-636. Cerca con Google

Shackelford, G., Steward, P. R., Benton, T. G., Kunin, W. E., Potts, S. G., Biesmeijer, J. C., & Sait, S. M. (2013). Comparison of pollinators and natural enemies: a meta‐analysis of landscape and local effects on abundance and richness in crops. Biological Reviews, 88(4), 1002-1021. Cerca con Google

Shah, P. A., Brooks, D. R., Ashby, J. E., Perry, J. N., & Woiwod, I. P. (2003). Diversity and abundance of the coleopteran fauna from organic and conventional management systems in southern England. Agricultural and Forest Entomology, 5(1), 51-60. Cerca con Google

Settle, W. H., Ariawan, H., Astuti, E. T., Cahyana, W., Hakim, A. L., Hindayana, D., & Lestari, A. S. (1996). Managing tropical rice pests through conservation of generalist natural enemies and alternative prey. Ecology, 1975-1988. Cerca con Google

Soane, B. D., Ball, B. C., Arvidsson, J., Basch, G., Moreno, F., & Roger-Estrade, J. (2012). No-till in northern, western and south-western Europe: A review of problems and opportunities for crop production and the environment. Soil and Tillage Research, 118, 66-87. Cerca con Google

Tamburini, G., De Simone S. Sigura, M. Boscutti F. & Marini L. (2015) Conservation tillage mitigates the negative effect of landscape simplification on biological control. J Appl. Ecol.. (published online). Cerca con Google

Thies, C., Haenke, S., Scherber, C., Bengtsson, J., Bommarco, R., Clement, L. W., ... & Hawro, V. (2011). The relationship between agricultural intensification and biological control: experimental tests across Europe. Ecological Applications, 21(6), 2187-2196 Cerca con Google

Thomas, C. F. G., & Marshall, E. J. P. (1999). Arthropod abundance and diversity in differently vegetated margins of arable fields. Agriculture, Ecosystems & Environment, 72(2), 131-144. Cerca con Google

Thorbek, P., & Bilde, T. (2004). Reduced numbers of generalist arthropod predators after crop management. Journal of Applied Ecology, 41(3), 526-538. Cerca con Google

Tilman, D., Fargione, J., Wolff, B., D'Antonio, C., Dobson, A., Howarth, R., ... & Swackhamer, D. (2001). Forecasting agriculturally driven global environmental change. Science, 292(5515), 281-284. Cerca con Google

Trichard, A., Alignier, A., Biju-Duval, L., & Petit, S. (2013). The relative effects of local management and landscape context on weed seed predation and carabid functional groups. Basic and Applied Ecology, 14(3), 235-245. Cerca con Google

Tscharntke, T., Klein, A. M., Kruess, A., Steffan‐Dewenter, I., & Thies, C. (2005). Landscape perspectives on agricultural intensification and biodiversity–ecosystem service management. Ecology letters, 8(8), 857-874. Cerca con Google

Kleijn, D., Baquero, R. A., Clough, Y., Diaz, M., Esteban, J. D., Fernández, F., ... & Knop, E. (2006). Mixed biodiversity benefits of agri‐environment schemes in five European countries. Ecology letters, 9(3), 243-254. Cerca con Google

Tscharntke, T., Bommarco, R., Clough, Y., Crist, T. O., Kleijn, D., Rand, T. A., ... & Vidal, S. (2007). Conservation biological control and enemy diversity on a landscape scale. Biological control, 43(3), 294-309. Cerca con Google

Tylianakis, J. M., Didham, R. K., Bascompte, J., & Wardle, D. A. (2008). Global change and species interactions in terrestrial ecosystems. Ecology letters, 11(12), 1351-1363. Cerca con Google

van Dam, N. M., Harvey, J. A., Wäckers, F. L., Bezemer, T. M., van der Putten, W. H., & Vet, L. E. (2003). Interactions between aboveground and belowground induced responses against phytophages. Basic and Applied Ecology, 4(1), 63-77. Cerca con Google

Van der Putten, W. H., Vet, L. E., Harvey, J. A., & Wäckers, F. L. (2001). Linking above-and belowground multitrophic interactions of plants, herbivores, pathogens, and their antagonists. Trends in Ecology & Evolution, 16(10), 547-554. Cerca con Google

Vázquez, Diego P. William F. Morris and Pedro Jordano (2005) Interaction frequency as a surrogate for the total effect of animal mutualists on plants. Ecology Letters. 8, 1088-1094. Cerca con Google

Venn, S. J., Kotze, D. J., & Niemela, J. (2003). Urbanization effects on carabid diversity in boreal forests. European Journal of Entomology, 100(1), 73-80. Cerca con Google

Voogt, J. A., & Oke, T. R. (2003). Thermal remote sensing of urban climates. Remote sensing of environment, 86(3), 370-384. Cerca con Google

Winfree, R., Williams, N. M., Dushoff, J., & Kremen, C. (2007). Native bees provide insurance against ongoing honey bee losses. Ecology Letters, 10(11), 1105-1113. Cerca con Google

Winfree, R., Aguilar, R., Vázquez, D. P., LeBuhn, G., & Aizen, M. A. (2009). A meta-analysis of bees' responses to anthropogenic disturbance. Ecology, 90(8), 2068-2076. Cerca con Google

Wratten, S. D., Gillespie, M., Decourtye, A., Mader, E., & Desneux, N. (2012). Pollinator habitat enhancement: benefits to other ecosystem services. Agriculture, Ecosystems & Environment, 159, 112-122. Cerca con Google

Wurst, S., & Jones, T. H. (2003). Indirect effects of earthworms (Aporrectodea caliginosa) on an above-ground tritrophic interaction. Pedobiologia, 47(1), 91-97. Cerca con Google

Wurst, S., Dugassa‐Gobena, D., Langel, R., Bonkowski, M., & Scheu, S. (2004). Combined effects of earthworms and vesicular–arbuscular mycorrhizas on plant and aphid performance. New Phytologist, 163(1), 169-176. Cerca con Google

Zhang, W., Ricketts, T. H., Kremen, C., Carney, K., & Swinton, S. M. (2007). Ecosystem services and dis-services to agriculture. Ecological economics, 64(2), 253-260. Cerca con Google

Zhao, Z. H., Hui, C., He, D. H., & Li, B. L. (2015). Effects of agricultural intensification on ability of natural enemies to control aphids. Scientific reports, 5. Cerca con Google

Zuur, A.F., Ieno, E.N., Walker, N., Saveliev, A.A. & Smith, G.M. (2009). Mixed effects models and extensions in ecology with R. Statistics for biology and health. Springer. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record