Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Lucon Xiccato, Tyrone (2016) Evaluating guppy, Poecilia reticulata, as a model for sex differences in cognition. [Tesi di dottorato]

Full text disponibile come:

[img]Documento PDF
Tesi non accessible fino a 01 Febbraio 2018 per motivi correlati alla proprietà intellettuale.
Visibile a: nessuno

1493Kb

Abstract (inglese)

Whether cognitive differences exist between men and women is a question probably as old as experimental psychology though still highly controversial. Despite the large number investigations, sex differences in performance emerge only in a few cases, such as in visuo-spatial or verbal abilities. However, it is not clear if these differences are biological or due to cultural influences, possibly because we know very little about their underlying mechanisms and evolutionary causes. Sex differences in cognition have been investigated also in few other species, such as monkeys, rodents and chickens. Rodents, in particular, represent a powerful model in the field of spatial abilities, allowing, among the others, complex hormonal manipulations, drugs tests and between-species comparative studies. Recent years have seen a massive increase in the use of fish as models for cognitive research, at the point that fish are predicted to replace classical vertebrates models soon. The existence of cognitive sex differences in fish has not been investigated. Paradoxically, experimenters quite often use indiscriminately fish of both sexes in their experiments, introducing a confound if cognitive sex differences exist.
In this thesis, I studied cognitive sex differences in the guppy, Poecilia reticulata, one of the most studied species in behavioural and cognitive research. Male and female guppies are characterized by considerable differences in ecology and behaviour. I compared the performance of males and females in a wide range of cognitive tasks, including visual discrimination learning, novel object recognition, rule learning, reversal learning, spatial navigation, spatial learning and quantity discrimination. Male and female guppies showed similar abilities in solving most of the tasks, with only two exceptions. In a reversal learning task, guppies were initially trained to obtain food by choosing a predetermined colour between two options, a task that the two sexes learned equally well; then, the reward contingency was reversed and subjects had to inhibit the learned preference to select the other stimulus. Females quickly started to choose the new rewarded colour while males persisted longer in selecting the previously rewarded colour. The second difference emerged in a quantity discrimination task. Guppies were required to select the larger between two groups of conspecifics, following a natural tendency of social fish to stay in larger shoals to reduce predation risks. At the beginning of the experiment, females were much better than males at solving the task; this difference vanished after some minutes. The two observed sex differences are possibly the result of differential action of natural selection on the two sexes. Indeed, male guppies are thought to undergo selection for high persistence that helps in courting females intensively; females are likely to undergo strong selection for predator avoidance skills as predators preferentially target females. The absence of sex differences in the other cognitive abilities can be due to the absence of sex differences in selective pressures, or, alternatively, to the existence of constraints that prevent differentiation.
In many of the tasks in which males and females obtained similar scores, they were nonetheless observed to behave quite differently. In visual discrimination tasks and in a spatial learning task, males were faster than females in deciding which option to choose, suggesting greater impulsivity in males. In the novel object recognition task, males and females expressed equal ability in discriminating the two objects, yet males explored the novel object at the beginning of the test, females some time afterwards. In the spatial navigation task, males persisted longer than females in trying to reach a target behind a transparent barrier.
The general lack of sex differences in cognitive abilities in guppies aligns with the scarce evidence of sex differences in cognitive abilities in mammals. However, I provided evidence that minor differences in performance, such as in persistence, impulsivity and exploratory tendency, typically found in mammals and birds are widespread in fish as well.

Abstract (italiano)

L’esistenza di differenze sessuali nella cognizione è uno dei temi più studiati fin dalla nascita della psicologia sperimentale, ma tuttora uno dei più dibattuti. Nonostante le innumerevoli ricerche effettuate, sono state rilevate differenze sessuali solamente in pochissimi compiti, come quelli che misurano le abilità verbali e le abilità spaziali. Non è del tutto chiaro però se queste differenze nella prestazione siano dovute a differenze biologiche tra i due sessi oppure a differenze culturali. In parte questo è dovuto al fatto non se ne conoscono i meccanismi prossimi e neppure le cause evolutive. Sono state rilevate differenze sessuali nella cognizione anche in un limitato numero di altre specie. In particolare, i roditori sono utilizzati come modello per lo studio delle differenze sessuali nella abilità spaziali, specialmente nelle ricerche che richiedono manipolazioni ormonali, comparazione tra specie, o sperimentazioni farmacologiche. Negli ultimi anni, i pesci stanno gradualmente sostituendo roditori e altri animali modello nella ricerca in ambito cognitivo. Tuttavia, l’esistenza di differenze sessuali nella cognizione nei pesci non è ancora stata studiata. Paradossalmente, in alcuni esperimenti vengono utilizzati indiscriminatamente pesci di entrambi i sessi, introducendo un potenziale fattore confondente.
In questa tesi ho studiato le differenze sessuali nella cognizione in Poecilia reticulata. Si tratta di una specie molto usata nelle ricerche cognitive, in cui maschi e femmine differiscono sostanzialmente per morfologia, ecologia, e comportamento. Ho comparato maschi e femmine di P. reticulata in diversi compiti cognitivi, tra cui apprendimento di discriminazioni visive, memoria, apprendimento di regole astratte, orientamento, apprendimento spaziale, e discriminazione di quantità. I maschi e le femmine di P. reticulata hanno ottenuto prestazioni simili nella maggior parte degli esperimenti, con solo due eccezioni. In un esperimento di reversal learning, i soggetti sono stati dapprima addestrati ad ottenere un rinforzo alimentare scegliendo un predeterminato colore tra due opzioni, un compito che entrambi i sessi hanno appreso con la stessa efficienza. Successivamente, il colore rinforzato è stato invertito e i soggetti dovevano quindi inibire la tendenza a scegliere il colore precedentemente rinforzato e selezionare il colore che precedentemente non era rinforzato. Le femmine si sono adattate velocemente all’inversione della contingenza del rinforzo, mentre i maschi hanno persistito molto più a lungo a scegliere il colore precedentemente rinforzato. La seconda differenza sessuale è emersa in un compito di discriminazione di quantità. In questo esperimento, i soggetti dovevano discriminare il gruppo sociale più numeroso tra due opzioni, seguendo la tendenza spontanea di questa specie a unirsi al gruppo più numeroso per diluire il rischio individuale di predazione. Le femmine riconoscevano il gruppo maggiore fin dall’inizio dell’esperimento, mentre i maschi solo alcuni minuti dopo. Queste due differenze sessuali osservate sono probabilmente dovute a forti pressioni selettive che differiscono sostanzialmente nei due sessi. Si crede infatti che i maschi di P. reticulata siano selezionati per esprimere comportamenti persistenti che sono d’aiuto durante il corteggiamento. Le femmine di P. reticulata, invece, sono il bersaglio preferito dai predatori e si ritiene siano selezionate per quei tratti, come la discriminazione della numerosità del gruppo sociale, che aiutano nella difesa dai predatori.
In molti degli esperimenti, nonostante la prestazione praticamente uguale, maschi e femmine hanno però mostrato di comportarsi in modo differente. In compiti di apprendimento di discriminazioni visive e spaziali i maschi erano molto più veloci nello scegliere una delle due opzioni, suggerendo una maggiore impulsività in questo sesso. In un compito di memoria, entrambi i sessi mostravano comportamento esploratorio rivolto verso un nuovo oggetto, tuttavia i maschi lo esprimevano all’inizio del esperimento mentre le femmine diversi minuti dopo. In un compito di navigazione spaziale, i maschi persistevano più a lungo delle femmine nel tentare di passare attraverso una barriera trasparente per raggiungere un gruppo di conspecifici retrostante.
La generale mancanza di differenze sessuali nelle abilità cognitive in P. reticulata è sorprendente vista la diffusa presenza di differenze sessuali in ecologia e comportamento in questa specie, ma è tuttavia in accordo con la scarsità di differenze sessuali rilevate nei mammiferi. Tuttavia, questa tesi ha dimostrato come altre differenze minori nella prestazione nei compiti cognitivi che generalmente si osservano in mammiferi e uccelli, come le differenze comportamentali tra i sessi in persistenza, impulsività ed esplorazione, sono diffusi anche nei pesci.

Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Bisazza, Angelo
Dottorato (corsi e scuole):Ciclo 28 > Scuole 28 > SCIENZE PSICOLOGICHE
Data di deposito della tesi:28 Gennaio 2016
Anno di Pubblicazione:2016
Parole chiave (italiano / inglese):cognizione animale / animal cognition; differenze sessuali / sex differences; Poecilia reticulata
Settori scientifico-disciplinari MIUR:Area 11 - Scienze storiche, filosofiche, pedagogiche e psicologiche > M-PSI/02 Psicobiologia e psicologia fisiologica
Struttura di riferimento:Dipartimenti > Dipartimento di Psicologia Generale
Codice ID:9294
Depositato il:17 Ott 2016 16:39
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Agrillo, C., & Bisazza, A. (2014). Spontaneous versus trained numerical abilities. A comparison between the two main tools to study numerical competence in non-human animals. Journal of Neuroscience Methods, 234, 82-91. Cerca con Google

Agrillo, C., Dadda, M., Serena, G., & Bisazza, A. (2008). Do fish count? Spontaneous discrimination of quantity in female mosquitofish. Animal Cognition, 11, 495-503. Cerca con Google

Agrillo, C., & Miletto Petrazzini, M. E. (2013). Glimpse of ATOM in non-human species?. Frontiers in Psychology, 4, 460. Cerca con Google

Agrillo, C., Miletto Petrazzini, M. E., Tagliapietra, C., & Bisazza, A. (2012a). Inter-specific differences in numerical abilities among teleost fish. Frontiers in Psychology, 3, 483. Cerca con Google

Agrillo, C., Piffer, L., Bisazza, A., & Butterworth, B. (2012b). Evidence for two numerical systems that are similar in humans and guppies. PLOS One, 7, e31923. Cerca con Google

Al Aïn, S., Giret, N., Grand, M., Kreutzer, M., & Bovet, D. (2009). The discrimination of discrete and continuous amounts in African grey parrots (Psittacus erithacus). Animal Cognition, 12, 145-154. Cerca con Google

Allan, K., Jones, B. C., DeBruine, L. M., & Smith, D. S. (2012). Evidence of adaptation for mate choice within women's memory. Evolution and Human Behavior, 33, 193-199. Cerca con Google

Amy, M., van Oers, K., & Naguib, M. (2012). Worms under cover: relationships between performance in learning tasks and personality in great tits (Parus major). Animal Cognition, 15, 763-770. Cerca con Google

Aoki, R., Tsuboi, T., & Okamoto, H. (2015). Y-maze avoidance: an automated and rapid associative learning paradigm in zebrafish. Neuroscience Research, 91, 69-72. Cerca con Google

Astié, A. A., Kacelnik, A., & Reboreda, J. C. (1998). Sexual differences in memory in shiny cowbirds. Animal Cognition, 1, 77-82. Cerca con Google

Astié, A. A., Scardamaglia, R. C., Muzio, R. N., & Reboreda, J. C. (2015). Sex differences in retention after a visual or a spatial discrimination learning task in brood parasitic shiny cowbirds. Behavioural Processes, 119, 99-104. Cerca con Google

Astur, R. S., Ortiz, M. L., & Sutherland, R. J. (1998). A characterization of performance by men and women in a virtual Morris water task: a large and reliable sex difference. Behavioural Brain Research, 93, 185-190. Cerca con Google

Astur, R. S., Tropp, J., Sava, S., Constable, R. T., & Markus, E. J. (2004). Sex differences and correlations in a virtual Morris water task, a virtual radial arm maze, and mental rotation. Behavioural Brain Research, 151, 103-115. Cerca con Google

Baldwin, B. A. (1981). Shape discrimination in sheep and calves. Animal Behaviour, 29(3), 830-834. Cerca con Google

Barkley, C. L., & Jacobs, L. F. (2007). Sex and species differences in spatial memory in food-storing kangaroo rats. Animal Behaviour, 73, 321-329. Cerca con Google

Basolo, A. L. (1990). Female preference for male sword length in the green swordtail, Xiphophorus helleri (Pisces: Poeciliidae). Animal Behaviour,40, 332-338. Cerca con Google

Beatty, W. W. (1979). Gonadal hormones and sex differences in nonreproductive behaviors in rodents: organizational and activational influences. Hormones and Behavior, 12, 112-163. Cerca con Google

Beiko, J., Lander, R., Hampson, E., Boon, F., & Cain, D. P. (2004). Contribution of sex differences in the acute stress response to sex differences in water maze performance in the rat. Behavioural Brain Research, 151, 239-253. Cerca con Google

Benbow, C. P., & Stanley, J. C. (1980). Sex differences in mathematical ability: fact or artifact?. Science, 210, 1262-1264. Cerca con Google

Benbow, C. P., & Stanley, J. C. (1983). Sex differences in mathematical reasoning ability: more facts. Science, 222, 1029-1031. Cerca con Google

Beran, M. J. (2006). Quantity perception by adult humans (Homo sapiens), chimpanzees (Pan troglodytes), and rhesus macaques (Macaca mulatta) as a function of stimulus organization. International Journal of Comparative Psychology, 19, 386-397. Cerca con Google

Beran, M. J. (2008). The evolutionary and developmental foundations of mathematics. PLOS Biology, 6, e19. Cerca con Google

Bettis, T. J., & Jacobs, L. F. (2009). Sex-specific strategies in spatial orientation in C57BL/6J mice. Behavioural Processes, 82, 249-255. Cerca con Google

Bettis, T. J., & Jacobs, L. F. (2012). Sex differences in object recognition are modulated by object similarity. Behavioural Brain Research, 233, 288-292. Cerca con Google

Bettis, T. J., & Jacobs, L. F. (2013). Sex differences in memory for landmark arrays in C57BL/J6 mice. Animal Cognition, 16, 873-882. Cerca con Google

Bevins, R. A., & Besheer, J. (2006). Object recognition in rats and mice: a one-trial non-matching-to-sample learning task to study 'recognition memory'. Nature Protocols, 1, 1306-1311. Cerca con Google

Bibost, A. L., & Brown, C. (2014). Laterality influences cognitive performance in rainbowfish Melanotaenia duboulayi. Animal Cognition, 17, 1045-1051. Cerca con Google

Biro, P. A., & Stamps, J. A. (2008). Are animal personality traits linked to life-history productivity?. Trends in Ecology & Evolution, 23, 361-368. Cerca con Google

Bisazza, A., Agrillo, C., & Lucon-Xiccato, T. (2014). Extensive training extends numerical abilities of guppies. Animal Cognition, 17, 1413-1419. Cerca con Google

Bisazza, A., Cantalupo, C., Capocchiano, M., & Vallortigara, G. (2000). Population lateralisation and social behaviour: a study with 16 species of fish. Laterality, 5, 269-284. Cerca con Google

Bisazza, A., Marconato, A., & Marin, G. (1989). Male competition and female choice in Padogobius martensi (Pisces, Gobiidae). Animal Behaviour, 38, 406-413. Cerca con Google

Bisazza, A., Pignatti, R., & Vallortigara, G. (1997a). Laterality in detour behaviour: interspecific variation in poeciliid fish. Animal Behaviour, 54, 1273-1281. Cerca con Google

Bisazza, A., Pignatti, R., & Vallortigara, G. (1997b). Detour tests reveal task-and stimulus-specific behavioural lateralization in mosquitofish (Gambusia holbrooki). Behavioural Brain Research, 89, 237-242. Cerca con Google

Bornstein, M. H., Hahn, C. S., & Haynes, O. M. (2004). Specific and general language performance across early childhood: Stability and gender considerations. First Language, 24, 267-304. Cerca con Google

Bradshaw, J., Bradley, D., & Patterson, K. (1976). The perception and identification of mirror-reversed patterns. The Quarterly Journal of Experimental Psychology, 28, 221-246. Cerca con Google

Braida, D., Ponzoni, L., Martucci, R., & Sala, M. (2014). A new model to study visual attention in zebrafish. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 55, 80-86. Cerca con Google

Brown, C., & Braithwaite, V. A. (2005). Effects of predation pressure on the cognitive ability of the poeciliid Brachyraphis episcopi. Behavioral Ecology,16, 482-487. Cerca con Google

Brown, C., Burgess, F., & Braithwaite, V. A. (2007). Heritable and experiential effects on boldness in a tropical poeciliid. Behavioral Ecology and Sociobiology, 62, 237-243. Cerca con Google

Brown, C., Laland, K., & Krause, J. (Eds.). (2008). Fish cognition and behavior. John Wiley & Sons. Cerca con Google

Brown, G. E., & Smith, R. J. F. (1998). Acquired predator recognition in juvenile rainbow trout (Oncorhynchus mykiss): conditioning hatchery-reared fish to recognize chemical cues of a predator. Canadian Journal of Fisheries and Aquatic Sciences, 55(3), 611-617. Cerca con Google

Brust, V., Wuerz, Y., & Krüger, O. (2013). Behavioural flexibility and personality in zebra finches. Ethology, 119, 559-569. Cerca con Google

Bshary, R., & Brown, C. (2014). Fish cognition. Current Biology, 24, R947-R950. Cerca con Google

Bshary, R., Wickler, W., & Fricke, H. (2002). Fish cognition: a primate's eye view. Animal cognition, 5, 1-13. Cerca con Google

Bucci, D. J., Chiba, A. A., & Gallagher, M. (1995). Spatial learning in male and female Long-Evans rats. Behavioral Neuroscience, 109, 180-183. Cerca con Google

Bullock, D. H., & Bitterman, M. E. (1962). Habit reversal in the pigeon. Journal of Comparative and Physiological Psychology, 55, 958-962. Cerca con Google

Call, J. (2000). Estimating and operating on discrete quantities in orangutans (Pongo pygmaeus). Journal of Comparative Psychology, 114, 136-147. Cerca con Google

Cantlon, J. F., & Brannon, E. M. (2007). How much does number matter to a monkey (Macaca mulatta)?. Journal of Experimental Psychology: Animal Behavior Processes, 33, 32-41. Cerca con Google

Caplan, P. J., MacPherson, G. M., & Tobin, P. (1985). Do sex-related differences in spatial abilities exist? A multilevel critique with new data. American Psychologist, 40, 786-799. Cerca con Google

Carazo, P., Noble, D. W., Chandrasoma, D., & Whiting, M. J. (2014). Sex and boldness explain individual differences in spatial learning in a lizard. Proceedings of the Royal Society of London B: Biological Sciences, 281, 20133275. Cerca con Google

Chiandetti, C., & Vallortigara, G. (2009). Effects of embryonic light stimulation on the ability to discriminate left from right in the domestic chick. Behavioural Brain Research, 198, 240-246. Cerca con Google

Chivers, D. P., & Smith, R. J. F. (1994). Fathead minnows, Pimephales promelas, acquire predator recognition when alarm substance is associated with the sight of unfamiliar fish. Animal Behaviour, 48, 597-605. Cerca con Google

Collins, D. W., & Kimura, D. (1997). A large sex difference on a two-dimensional mental rotation task. Behavioral Neuroscience, 111, 845-849. Cerca con Google

Conrad, C. D., Grote, K. A., Hobbs, R. J., & Ferayorni, A. (2003). Sex differences in spatial and non-spatial Y-maze performance after chronic stress. Neurobiology of Learning and Memory, 79, 32-40. Cerca con Google

Crawley, M. J. (2007). The R book. New Jersey: John Wiley & Sons. Cerca con Google

Croft, D. P., Albanese, B., Arrowsmith, B. J., Botham, M., Webster, M., & Krause, J. (2003). Sex-biased movement in the guppy (Poecilia reticulata).Oecologia, 137, 62-68. Cerca con Google

Croft, D. P., Krause, J., & James, R. (2004). Social networks in the guppy (Poecilia reticulata). Proceedings of the Royal Society of London B: Biological Sciences, 271, S516-S519. Cerca con Google

Croft, D. P., Morrell, L. J., Wade, A. S., Piyapong, C., Ioannou, C. C., Dyer, J. R., Chapman, B. B., & Krause, J. (2006). Predation risk as a driving force for sexual segregation: a cross‐population comparison. The American Naturalist, 167, 867-878. Cerca con Google

Crossley, M., D'arcy, C., & Rawson, N. S. (1997). Letter and category fluency in community-dwelling Canadian seniors: A comparison of normal participants to those with dementia of the Alzheimer or vascular type. Journal of Clinical and Experimental Neuropsychology, 19, 52-62. Cerca con Google

Dadda, M., Agrillo, C., Bisazza, A., & Brown, C. (2015). Laterality enhances numerical skills in the guppy, Poecilia reticulata. Frontiers in Behavioral Neuroscience, 9, 285. Cerca con Google

Darden, S. K., & Croft, D. P. (2008). Male harassment drives females to alter habitat use and leads to segregation of the sexes. Biology Letters, 4, 449-451. Cerca con Google

Dawson, J. L. (1972). Effects of sex hormones on cognitive style in rats and men. Behavior Genetics, 2, 21-42. Cerca con Google

Dienes, Z. (2014). Using Bayes to get the most out of non-significant results. Frontiers in Psychology, 5, 781. Cerca con Google

Dugatkin, L. A., & Godin, J. G. J. (1992). Reversal of female mate choice by copying in the guppy (Poecilia reticulata). Proceedings of the Royal Society of London B: Biological Sciences, 249, 179-184. Cerca con Google

Eakley, A. L., & Houde, A. E. (2004). Possible role of female discrimination against ‘redundant’males in the evolution of colour pattern polymorphism in guppies. Proceedings of the Royal Society of London B: Biological Sciences, 271, S299-S301. Cerca con Google

Eals, M., & Silverman, I. (1994). The hunter-gatherer theory of spatial sex differences: Proximate factors mediating the female advantage in recall of object arrays. Ethology and Sociobiology, 15(2), 95-105. Cerca con Google

Ebbesson, L. O. E., & Braithwaite, V. A. (2012). Environmental effects on fish neural plasticity and cognition. Journal of Fish Biology, 81(7), 2151-2174. Cerca con Google

Else-Quest, N. M., Hyde, J. S., & Linn, M. C. (2010). Cross-national patterns of gender differences in mathematics: a meta-analysis. Psychological Bulletin, 136, 103-127. Cerca con Google

Engelhardt, F., Woodard, W. T., & Bitterman, M. E. (1973). Discrimination reversal in the goldfish as a function of training conditions. Journal of Comparative and Physiological Psychology, 85, 144-150. Cerca con Google

Ennaceur, A., & Delacour, J. (1988). A new one-trial test for neurobiological studies of memory in rats. 1: behavioral data. Behavioural Brain Research, 31, 47-59. Cerca con Google

Facchin, L., Bisazza, A., & Vallortigara, G. (1999). What causes lateralization of detour behavior in fish? Evidence for asymmetries in eye use. Behavioural Brain Research, 103, 229-234. Cerca con Google

Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core systems of number. Trends in Cognitive Sciences, 8, 307-314. Cerca con Google

Feldman, H. M., Dollaghan, C. A., Campbell, T. F., Kurs-Lasky, M., Janosky, J. E., & Paradise, J. L. (2000). Measurement properties of the MacArthur Communicative Development Inventories at ages one and two years. Child Development, 71, 310-322. Cerca con Google

Ferkin, M. H., Pierce, A. A., & Sealand, R. O. (2005). Meadow voles, Microtus pennsylvanicus, can distinguish more over-marks from fewer over-marks. Animal Cognition, 8, 182-189. Cerca con Google

Frick, K. M., & Gresack, J. E. (2003). Sex differences in the behavioral response to spatial and object novelty in adult C57BL/6 mice. Behavioral Neuroscience, 117, 1283-1291. Cerca con Google

Friedman, L. (1989). Mathematics and the gender gap: a met-analysis of recent studies on sex differences in mathematical tasks. Review of Educational Research, 59, 185-213. Cerca con Google

Fuss, T., Bleckmann, H., & Schluessel, V. (2014). Visual discrimination abilities in the gray bamboo shark (Chiloscyllium griseum). Zoology, 117, 104-111. Cerca con Google

Galea, L. A., & Kimura, D. (1993). Sex differences in route-learning. Personality and Individual Differences, 14, 53-65. Cerca con Google

Gallagher, A. M., De Lisi, R., Holst, P. C., McGillicuddy-De Lisi, A. V., Morely, M. & Cahalan, C. (2000): Gender differences in advanced mathematical problem solving. Journal of Experimental Child Psychology 75, 165-190. Cerca con Google

Gasparini, C., Serena, G., & Pilastro, A. (2013). Do unattractive friends make you look better? Context-dependent male mating preferences in the guppy. Proceedings of the Royal Society of London B: Biological Sciences, 280, 20123072. Cerca con Google

Gaulin, S. J. (1995). Does evolutionary theory predict sex differences in the brain?. In Gazzaniga, Michael S. (Ed). The cognitive neurosciences, pp. 1211-1225. Cambridge: The MIT Press. Cerca con Google

Gaulin, S. J., & FitzGerald, R. W. (1986). Sex differences in spatial ability: an evolutionary hypothesis and test. American Naturalist, 127, 74-88. Cerca con Google

Gaulin, S. J., & Fitzgerald, R. W. (1989). Sexual selection for spatial-learning ability. Animal Behaviour, 37, 322-331. Cerca con Google

Gaulin, S. J., FitzGerald, R. W., & Wartell, M. S. (1990). Sex differences in spatial ability and activity in two vole species (Microtus ochrogaster and M. pennsylvanicus). Journal of Comparative Psychology, 104, 88-93. Cerca con Google

Geary, D. C. (1996). Sexual selection and sex differences in mathematical abilities. Behavioral and Brain Sciences, 19, 229-247. Cerca con Google

Ghi, P., Orsetti, M., Gamalero, S. R., & Ferretti, C. (1999). Sex differences in memory performance in the object recognition test. Possible role of histamine receptors. Pharmacology Biochemistry and Behavior, 64, 761-766. Cerca con Google

Gierszewski, S., Bleckmann, H., & Schluessel, V. (2013). Cognitive abilities in Malawi cichlids (Pseudotropheus sp.): matching-to-sample and image/mirror-image discriminations. PLOS One, 8, e57363. Cerca con Google

Gillette, J. R., Jaeger, R. G., & Peterson, M. G. (2000). Social monogamy in a territorial salamander. Animal Behaviour, 59(6), 1241-1250. Cerca con Google

Girvan, J. R., & Braithwaite, V. A. (1998). Population differences in spatial learning in three–spined sticklebacks. Proceedings of the Royal Society of London B: Biological Sciences, 265, 913-918. Cerca con Google

González-Gómez, P. L., Madrid-Lopez, N., Salazar, J. E., Suárez, R., Razeto-Barry, P., Mpodozis, J., Bosinovic, F., & Vásquez, R. A. (2014). Cognitive ecology in hummingbirds: the role of sexual dimorphism and its anatomical correlates on memory. PLOS One, 9. Cerca con Google

Gori, S., Agrillo, C., Dadda, M., & Bisazza, A. (2014). Do fish perceive illusory motion?. Scientific Reports, 4, 6443. Cerca con Google

Griffiths, S. W. (1996). Sex differences in the trade‐off between feeding and mating in the guppy. Journal of Fish Biology, 48, 891-898. Cerca con Google

Griffiths, S. W., & Magurran, A. E. (1998). Sex and schooling behaviour in the Trinidadian guppy. Animal Behaviour, 56(3), 689-693. Cerca con Google

Guigueno, M. F., Snow, D. A., MacDougall-Shackleton, S. A., & Sherry, D. F. (2014). Female cowbirds have more accurate spatial memory than males. Biology Letters, 10, 20140026. Cerca con Google

Guillamón, A., Valencia, A., Calés, J., & Segovia, S. (1986). Effects of early postnatal gonadal steroids on the successive conditional discrimination reversal learning in the rat. Physiology & Behavior, 38, 845-849. Cerca con Google

Ha, J. C., Mandell, D. J., & Gray, J. (2011). Two-item discrimination and Hamilton search learning in infant pigtailed macaque monkeys. Behavioural Processes, 86, 1-6. Cerca con Google

Hager, M. C., & Helfman, G. S. (1991). Safety in numbers: shoal size choice by minnows under predatory threat. Behavioral Ecology and Sociobiology,29, 271-276 Cerca con Google

Halpern, D. F. (2013). Sex differences in cognitive abilities. New York: Psychology press. Cerca con Google

Hanus, D., & Call, J. (2007). Discrete quantity judgments in the great apes (Pan paniscus, Pan troglodytes, Gorilla gorilla, Pongo pygmaeus): the effect of presenting whole sets versus item-by-item. Journal of Comparative Psychology, 121, 241-249. Cerca con Google

Hauser, M. D., Carey, S., & Hauser, L. B. (2000). Spontaneous number representation in semi–free–ranging rhesus monkeys. Proceedings of the Royal Society of London B: Biological Sciences, 267, 829-833. Cerca con Google

Harris, S., Ramnarine, I. W., Smith, H. G., & Pettersson, L. B. (2010). Picking personalities apart: estimating the influence of predation, sex and body size on boldness in the guppy Poecilia reticulata. Oikos, 119, 1711-1718. Cerca con Google

Hemmings, G., & Matthews, W. A. (1963). Shape discrimination in tropical fish. Quarterly Journal of Experimental Psychology, 15, 273-278. Cerca con Google

Hille, P., Dehnhardt, G., & Mauck, B. (2006). An analysis of visual oddity concept learning in a California sea lion (Zalophus californianus). Learning & behavior, 34, 144-153. Cerca con Google

Hoare, D. J., Couzin, I. D., Godin, J. G., & Krause, J. (2004). Context-dependent group size choice in fish. Animal Behaviour, 67, 155-164. Cerca con Google

Hodgson, Z. G., & Healy, S. D. (2005). Preference for spatial cues in a non-storing songbird species. Animal Cognition, 8, 211-214. Cerca con Google

Hopkins, W. D., Fagot, J., & Vauclair, J. (1993). Mirror-image matching and mental rotation problem solving by baboons (Papio papio): unilateral input enhances performance. Journal of Experimental Psychology: General, 122, 61-72. Cerca con Google

Houde, A. E. (1997). Sex, color, and mate choice in guppies. Princeton University Press. Cerca con Google

Hunt, S., Low, J., & Burns, K. C. (2008). Adaptive numerical competency in a food-hoarding songbird. Proceedings of the Royal Society of London B: Biological Sciences, 275, 2373-2379. Cerca con Google

Hurly, A. T., & Healy, S. D. (1996). Memory for flowers in rufous hummingbirds: location or local visual cues?. Animal Behaviour, 51, 1149-1157. Cerca con Google

Hyde, J. S., Fennema, E., & Lamon, S. J. (1990). Gender differences in mathematics performance: a meta-analysis. Psychological Bulletin, 107, 139-155. Cerca con Google

Hyde, J. S., & Linn, M. C. (1988). Gender differences in verbal ability: a meta-analysis. Psychological Bulletin, 104, 53-69. Cerca con Google

Irving, E., & Brown, C. (2013). Examining the link between personality and laterality in a feral guppy Poecilia reticulata population. Journal of Fish Biology, 83, 311-325. Cerca con Google

James, T. W., & Kimura, D. (1997). Sex differences in remembering the locations of objects in an array: location-shifts versus location-exchanges. Evolution and Human Behavior, 18, 155-163. Cerca con Google

Jeffreys, H. (1998). The theory of probability. Oxford: OUP Oxford. Cerca con Google

Joseph, R., Hess, S., & Birecree, E. (1978). Effects of hormone manipulations and exploration on sex differences in maze learning. Behavioral Biology, 24, 364-377. Cerca con Google

Jonasson, Z. (2005). Meta-analysis of sex differences in rodent models of learning and memory: a review of behavioral and biological data. Neuroscience & Biobehavioral Reviews, 28, 811-825. Cerca con Google

Jones, C. M., Braithwaite, V. A., & Healy, S. D. (2003). The evolution of sex differences in spatial ability. Behavioral Neuroscience, 117, 403-411. Cerca con Google

Joseph, R., & Gallagher, R. E. (1980). Gender and early environmental influences on activity, overresponsiveness, and exploration. Developmental Psychobiology, 13, 527-544. Cerca con Google

Jones, C. M., & Healy, S. D. (2006). Differences in cue use and spatial memory in men and women. Proceedings of the Royal Society of London B: Biological Sciences, 273, 2241-2247. Cerca con Google

Kalueff, A. V., Echevarria, D. J., Homechaudhuri, S., Stewart, A. M., Collier, A. D., Kaluyeva, A. A., et al. (2015). Zebrafish neurobehavioral phenomics for aquatic neuropharmacology and toxicology research. Aquatic Toxicology, 170, 297-309 Cerca con Google

Kalueff, A. V., Stewart, A. M., & Gerlai, R. (2014). Zebrafish as an emerging model for studying complex brain disorders. Trends in Pharmacological Sciences, 35, 63-75. Cerca con Google

Karino, K., Orita, K., & Sato, A. (2006). Long tails affect swimming performance and habitat choice in the male guppy. Zoological Science, 23, 255-260. Cerca con Google

Kempler, D., Teng, E. L., Dick, M., Taussig, I., & Davis, D. S. (1998). The effects of age, education, and ethnicity on verbal fluency. Journal of the International Neuropsychological Society, 4, 531-538. Cerca con Google

Kimura, D. (2004). Human sex differences in cognition, fact, not predicament. Sexualities, Evolution & Gender, 6, 45-53. Cerca con Google

Kodric-Brown, A. (1989). Dietary carotenoids and male mating success in the guppy: an environmental component to female choice. Behavioral Ecology and Sociobiology, 25, 393-401. Cerca con Google

Kolb, B., & Whishaw, I. Q. (2001). An introduction to brain and behavior. New York: Cerca con Google

Worth Publishers. Cerca con Google

Kramer, J. H., Delis, D. C., & Daniel, M. (1988). Sex differences in verbal learning. Cerca con Google

Journal of Clinical Psychology, 44, 907–916. Cerca con Google

Kramer, J. H., Delis, D. C., Kaplan, E., O'Donnell, L., & Prifitera, A. (1997). Developmental sex differences in verbal learning. Neuropsychology, 11, 577-584. Cerca con Google

Krause, J., Godin, J. G. J., & Rubenstein, D. (1998). Group choice as a function of group size differences and assessment time in fish: the influence of species vulnerability to predation. Ethology, 104, 68-74. Cerca con Google

Krause, J., & Ruxton, G. D. (2002). Living in groups. Oxford: Oxford University Press. Cerca con Google

LaBuda, C. J., Mellgren, R. L., & Hale, R. L. (2002). Sex differences in the acquisition of a radial maze task in the CD-1 mouse. Physiology & Behavior, 76, 213-217. Cerca con Google

Lacreuse, A., Herndon, J. G., Killiany, R. J., Rosene, D. L., & Moss, M. B. (1999). Spatial cognition in rhesus monkeys: male superiority declines with age. Hormones and Behavior, 36, 70-76. Cerca con Google

Lacreuse, A., Kim, C. B., Rosene, D. L., Killiany, R. J., Moss, M. B., Moore, T. L.,Chennareddi, L., & Herndon, J. G. (2005). Sex, age, and training modulate spatial memory in the rhesus monkey (Macaca mulatta). Behavioral Neuroscience, 119, 118-126. Cerca con Google

Laland, K. N., & Reader, S. M. (1999). Foraging innovation in the guppy. Animal Behaviour, 57, 331-340. Cerca con Google

Lang, C., & Jaeger, R. G. (2000). Defense of territories by male-female pairs in the red-backed salamander (Plethodon cinereus). Copeia, 2000, 169-177. Cerca con Google

Leahey, E. & Guo, G. (2001). Gender differences in mathematical trajectories. Social Forces, 80, 713-732. Cerca con Google

Leal, M., & Powell, B. J. (2012). Behavioural flexibility and problem-solving in a tropical lizard. Biology Letters, 8, 28-30. Cerca con Google

Lezak, M. D. (2004). Neuropsychological assessment. Oxford: Oxford University Press. Cerca con Google

Li, R., & Singh, M. (2014). Sex differences in cognitive impairment and Alzheimer’s disease. Frontiers in Neuroendocrinology, 35, 385-403. Cerca con Google

Linn, M. C., & Petersen, A. C. (1985). Emergence and characterization of sex differences in spatial ability: a meta-analysis. Child Development, 56, 1479-1498. Cerca con Google

Logan, M. (2011). Biostatistical design and analysis using R: a practical guide. John Wiley & Sons. Cerca con Google

Long, K. D., & Houde, A. E. (1989). Orange spots as a visual cue for female mate choice in the guppy (Poecilia reticulata). Ethology, 82, 316-324. Cerca con Google

Lucon-Xiccato, T., & Dadda, M. (2014). Assessing memory in zebrafish using the one-trial test. Behavioural Processes, 106, 1-4. Cerca con Google

Mackintosh, J., & Sutherland, N. S. (1963). Visual discrimination by the goldfish: the orientation of rectangles. Animal Behaviour, 11, 135-141. Cerca con Google

Maeda, Y., & Yoon, S. Y. (2013). A meta-analysis on gender differences in mental rotation ability measured by the Purdue spatial visualization tests: visualization of rotations (PSVT: R). Educational Psychology Review, 25, 69-94. Cerca con Google

Magurran, A. E. (2005). Evolutionary ecology: the Trinidadian guppy. Oxford: Oxford University Press. Cerca con Google

Magurran, A. E., & Garcia, C. M. (2000). Sex differences in behaviour as an indirect consequence of mating system. Journal of Fish Biology, 57, 839-857. Cerca con Google

Magurran, A. E., & Seghers, B. H. (1991). Variation in schooling and aggression amongst guppy (Poecilia reticulata) populations in Trinidad. Behaviour, 118, 214-234 Cerca con Google

Magurran, A. E., & Seghers, B. H. (1994). A cost of sexual harassment in the guppy, Poecilia reticulata. Proceedings of the Royal Society of London B: Biological Sciences, 258, 89-92. Cerca con Google

Mamuneas, D., Spence, A. J., Manica, A., & King, A. J. (2014). Bolder stickleback fish make faster decisions, but they are not less accurate. Behavioral Ecology, 26, 91-96. Cerca con Google

Mark, R. F., & Maxwell, A. (1969). Circle size discrimination and transposition behaviour in cichlid fish. Animal Behaviour, 17, 155-158. Cerca con Google

Mathuranath, P. S., George, A., Cherian, P. J., Alexander, A. L., Sarma, S. G., & Sarma, P. S. (2003). Effects of age, education and gender on verbal fluency. Journal of Clinical and Experimental Neuropsychology, 25, 1057-1064. Cerca con Google

Miletto Petrazzini, M. E., & Agrillo, C. (2015). Turning to the larger shoal: are there individual differences in small-and large-quantity discrimination of guppies?. Ethology Ecology & Evolution, (ahead-of-print), 1-10. Cerca con Google

Miletto Petrazzini, M. E., Agrillo, C., Piffer, L., Dadda, M., & Bisazza, A. (2012). Development and application of a new method to investigate cognition in newborn guppies. Behavioural Brain Research, 233, 443-449. Cerca con Google

Miletto Petrazzini, M. E., Lucon-Xiccato, T., Agrillo, C., & Bisazza, A. (2015). Use of ordinal information by fish. Scientific Reports, 5, 15497. Cerca con Google

Moffat, S. D., Hampson, E., & Hatzipantelis, M. (1998). Navigation in a “virtual” maze: sex differences and correlation with psychometric measures of spatial ability in humans. Evolution and Human Behavior, 19, 73-87. Cerca con Google

Moore, D. S., & Johnson, S. P. (2008). Mental rotation in human infants a sex difference. Psychological Science, 19, 1063-1066. Cerca con Google

Morris, R. (1984). Developments of a water-maze procedure for studying spatial learning in the rat. Journal of Neuroscience Methods, 11, 47-60. Cerca con Google

Müller, C. A., Mayer, C., Dörrenberg, S., Huber, L., & Range, F. (2011). Female but not male dogs respond to a size constancy violation. Biology Letters, rsbl20110287 Cerca con Google

O'Hara, M., Huber, L., & Gajdon, G. K. (2015). The advantage of objects over images in discrimination and reversal learning by kea, Nestor notabilis. Animal Behaviour, 101, 51-60. Cerca con Google

Odling‐Smee, L., & Braithwaite, V. A. (2003). The role of learning in fish orientation. Fish and Fisheries, 4(3), 235-246. Cerca con Google

Olton, D. S. (1987). The radial arm maze as a tool in behavioral pharmacology. Physiology & Behavior, 40, 793-797. Cerca con Google

Papini, M. R. (2002). Pattern and process in the evolution of learning. Psychological Review, 109, 186-201. Cerca con Google

Parker, M. O., Gaviria, J., Haigh, A., Millington, M. E., Brown, V. J., Combe, F. J., & Brennan, C. H. (2012). Discrimination reversal and attentional sets in zebrafish (Danio rerio). Behavioural Brain Research, 232, 264-268. Cerca con Google

Patterson-Kane, E., Nicol, C. J., Foster, T. M., & Temple, W. (1997). Limited perception of video images by domestic hens. Animal Behaviour, 53, 951-963. Cerca con Google

Perdue, B. M., Snyder, R. J., Zhihe, Z., Marr, M. J., & Maple, T. L. (2011). Sex differences in spatial ability: a test of the range size hypothesis in the order Carnivora. Biology Letters, 7, 380-383. Cerca con Google

Perrot-Sinal, T. S., Kostenuik, M. A., Ossenkopp, K. P., & Kavaliers, M. (1996). Sex differences in performance in the Morris water maze and the effects of initial nonstationary hidden platform training. Behavioral Neuroscience, 110, 1309-1320. Cerca con Google

Pocklington, R., & Dill, L. M. (1995). Predation on females or males: who pays for bright male traits?. Animal Behaviour, 49, 1122-1124. Cerca con Google

Postma, A., Izendoorn, R., & De Haan, E. H. (1998). Sex differences in object location memory. Brain and Cognition, 36, 334-345. Cerca con Google

Pubols Jr, B. H. (1957). Successive discrimination reversal learning in the white rat: a comparison of two procedures. Journal of Comparative and Physiological Psychology, 50, 319-322. Cerca con Google

Quinn, P. C., & Liben, L. S. (2008). A sex difference in mental rotation in young infants. Psychological Science, 19, 1067-1070. Cerca con Google

Range, F., Bugnyar, T., Schlögl, C., & Kotrschal, K. (2006). Individual and sex differences in learning abilities of ravens. Behavioural Processes, 73, 100-106. Cerca con Google

Reader, S. M., & Laland, K. N. (2000). Diffusion of foraging innovations in the guppy. Animal Behaviour, 60, 175-180. Cerca con Google

Regolin, L., Vallortigara, G., & Zanforlin, M. (1995). Detour behaviour in the domestic chick: searching for a disappearing prey or a disappearing social partner. Animal Behaviour, 50, 203-211. Cerca con Google

Riopelle, A. J., Rahm, U., Itoigawa, N., & Draper, W. A. (1964). Discrimination of mirror-image patterns by rhesus monkeys. Perceptual and Motor Skills, 19, 383-389. Cerca con Google

Rogers, L. J. (1974). Persistence and search influenced by natural levels of androgens in young and adult chickens. Physiology & Behavior, 12, 197-204. Cerca con Google

Rodd, F. H., Hughes, K. A., Grether, G. F., & Baril, C. T. (2002). A possible non-sexual origin of mate preference: are male guppies mimicking fruit?. Proceedings of the Royal Society of London B: Biological Sciences, 269, 475-481. Cerca con Google

Rodríguez, R. L., Briceño, R. D., Briceño-Aguilar, E., & Höbel, G. (2015). Nephila clavipes spiders (Araneae: Nephilidae) keep track of captured prey counts: testing for a sense of numerosity in an orb-weaver. Animal Cognition,18, 307-314. Cerca con Google

Roof, R. L. (1993). Neonatal exogenous testosterone modifies sex difference in radial arm and Morris water maze performance in prepubescent and adult rats. Behavioural Brain Research, 53, 1-10. Cerca con Google

Roof, R. L., & Stein, D. G. (1999). Gender differences in Morris water maze performance depend on task parameters. Physiology & Behavior, 68, 81-86. Cerca con Google

Rowe, L., Cameron, E., & Day, T. (2005). Escalation, retreat, and female indifference as alternative outcomes of sexually antagonistic coevolution. The American Naturalist, 165, S5-S18. Cerca con Google

Ruff, R. M., Light, R. H., & Quayhagen, M. (1989). Selective reminding tests: a normative study of verbal learning in adults. Journal of Clinical and Experimental Neuropsychology, 11, 539-550. Cerca con Google

Sandstrom, N. J., Kaufman, J., & Huettel, S. A. (1998). Males and females use different distal cues in a virtual environment navigation task. Cognitive Brain Research, 6, 351-360. Cerca con Google

Saucier, D. M., Green, S. M., Leason, J., MacFadden, A., Bell, S., & Elias, L. J. (2002). Are sex differences in navigation caused by sexually dimorphic strategies or by differences in the ability to use the strategies?. Behavioral Neuroscience, 116, 403-410. Cerca con Google

Saucier, D. M., Shultz, S. R., Keller, A. J., Cook, C. M., & Binsted, G. (2008). Sex differences in object location memory and spatial navigation in Long-Evans rats. Animal Cognition, 11, 129-137. Cerca con Google

Sava, S., & Markus, E. J. (2005). Intramaze cue utilization in the water maze: effects of sex and estrous cycle in rats. Hormones and Behavior, 48, 23-33. Cerca con Google

Schoenfeld, R., Lehmann, W., & Leplow, B. (2015). Effects of age and sex in mental rotation and spatial learning from virtual environments. Journal of Individual Differences, 2010, 31, 78-82 Cerca con Google

Schuett, W., Tregenza, T., & Dall, S. R. (2010). Sexual selection and animal personality. Biological Reviews, 85, 217-246. Cerca con Google

Schwarz, G. (1978). Estimating the dimension of a model. The annals of statistics, 6, 461-464. Cerca con Google

Selander, R. K. (1966). Sexual dimorphism and differential niche utilization in birds. Condor, 68, 113-151. Cerca con Google

Seymoure, P., Dou, H., & Juraska, J. M. (1996). Sex differences in radial maze performance: influence of rearing environment and room cues. Psychobiology, 24, 33-37. Cerca con Google

Sherry, D. F. (2006). Neuroecology. Annual Review of Psychology, 57, 167-197. Cerca con Google

Shettleworth, S. J. (1999). Cognition, evolution, and behavior. Oxford, UK: Oxford University Press. Cerca con Google

Shine, R. (1989). Ecological causes for the evolution of sexual dimorphism: a review of the evidence. Quarterly Review of Biology, 419-461. Cerca con Google

Siebeck, U. E., Litherland, L., & Wallis, G. M. (2009). Shape learning and discrimination in reef fish. Journal of Experimental Biology, 212, 2113-2119. Cerca con Google

Sih, A., & Del Giudice, M. (2012). Linking behavioural syndromes and cognition: a behavioural ecology perspective. Philosophical Transactions of the Royal Society B: Biological Sciences, 367, 2762-2772. Cerca con Google

Silverman, I., & Eals, M. (1992). Sex differences in spatial abilities: Evolutionary theory and data. In: Barkow J, Cosmides I, Tooby J, (Eds). The adapted mind: evolutionary psychology and the generation of culture, pp. 533–549. New York: Oxford University Press. Cerca con Google

Silverman, I., Choi, J., & Peters, M. (2007). The hunter-gatherer theory of sex differences in spatial abilities: Data from 40 countries. Archives of Sexual Behavior, 36, 261-268. Cerca con Google

Sokal, R. R., & Rohlf, F. J. (1995). Biometry: the principles and practice of statistics in biological research. New York : W. H. Freemand and Company. Cerca con Google

Sovrano, V. A., Bisazza, A., & Vallortigara, G. (2003). Modularity as a fish (Xenotoca eiseni) views it: conjoining geometric and nongeometric information for spatial reorientation. Journal of Experimental Psychology: Animal Behavior Processes, 29, 199-210. Cerca con Google

Sovrano, V. A., & Bisazza, A. (2008). Recognition of partly occluded objects by fish. Animal Cognition, 11, 161-166. Cerca con Google

Spelke, E. S. (2005). Sex differences in intrinsic aptitude for mathematics and science?: a critical review. American Psychologist, 60, 950-958 Cerca con Google

Spencer, S. J., Steele, C. M., & Quinn, D. M. (1999). Stereotype threat and women's math performance. Journal of Experimental Social Psychology, 35, 4-28. Cerca con Google

Spiers, M. V., Sakamoto, M., Elliott, R. J., & Baumann, S. (2008). Sex differences in spatial object-location memory in a virtual grocery store. CyberPsychology & Behavior, 11, 471-473. Cerca con Google

Starkey, P., Spelke, E. S., & Gelman, R. (1990). Numerical abstraction by human infants. Cognition, 36, 97-127. Cerca con Google

Stewart, A. M., Braubach, O., Spitsbergen, J., Gerlai, R., & Kalueff, A. V. (2014). Zebrafish models for translational neuroscience research: from tank to bedside. Trends in Neurosciences, 37, 264-278. Cerca con Google

Sutcliffe, J. S., Marshall, K. M., & Neill, J. C. (2007). Influence of gender on working and spatial memory in the novel object recognition task in the rat. Behavioural Brain Research, 177, 117-125. Cerca con Google

Sutherland, N. S. (1969). Shape discrimination in rat, octopus, and goldfish: a comparative study. Journal of Comparative and Physiological Psychology, 67, 160-176. Cerca con Google

Sutherland, N. S., & Bowman, R. (1969). Discrimination of circles and squares with and without knobs by goldfish. The Quarterly Journal of Experimental Psychology, 21, 330-338. Cerca con Google

Swaney, W. T., Cabrera-Álvarez, M. J., & Reader, S. M. (2015). Behavioural responses of feral and domestic guppies (Poecilia reticulata) to predators and their cues. Behavioural Processes, 118, 42-46. Cerca con Google

Takahashi, K., Masuda, R., & Yamashita, Y. (2010). Ontogenetic changes in the spatial learning capability of jack mackerel Trachurus japonicus. Journal of Fish Biology, 77, 2315-2325. Cerca con Google

Tapley, S. M., & Bryden, M. P. (1977). An investigation of sex differences in spatial ability: mental rotation of three-dimensional objects. Canadian Journal of Psychology/Revue Canadienne de Psychologie, 31, 122-130. Cerca con Google

Tello-Ramos, M. C., Hurly, T. A., & Healy, S. D. (2014). Female hummingbirds do not relocate rewards using colour cues. Animal Behaviour, 93, 129-133. Cerca con Google

Titulaer, M., van Oers, K., & Naguib, M. (2012). Personality affects learning performance in difficult tasks in a sex-dependent way. Animal Behaviour,83, 723-730. Cerca con Google

Todrin, D. C., & Blough, D. S. (1983). The discrimination of mirror-image forms by pigeons. Perception & Psychophysics, 34, 397-402. Cerca con Google

Tombaugh, T. N., Kozak, J., & Rees, L. (1999). Normative data stratified by age and education for two measures of verbal fluency: FAS and animal naming. Archives of Clinical Neuropsychology, 14, 167-177. Cerca con Google

Trahan, D. E., & Quintana, J. W. (1990). Analysis of gender effects upon verbal and visual memory performance in adults. Archives of Clinical Neuropsychology, 5, 325-334. Cerca con Google

Tropp, J., & Markus, E. J. (2001). Sex differences in the dynamics of cue utilization and exploratory behavior. Behavioural Brain Research, 119, 143-154. Cerca con Google

Uller, C., Jaeger, R., Guidry, G., & Martin, C. (2003). Salamanders (Plethodon cinereus) go for more: rudiments of number in an amphibian. Animal Cognition, 6, 105-112. Cerca con Google

Upchurch, M., & Wehner, J. M. (1988). Differences between inbred strains of mice in Morris water maze performance. Behavior Genetics, 18, 55-68. Cerca con Google

Vallortigara, G. (1996). Learning of colour and position cues in domestic chicks: males are better at position, females at colour. Behavioural Processes, 36, 289-296. Cerca con Google

Van Der Elst, W., Van Boxtel, M. P., Van Breukelen, G. J., & Jolles, J. (2006). Normative data for the Animal, Profession and Letter M Naming verbal fluency tests for Dutch speaking participants and the effects of age, education, and sex. Journal of the International Neuropsychological Society, 12(01), 80-89. Cerca con Google

Van Haaren, F., Van Hest, A., & Van de Poll, N. E. (1987). Acquisition and reversal of a discriminated autoshaped response in male and female rats: effects of long or short and fixed or variable intertrial interval durations. Learning and Motivation, 18, 220-233. Cerca con Google

Voyer, D., Postma, A., Brake, B., & Imperato-McGinley, J. (2007). Gender differences in object location memory: a meta-analysis. Psychonomic Bulletin & Review, 14, 23-38. Cerca con Google

Voyer, D., Voyer, S., & Bryden, M. P. (1995). Magnitude of sex differences in spatial abilities: a meta-analysis and consideration of critical variables. Psychological Bulletin, 117, 250-270. Cerca con Google

Wallentin, M. (2009). Putative sex differences in verbal abilities and language cortex: a critical review. Brain and Language, 108, 175-183. Cerca con Google

Walsh, V. (2003). A theory of magnitude: common cortical metrics of time, space and quantity. Trends in Cognitive Sciences, 7, 483-488. Cerca con Google

Walsh-Monteiro, A., Pragana, W., Costa, E. T., & Gouveia Jr, A. (2014). Behavioral and histological effects of rotenone in fish (Guppy, Poecilia reticulata). Psychology & Neuroscience, 7, 619-623. Cerca con Google

Wang, M. Y., Brennan, C. H., Lachlan, R. F., & Chittka, L. (2015). Speed–accuracy trade-offs and individually consistent decision making by individuals and dyads of zebrafish in a colour discrimination task. Animal Behaviour, 103, 277-283. Cerca con Google

Ward, C., & Smuts, B. B. (2007). Quantity-based judgments in the domestic dog (Canis lupus familiaris). Animal Cognition, 10, 71-80. Cerca con Google

Warren, J. M. (1960). Reversal learning by paradise fish (Macropodus opercularis). Journal of Comparative and Physiological Psychology, 53, 376-378. Cerca con Google

Weiss, E. M., Kemmler, G., Deisenhammer, E. A., Fleischhacker, W. W., & Delazer, M. Cerca con Google

(2003). Sex differences in cognitive functions. Personality and Individual Differences, 35, 863–875. Cerca con Google

Weiss, E. M., Ragland, J. D., Brensinger, C. M., Bilker, W. B., Deisenhammer, E. A., & Delazer, M. (2006). Sex differences in clustering and switching in verbal fluency tasks. Journal of the International Neuropsychological Society, 12, 502-509. Cerca con Google

Whishaw, I. Q., & Tomie, J. A. (1996). Of mice and mazes: similarities between mice and rats on dry land but not water mazes. Physiology & Behavior, 60, 1191-1197. Cerca con Google

Wilson, A. D., Krause, S., James, R., Croft, D. P., Ramnarine, I. W., Borner, K. K., ... & Krause, J. (2014). Dynamic social networks in guppies (Poecilia reticulata). Behavioral Ecology and Sociobiology, 68, 915-925. Cerca con Google

Wodinsky, J., & Bitterman, M. E. (1957). Discrimination-reversal in the fish. The American Journal of Psychology, 70, 569-576. Cerca con Google

Wolf, M., Van Doorn, G. S., Leimar, O., & Weissing, F. J. (2007). Life-history trade-offs favour the evolution of animal personalities. Nature, 447, 581-584. Cerca con Google

Young, L. J., & Pfaff, D. W. (2014). Sex differences in neurological and psychiatric disorders. Frontiers in Neuroendocrinology, 35, 253-254. Cerca con Google

Zentall, T. R., Wasserman, E. A., & Urcuioli, P. J. (2014). Associative concept learning in animals. Journal of the Experimental Analysis of Behavior,101, 130-151. Cerca con Google

Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A., & Smith, G. M. (2009). Mixed effects models and extensions in ecology with R. Berlin: Springer Science & Business Media. Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record