Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Borgia, Doriana (2016) Muscle mitochondria dysfunctions in Spinal and Bulbar Muscular Atrophy. [Tesi di dottorato]

Full text disponibile come:

[img]Documento PDF
Tesi non accessible fino a 02 Gennaio 2019 per motivi correlati alla proprietà intellettuale.
Visibile a: nessuno

18Mb

Abstract (inglese)

Spinal and Bulbar Muscular Atrophy (SBMA), also known as Kennedy’s Disease, is an X-linked recessive disorder, affecting only males, characterized by loss of motor neurons in the spinal cord and brainstem. Patients may also show signs of androgen insensitivity, including gynaecomastia, reduced fertility, and testicular atrophy. The molecular basis of SBMA is the expansion of a trinucleotide CAG repeat in the first exon of the Androgen Receptor (AR) gene, that results in an elongated polyglutamine (polyQ) tract in the translated protein. Recent reports suggest a primary role of muscle in SBMA pathogenesis and the presence of mitochondrial alteration in SBMA neuronal cells, knock-in mice and patients. The aim of this study was to investigate mutant AR effects on mitochondrial parameters in muscle tissue from 19 SBMA patients compared to sex and age-matched 18 control subjects. In SBMA muscle, AR protein levels were significantly increased in nuclei and significantly halved both in total lysate and in the cytosolic fraction as compared to controls. The altered distribution of AR in SBMA muscle tissue was associated with a 30-40% reduction of mitochondrial mass, measured as: mtDNA copy number, citrate synthase (CS) activity and dark blue area in muscle cross sections stained for NADH-DH. OXPHOS activity, normalised to CS, was normal. The reduced mitochondrial amount was correlated neither with atrophy and hypertrophy index nor with a decreased mitochondrial biogenesis. Rather, it was associated with an enhanced mitochondrial degradation through mitophagy, measured by biochemical and morphological assays. To explain mitophagy activation in SBMA muscle tissue, we evaluated mitochondria membranes composition through mass spectrometry. We found significant homogeneous decreased levels at 50% of all the cardiolipin molecular species in SBMA mitochondrial membranes, associated to a probably compensatory 1.5 and 2-fold increase in phosphatidyilethanolamine and phosphatidylserine amount, respectively. The reduced cardiolipin levels was related to a decreased expression levels of cardiolipin synthase gene, involved in the biosynthesis of immature cardiolipin. In conclusion, for the first time, we showed a cause-effect mechanism of nuclear accumulation of polyQ AR linked to a reduction of mitochondrial mass in the muscle from SBMA patients, associated to an alteration of the mitochondrial membranes structure. Future studies will be needed to elucidate the exact mechanism behind these abnormalities. Given the central role of mitochondria in cell bioenergetics and apoptosis, improvement of mitochondrial function is worth considering as a possible therapeutic approach to SBMA.

Abstract (italiano)

L’Atrofia Muscolare Spino-Bulbare (SBMA), anche nota come malattia di Kennedy, è un disordine X-linked recessivo, che colpisce solo i soggetti di sesso maschile, caratterizzato dalla perdita dei motoneuroni inferiori del midollo spinale e del tronco encefalico. I pazienti, inoltre, possono presentare segni di insensibilità agli androgeni come la ginecomastia, la ridotta fertilità e l’atrofia testicolare. Essa è dovuta all’espansione del tratto polimorfico CAG presente nel primo esone del gene codificante per il recettore degli androgeni (AR), che risulta in un tratto poliglutamminico più lungo nella proteina tradotta. Lavori recentemente pubblicati suggeriscono che il muscolo gioca un ruolo primario nella patogenesi della malattia di Kennedy e che ci sono alterazioni mitocondriali in cellule neuronali, topi knock-in e pazienti SBMA. Lo scopo di questo studio è stato quello di valutare l’effetto dell’espressione del recettore per gli androgeni mutato su alcuni parametri mitocondriali nel tessuto muscolare di 19 pazienti SBMA rispetto a 18 controlli di pari età e sesso. Nel muscolo SBMA, i livelli proteici di AR erano significativamente raddoppiati nei nuclei e significativamente dimezzati sia nel lisato totale che nella frazione citosolica rispetto ai controlli. L’alterata distribuzione del recettore per gli androgeni nel muscolo SBMA era associata ad una riduzione della massa mitocondriale di circa il 30-40%, misurata come: numero di copie di DNA mitocondriale, attività della citrato sintasi e area positiva all’attività dell’NADH-DH con un intenso segnale blu in sezioni trasversali di muscolo colorate per tale enzima. L’attività dei complessi della catena respiratoria, normalizzata per quella della citrato sintasi, è risultata normale. Questa riduzione della massa mitocondriale non è associata né ad una riduzione della biogenesi mitocondriale né agli elevati indici di atrofia ed ipertrofia, ma ad un’aumentata degradazione mitocondriale attraverso la mitofagia, misurata mediante analisi biochimiche e morfologiche. Per spiegare l’attivazione del processo mitofagico nel tessuto muscolare SBMA, abbiamo valutato la composizione lipidica delle membrane mitocondriali attraverso la spettrometria di massa. Abbiamo trovato un’omogenea riduzione del 50% di tutte le specie molecolari di cardiolipina nelle membrane mitocondriali SBMA, associata ad un aumento, probabilmente compensatorio, della quantità di fosfatidiletanolammina e fosfatidilserina, rispettivamente di 1.5 e 2 volte. La riduzione della quantità di cardiolipina era associata ad una riduzione dei livelli di espressione del gene per la cardiolipina sintasi, coinvolto nella biosintesi della cardiolipina immatura. In conclusione, per la prima volta noi abbiamo mostrato un meccanismo causa-effetto di accumulo del recettore mutato nei nuclei del tessuto muscolare dei pazienti collegato ad una riduzione della massa mitocondriale, associata ad un’alterazione della struttura delle membrane mitocondriali. Successivi studi saranno necessari per spiegare l’esatto meccanismo alla base di queste anomalie. Dato il ruolo centrale dei mitocondri nella bioenergetica e nell'apoptosi, vale la pena considerare il miglioramento della funzione mitocondriale come un possibile approccio terapeutico per la malattia di Kennedy.

Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Sorarù, Gianni
Dottorato (corsi e scuole):Ciclo 28 > Scuole 28 > SCIENZE MEDICHE, CLINICHE E SPERIMENTALI > NEUROSCIENZE
Data di deposito della tesi:28 Gennaio 2016
Anno di Pubblicazione:28 Gennaio 2016
Parole chiave (italiano / inglese):SBMA, mitochondria, cardiolipin
Settori scientifico-disciplinari MIUR:Area 05 - Scienze biologiche > BIO/10 Biochimica
Struttura di riferimento:Dipartimenti > Dipartimento di Scienze Cardiologiche, Toraciche e Vascolari
Codice ID:9297
Depositato il:24 Ott 2016 14:57
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. Abel, A., Walcott, J., Woods, J., Duda, J., Merry, D.E.., 2001. Expression of expanded repeat androgen receptor produces neurologic disease in transgenic mice. Hum Mol Genet 10, 107-16. Cerca con Google

2. Adachi, H., Waza, M., Katsuno, M., Tanaka, F., Doyu, M., Sobue, G., 2007. Pathogenesis and molecular targeted therapy of spinal and bulbar muscular atrophy. Neuropathol Appl Neurobiol 33, 135-51 Cerca con Google

3. Adachi, H., Waza, M., Tokui, K., Katsuno, M., Minamiyama, M., Tanaka, F., Doyu, M., Sobue, G., 2007. CHIP overexpression reduces mutant androgen receptor protein and ameliorates phenotypes of the spinal and bulbar muscular atrophy transgenic mouse model. J Neurosci. 27, 5115-26. Cerca con Google

4. Adachi, H., Katsuno, M., Minamiyama, M., Sang, C., Pagoulatos, G., Angelidis, C., Kusakabe, M., Yoshiki, A., Kobayashi, Y., Doyu, M., Sobue, G., 2003. Heat shock protein 70 chaperone overexpression ameliorates phenotypes of the spinal and bulbar muscular atrophy transgenic mouse model by reducing nuclear-localized mutant androgen receptor protein. J Neurosci. 23, 2203-11. Cerca con Google

5. Adachi, H., Katsuno, M., Minamiyama, M., Waza, M., Sang, C., Nakagomi, Y., Kobayashi, Y., Tanaka, F., Doyu, M., Inukai, A., Yoshida, M., Hashizume, Y., Sobue, G., 2005. Widespread nuclear and cytoplasmic accumulation of mutant androgen receptor in SBMA patients. Brain 128, 659-70. Cerca con Google

6. Adachi, H., Kume, A., Li, M., Nakagomi, Y., Niwa, H., Do, J., Sang, C., Kobayashi, Y., Doyu, M., Sobue, G., 2001. Transgenic mice with an expanded CAG repeat controlled by the human AR promoter show polyglutamine nuclear inclusions and neuronal dysfunction without neuronal cell death. Hum Mol Genet 10, 1039-48 Cerca con Google

7. Acehan, D., Malhotra, A., Xu, Y., Ren, M., Stokes, D.L., Schlame, M., 2011. Cardiolipin affects the supramolecular organization of ATP synthase in mitochondria, Biophys. J. 100, 2184–2192. Cerca con Google

8. Allen, R.D., 1995. Membrane tubulation and proton pumps, Protoplasma 189, 1–8. Cerca con Google

9. Araki, A., Katsuno, M., Suzuki, K., Banno, H., Suga, N., Hashizume, A., Mano, T., Hijikata, Y., Nakatsuji, H., Watanabe, H., Yamamoto, M., Makiyama, T., Ohno, S., Fukuyama, M., Morimoto, S., Horie, M., Sobue, G., 2014. Brugada syndrome in spinal and bulbar muscular atrophy. Neurology 82, 1813-21. Cerca con Google

10. Arrasate, M., Mitra, S., Schweitzer, E.S., Segal, M.R., Finkbeiner, S., 2004. Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 431, 805-10. Cerca con Google

11. Ashrafi, G., Schwarz, T.L., 2013. The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ 20, 31-42. Cerca con Google

12. Atsuta, N., Watanabe, H., Ito, M., Banno, H., Suzuki, K., Katsuno, M., Tanaka, F., Tamakoshi, A., Sobue, G., 2006. Natural history of spinal and bulbar muscular atrophy (SBMA): a study of 223 Japanese patients. Brain 129, 1446-55. Cerca con Google

13. Bailey, CK., Andriola, I.F., Kampinga, H.H., Merry, D.E., 2002. Molecular chaperones enhance the degradation of expanded polyglutamine repeat androgen receptor in a cellular model of spinal and bulbar muscular atrophy. Hum Mol Genet 11, 515-23. Cerca con Google

14. Ban, T., Heymann, J.A., Song, Z., Hinshaw, J.E., Chan, D.C., 2010. OPA1 disease alleles causing dominant optic atrophy have defects in cardiolipin-stimulated GTP hydrolysis and membrane tubulation. Hum Mol Genet 19, 2113–2122 Cerca con Google

15. Banno, H., Adachi, H., Katsuno, M., Suzuki, K., Atsuta, N., Watanabe, H., Tanaka, F., Doyu, M., Sobue G., 2006. Mutant androgen receptor accumulation in spinal and bulbar muscular atrophy scrotal skin: a pathogenic marker. Ann Neurol 59, 520-6. Cerca con Google

16. Banno, H., Katsuno, M., Suzuki, K., Takeuchi, Y., Kawashima, M., Suga, N., Takamori, M., Ito, M., Nakamura, T., Matsuo, K., Yamada, S., Oki, Y., Adachi, H., Minamiyama, M., Waza, M., Atsuta, N., Watanabe, H., Fujimoto, Y., Nakashima, T., Tanaka, F., Doyu, M., Sobue, G., 2009. Phase 2 trial of leuprorelin in patients with spinal and bulbar muscular atrophy. Annals of Neurology 65, 140–150. Cerca con Google

17. Battaglia, F., Le Galudec, V., Cossee, M., Tranchant, C., Warter, J.M., Echaniz-Laguna, A., 2003. Kennedy’s disease initially manifesting as an endocrine disorder. Journal of Clinical Neuromuscular Disease 4, 165–167. Cerca con Google

18. Bauer, P.O., Nukina, N., 2009. The pathogenic mechanisms of polyglutamine diseases and current therapeutic strategies. Journal of Neurochemistry 110, 1737–1765. Cerca con Google

19. Beato, M., Herrlich, P., Schütz, G., 1995. Steroid hormone receptors: many actors in search of a plot. Cell 83, 851-7. Cerca con Google

20. Beauchemin, A.M., Gottlieb, B., Beitel, L.K., Elhaji, Y.A., Pinsky, L., Trifiro, M.A., 2001. Cytochrome c oxidase subunit Vb interacts with human androgen receptor: a potential mechanism for neurotoxicity in spinobulbar muscular atrophy. Brain Res Bull 56, 285-97. Cerca con Google

21. Bhasin, S., Storer, T.W., Berman, N., Yarasheski, K.E., Clevenger, B., Phillips, J., Lee, W.P., Bunnell, T.J., Casaburi, R., 1997. Testosterone replacement increases fat-free mass and muscle size in hypogo¬nadal men. J Clin Endocrinol Metab 82, 407–413. Cerca con Google

22. Bligh, E.G., Dyer,W.J., 1959. Can J Biochem Physiol 37, 911–917. Cerca con Google

23. Brodsky, I.G., Balagopal, P., Nair, K.S., 1996. Effects of testoster¬one replacement on muscle mass and muscle protein synthesis in hypogonadal men–a clinical research center study. J Clin Endo¬crinol Metab 81, 3469–3475. Cerca con Google

24. Bingham, P.M., Scott, M.O., Wang, S., McPhaul, M.J., Wilson, E.M., Garbern, J.Y., Merry, D.E., Fischbeck, K.H., 1995. Stability of an expanded trinucleotide repeat in the androgen receptor gene in transgenic mice. Nat Genet 9, 191-6. Cerca con Google

25. Brinkmann, A.O., 2001. Lessons to be learned from the androgen receptor. European Journal of Dermatology 11, 301–303. Cerca con Google

26. Brooks, B.P., Fischbeck, K.H., 1995. Spinal and bulbar muscular atrophy: a trinucleotide-repeat expansion neurodegenerative disease. Trends Neurosci 18, 459-61. Cerca con Google

27. Brooks, B.P., Merry, D.E., Paulson, H.L., Lieberman, A.P., Kolson, D.L., Fischbeck, K.H., 1998. A cell culture model for androgen effects in motor neurons. J Neurochem 70, 1054-60. Cerca con Google

28. Butler, R., Bates, G.P., 2006. Histone deacetylase inhibitors as therapeutics for polyglutamine disorders. Nature Reviews Neuroscience 7, 784–796. Cerca con Google

29. Campello, S., Strappazzon, F., Cecconi, F., 2014. Mitochondrial dismissal in mammals, from protein degradation to mitophagy. Biochim Biophys Acta 1837, 451-60. Cerca con Google

30. Caplen, N.J., Taylor, J.P., Statham, V.S., Tanaka, F., Fire, A., Morgan, R.A., 2002. Rescue of polyglutamine-mediated cytotoxicity by double-stranded RNA-mediated RNA interference. Hum Mol Genet 11, 175-84. Cerca con Google

31. Cequier-Sanchez, E., Rodriguez, C., Ravelo, A.G., Zarate, R.J., 2008. Agric Food Chem 56, 4297–4303. Cerca con Google

32. Chahin, N., Sorenson, E.J., 2009. Serum creatine kinase levels in spinobulbar muscular atrophy and amyotrophic lateral sclerosis. Muscle and Nerve 40, 126–129. Cerca con Google

33. Chevalier-Larsen, E.S., O’Brien, C.J., Wang, H., Jenkins, S.C., Holder, L., Lieberman, A.P., Merry, D.E., 2004. Castration restores function and neurofilament alterations of aged symptomatic males in a transgenic mouse model of spinal and bulbar muscular atrophy. Journal of Neuroscience 24, 4778–4786. Cerca con Google

34. Chevalier-Larsen, E.S., Merry, D.E., 2012. Testosterone treatment fails to accelerate disease in a transgenic mouse model of spinal and bulbar muscular atrophy. Dis Model Mech 5, 141-5. Cerca con Google

35. Chlenski, A., Nakashiro, K., Ketels, K.V., Korovaitseva, G.I., Oyasu, R., 2001. Androgen receptor expression in androgen-independent prostate cancer cell lines. Prostate 47, 66-75. Cerca con Google

36. Chu, C.T., Ji, J., Dagda, R.K., Jiang, J.F., Tyurina, Y.Y., Kapralov, A.A., Tyurin, V.A., Yanamala, N., Shrivastava, I.H., Mohammadyani, D., Qiang Wang, K.Z., Zhu, J., Klein-Seetharaman, J., Balasubramanian, K., Amoscato, A.A., Borisenko, G., Huang, Z., Gusdon, A.M., Cheikhi, A., Steer, E.K., Wang, R., Baty, C., Watkins, S., Bahar, I., Bayır, H., Kagan, V.E., 2013. Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells. Nat Cell Biol 15, 1197-205. Cerca con Google

37. Chua, J.P., Reddy, S.L,. Merry, D.E., Adachi, H., Katsuno, M., Sobue, G., Robins, D.M., Lieberman A.P., 2014. Transcriptional activation of TFEB/ZKSCAN3 target genes underlies enhanced autophagy in spinobulbar muscular atrophy. Hum Mol Genet 23, 1376-86. Cerca con Google

38. Ciechanover, A., Brundin, P., 2003. The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg. Neuron 40, 427-46. Cerca con Google

39. Claessens, F., Celis, L., Peeters, B., Heyns, W., Verhoeven, G., Rombauts, W., 1989. Functional characterization of an androgen response element in the first intron of the C3(1) gene of prostatic binding protein. Biochem Biophys Res Commun 164, 833-40. Cerca con Google

40. Claypool, S.M., Oktay, Y., Boontheung, P., Loo J.A., Koehler, C.M.,2008. Cardiolipin defines the interactome of the major ADP/ATP carrier protein of the mitochondrial inner membrane, J. Cell Biol 182, 937–950. Cerca con Google

41. Claypool, S.M., 2009. Cardiolipin, a critical determinant of mitochondrial carrier protein assembly and function. Biochim. Biophys. Acta 1788, 2059–2068. Cerca con Google

42. Cortes, C.J., Miranda, H.C., Frankowski, H., Batlevi, Y., Young, J.E., Le, A., Ivanov, N., Sopher, B.L., Carromeu, C., Muotri, A.R., Garden, G.A., La Spada, A.R., 2014. Polyglutamine-expanded androgen receptor interferes with TFEB to elicit autophagy defects in SBMA. Nat Neurosci 17, 1180-9. Cerca con Google

43. Cortes, C.J., Ling, S.C., Guo, L.T., Hung, G., Tsunemi, T., Ly, L., Tokunaga, S., Lopez, E., Sopher, B.L., Bennett, C.F., Shelton, G.D., Cleveland, D.W., La Spada, A.R., 2014. Muscle expression of mutant androgen receptor accounts for systemic and motor neuron disease phenotypes in spinal and bulbar muscular atrophy. Neuron 82, 295-307. Cerca con Google

44. Dahlman-Wright, K., Grandien, K., Nilsson, S., Gustafsson, J.A., Carlstedt-Duke, J., 1993. Protein-protein interactions between the DNA-binding domains of nuclear receptors: influence on DNA-binding. J Steroid Biochem Mol Biol 45, 239-50. Cerca con Google

45. Danek, A., Witt, T.N., Mann, K., Schweikert, H.U., Romalo, G., La Spada, A.R., Fischbeck, K.H., 1994. Decrease in androgen binding and effect of androgen treatment in a case of X-linked bulbospinal neuronopathy. Clin Investig 72 892-7. Cerca con Google

46. Dejager, S., Bry-Gauillard, H., Bruckert, E., Eymard, B., Salachas, F., LeGuern, E., Tardieu, S., Chadarevian, R., Giral, P., Turpin, G., 2002. A comprehensive endocrine description of Kennedy’s disease revealing androgen insensitivity linked to CAG repeat length. Journal of Clinical Endocrinology and Metabolism 87, 3893–3901. Cerca con Google

47. DePrimo, S.E., Diehn, M., Nelson, J.B., Reiter, R.E., Matese, J., Fero, M., Tibshirani, R., Brown, P.O., Brooks, J.D., 2002. Transcriptional programs activated by exposure of human prostate cancer cells to androgen. Genome Biol 3, RESEARCH0032. Cerca con Google

48. DeVay, R.M., Dominguez-Ramirez, L., Lackner, L.L., Hoppins, S., Stahlberg, H., Nunnari, J., 2009. Coassembly of Mgm1 isoforms requires cardiolipin and mediates mitochondrial inner membrane fusion. J Cell Biol 186, 793–803 Cerca con Google

49. Diaz, F., Moraes, C.T., 2008. Mitochondrial biogenesis and turnover. Cell Calcium 44, 24-35. Cerca con Google

50. DiFiglia, M., Sapp, E., Chase, K.O., Davies, S.W., Bates, G.P., Vonsattel, J.P., Aronin, N., 1997. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277, 1990-3. Cerca con Google

51. Di Filippo, M., Chiasserini, D., Tozzi, A., Picconi, B., Calabresi, P., 2010. Mitochondria and the link between neuroinflammation and neurodegeneration. J Alzheimers Dis 20 Suppl 2:S369-79. Cerca con Google

52. Ding, W.X., Yin, X.M., 2012. Mitophagy: mechanisms, pathophysiological roles, and analysis. Biol Chem 393, 547-64. Cerca con Google

53. Doi, H., Adachi, H., Katsuno, M., Minamiyama, M., Matsumoto, S., Kondo, N., Miyazaki, Y., Iida, M., Tohnai, G., Qiang, Q., Tanaka, F., Yanagawa, T., Warabi, E., Ishii, T., Sobue, G., 2013. p62/SQSTM1 differentially removes the toxic mutant androgen receptor via autophagy and inclusion formation in a spinal and bulbar muscular atrophy mouse model. J Neurosci 33, 7710-27. Cerca con Google

54. Doyu, M., Sobue, G., Mukai, E., Kachi, T., Yasuda, T., Mitsuma, T., Takahashi, A., 1992. Severity of X-linked recessive bulbospinal neuronopathy correlates with size of the tandem CAG repeat in androgen receptor gene. Annals of Neurology 32, 707–710. Cerca con Google

55. Doyu M., Sobue, G., Mitsuma, T., Uchida, M., Iwase, T., Takahashi, A., 1993. Very late onset X-linked recessive bulbospinal neuronopathy: mild clinical features and a mild increase in the size of tandem CAG repeat in androgen receptor gene. J Neurol Neurosurg Psychiatry 56, 832-3. Cerca con Google

56. Dubowitz, V., Sewry, C. A., 2006. Muscle biopsy: A practical approach. Third edition. Saunders, Elsevier. Cerca con Google

57. Enriquez, J.A., Lenaz, G., 2014. Coenzyme q and the respiratory chain: coenzyme q pool and mitochondrial supercomplexes. Mol Syndromol 5, 119-40. Cerca con Google

58. Eskelinen, E.L., Tanaka, Y., Saftig, P., 2003. At the acidic edge: emerging functions for lysosomal membrane proteins. Trends Cell Biol 13, 137-45. Cerca con Google

59. Eskelinen, E.L., Cuervo, A.M., Taylor, M.R., Nishino, I., Blum, J.S., Dice, J.F., Sandoval, I.V., Lippincott-Schwartz, J., August, J.T., Saftig, P., 2005. Unifying nomenclature for the isoforms of the lysosomal membrane protein LAMP-2. Traffic 6, 1058-61. Cerca con Google

60. Eskelinen, E.L., Schmidt, C.K., Neu, S., Willenborg, M., Fuertes, G., Salvador, N., Tanaka, Y., Lüllmann-Rauch, R., Hartmann, D., Heeren, J., von Figura, K., Knecht, E., Saftig, P., 2004. Disturbed cholesterol traffic but normal proteolytic function in LAMP-1/LAMP-2 double-deficient fibroblasts. Mol Biol Cell 15, 3132-45. Cerca con Google

61. Faber, P.W., van Rooij, H.C., Schipper, H.J., Brinkmann, A.O., Trapman, J., 1993. Two different, overlapping pathways of transcription initiation are active on the TATA-less human androgen receptor promoter. The role of Sp1. J Biol Chem 268, 9296-301. Cerca con Google

62. Fernandez-Rhodes, L.E., Kokkinis, A.D., White, M.J., Watts, C.A., Auh, S., Jeffries, N.O., Shrader, J.A., Lehky, T.J., Li, L., Ryder, J.E., Levy, E.W., Solomon, B.I., Harris-Love, M.O., La Pean, A., Schindler, A.B., Chen, C., Di Prospero, N.A., Fischbeck, K.H., 2011. Efficacy and safety of dutasteride in patients with spinal and bulbar muscular atrophy: a randomised placebo-controlled trial. The Lancet Neurology 10, 140–147. Cerca con Google

63. Finsterer, J., Mishra, A., Wakil, S., Pennuto, M., Soraru, G., 2015. Mitochondrial implications in bulbospinal muscular atrophy (Kennedy disease). Amyotroph Lateral Scler Frontotemporal Degener 1, 1-7. Cerca con Google

64. Fischbeck, K.H., 1997. Kennedy disease. Journal of Inherited Metabolic Disease 20, 152–158. Cerca con Google

65. Frohman, M.A., 2015. Role of mitochondrial lipids in guiding fission and fusion. J Mol Med (Berl) 93, 263-9. Cerca con Google

66. Fukuda, M., 1991. Lysosomal membrane glycoproteins. Structure, biosynthesis, and intracellular trafficking. J Biol Chem 266, 21327-30. Cerca con Google

67. Giorgetti, E., Rusmini, P., Crippa, V., Cristofani, R., Boncoraglio, A., Cicardi, M.E., Galbiati, M., Poletti, A., 2015. Synergic prodegradative activity of Bicalutamide and trehalose on the mutant androgen receptor responsible for spinal and bulbar muscular atrophy. Hum Mol Genet 24, 64-75. Cerca con Google

68. Glass, D., Roubenoff, R., 2010. Recent advances in the biology and therapy of muscle wasting. Ann N Y Acad Sci 1211,25–36. Cerca con Google

69. Goldenberg, J.N., Bradley, W.G., 1996 Testosterone therapy and the pathogenesis of Kennedy's disease (X-linked bulbospinal muscular atrophy). J Neurol Sci 135, 158-61. Cerca con Google

70. Goldstein, L.A., Sengelaub, D.R., 1992. Timing and duration of dihydrotestosterone treatment affect the development of motoneuron number and morphology in a sexually dimorphic rat spinal nucleus. J Comp Neurol 326, 147-57. Cerca con Google

71. Gomes, L.C., Scorrano, L., 2013. Mitochondrial morphology in mitophagy and macroautophagy. Biochim Biophys Acta 1833, 205-12. Cerca con Google

72. Gomes, L.C., Scorrano, L., 2008. High levels of Fis1, a pro-fission mitochondrial protein, trigger autophagy. Biochim Biophys Acta. 1777, 860-6. Cerca con Google

73. Grad, J.M., Lyons, L.S., Robins, D.M., Burnstein, K.L., 2001. The androgen receptor (AR) amino-terminus imposes androgen-specific regulation of AR gene expression via an exonic enhancer. Endocrinology 142, 1107-16. Cerca con Google

74. Greenland, K.J., Zajac, J.D., 2004. Kennedy's disease: pathogenesis and clinical approaches. Intern Med J 34, 279-86. Cerca con Google

75. Gu, Z., Valianpour, F., Chen, S., Vaz, F.M., Hakkaart, G.A., Wanders, R.J., Greenberg, M.L., 2004. Aberrant cardiolipin metabolism in the yeast taz1 mutant: a model for Barth syndrome. Mol Microbiol 51, 149-58. Cerca con Google

76. Gunawardena, S., Goldstein, L.S., 2005. Polyglutamine diseases and transport problems: deadly traffic jams on neuronal highways. Arch Neurol 62, 46-51. Cerca con Google

77. Haehling, S., Morley, J.E., Anker, S.D., 2012. From muscle wasting to sarcopenia and myopenia: update 2012. J Cachexia Sarcopenia Muscle. 3, 213–217. Cerca con Google

78. Halievski, K., Mo, K., Westwood, J.T., Monks, D.A., 2015. Transcriptional profile of muscle following acute induction of symptoms in a mouse model of Kennedy's disease/spinobulbar muscular atrophy. PLoS One 10, e0118120. Cerca con Google

79. Hamano, T., Mutoh, T., Hirayama, M., Kawamura, Y., Nagata, M., Fujiyama, J., Kuriyama, M., 2004. Muscle MRI findings of X-linked spinal and bulbar muscular atrophy. J Neurol Sci 222, 93-7. Cerca con Google

80. Harding, A.E., Thomas, P.K., Baraitser, M., Bradbury, P.G., Morgan-Hughes, J.A., Ponsford, J.R., 1982. X-linked recessive bulbospinal neuronopathy: a report of ten cases. Journal of Neurology, Neurosurgery and Psychiatry 45, 1012–1019. Cerca con Google

81. He, B., Kemppainen, J.A., Wilson, E.M., 2000. FXXLF and WXXLF sequences mediate the NH2-terminal interaction with the ligand binding domain of the androgen receptor. J Biol Chem 275, 22986-94. Cerca con Google

82. Herzog, R., Schuhmann, K., Schwudke, D., Sampaio, J.L., Bornstein, S.R., Schroeder, M., Shevchenko, A., 2012. PLoS One 7, e29851. Cerca con Google

83. Holmberg, C.I., Staniszewski, K.E., Mensah, K.N., Matouschek, A., Morimoto, R.I., 2004. Inefficient degradation of truncated polyglutamine proteins by the proteasome. EMBO J. 23, 4307-18. Cerca con Google

84. Horvath, S.E., Daum, G., 2013. Lipids of mitochondria. Prog Lipid Res 52, 590-614. Cerca con Google

85. Houtkooper, R.H., Akbari, H., van Lenthe, H., Kulik, W., Wanders, R.J., Frentzen, M., Vaz, F.M., 2006. Identification and characterization of human cardiolipin synthase. FEBS Lett 580, 3059-64. Cerca con Google

86. Howarth, J.L., Kelly, S., Keasey, M.P., Glover, C.P., Lee, Y.B., Mitrophanous, K., Chapple, J.P., Gallo, J.M., Cheetham,, M.E., Uney, J.B., 2007. Hsp40 molecules that target to the ubiquitin-proteasome system decrease inclusion formation in models of polyglutamine disease. Mol Ther 15, 1100-5. Cerca con Google

87. Igarashi, S., Tanno, Y., Onodera, O., Yamazaki, M., Sato, S., Ishikawa, A., Miyatani, N., Nagashima, M., Ishikawa, Y., Sahashi, K., 1992. Strong correlation between the number of CAG repeats in androgen receptor genes and the clinical onset of features of spinal and bulbar muscular atrophy. Neurology 42, 2300-2302 Cerca con Google

88. Irvine, R.A., Ma, H., Yu, M.C., Ross, R.K., Stallcup, M.R., Coetzee, G.A., 2000. Inhibition of p160-mediated coactivation with increasing androgen receptor polyglutamine length. Hum Mol Genet 9, 267-74. Cerca con Google

89. Ishihara, K., Yamagishi, N., Saito, Y., Adachi, H., Kobayashi, Y., Sobue, G., Ohtsuka, K., Hatayama, T., 2003. Hsp105alpha suppresses the aggregation of truncated androgen receptor with expanded CAG repeats and cell toxicity. J Biol Chem 278, 25143-50. Cerca con Google

90. Jenster, G., van der Korput, H.A., Trapman, J., Brinkmann, A.O., 1995. Identification of two transcription activation units in the N-terminal domain of the human androgen receptor. Journal of Biological Chemistry 270, 7341–7346. Cerca con Google

91. Jiang, F., Ryan, M.T., Schlame, M., Zhao, M., Gu, Z., Klingenberg, M., Pfanner, N., Greenberg, M.L., 2000. Absence of cardiolipin in the crd1 null mutant results in decreased mitochondrial membrane potential and reduced mitochondrial function. J Biol Chem 275, 22387-94. Cerca con Google

92. Jochum, T., Ritz, M.E., Schuster, C., Funderburk, S.F., Jehle, K., Schmitz, K., Brinkmann, F., Hirtz, M., Moss, D., Cato, A.C., 2012. Toxic and non-toxic aggregates from the SBMA and normal forms of androgen receptor have distinct oligomeric structures. Biochimica et Biophysica Acta 1822, 1070–1078. Cerca con Google

93. Johansen, J.A., Troxell-Smith, S.M., Yu, Z., Mo, K., Monks, D.A., Lieberman, A.P,. Breedlove, S.M., Jordan, C.L., 2010. Prenatal flutamide enhances survival in a myogenic mouse model of spinal bulbar muscular atrophy. Neurodegener Dis 8, 25-34. Cerca con Google

94. Johansen, J.A., Yu, Z., Mo, K., Monks, D.A., Lieberman, A.P., Breedlove, S.M., Jordan, C.L.,2009. Recovery of function in a myogenic mouse model of spinal bulbar muscular atrophy. Neurobiol Dis 34, 113-20. Cerca con Google

95. Jordan, C.L., Price, R.H. Jr, Handa, R.J., 2002. Androgen receptor messenger RNA and protein in adult rat sciatic nerve: implications for site of androgen action. J Neurosci Res 69, 509-18. Cerca con Google

96. Joshi, A.S., Thompson, M.N., Fei, N., Hüttemann, M., Greenberg, M.L., 2012. Cardiolipin and mitochondrial phosphatidylethanolamine have overlapping functions in mitochondrial fusion in Saccharomyces cerevisiae. J Biol Chem. 287, 17589-97. Cerca con Google

97. Kagan, V.E., Bayir, H.A., Belikova, N.A., Kapralov, O., Tyurina, Y.Y., Tyurin, V.A., et al., 2009. Cytochrome c/cardiolipin relations in mitochondria: a kiss of death. Free Radic Biol Med 46, 1439–53. Cerca con Google

98. Katsuno, M., Adachi, H., Kume, A., Li, M., Nakagomi, Y., Niwa, H., Sang, C., Kobayashi, Y., Doyu, M., Sobue, G., 2002. Testosterone reduction prevents phenotypic expression in a transgenic mouse model of spinal and bulbar muscular atrophy. Neuron 35, 843–854. Cerca con Google

99. Katsuno, M., Adachi, H., Doyu, M., Minamiyama, M., Sang, C., Kobayashi, Y., Inukai, A., Sobue, G., 2003. Leuprorelin rescues polyglutamine-dependent phenotypes in a transgenic mouse model of spinal and bulbar muscular atrophy. Nature Medicine 9, 768–773. Cerca con Google

100. Katsuno, M., Sang, C., Adachi, H., Minamiyama, M., Waza, M., Tanaka, F., Doyu, M., Sobue, G., 2005. Pharmacological induction of heat-shock proteins alleviates polyglutamine-mediated motor neuron disease. Proceedings of the National Academy of Sciences of the United States of America 102, 16801–16806. Cerca con Google

101. Katsuno, M., Adachi, H., Waza, M., Banno, H., Suzuki, K., Tanaka, F., Doyu, M., Sobue, G., 2006a. Pathogenesis, animal models and therapeutics in spinal and bulbar muscular atrophy (SBMA). Experimental Neurology 200, 8–18. Cerca con Google

102. Katsuno, M., Adachi, H., Minamiyama, M., Waza, M., Tokui, K., Banno, H., Suzuki, K., Onoda, Y., Tanaka, F., Doyu, M., Sobue, G., 2006b. Reversible disruption of dynactin 1-mediated retrograde axonal transport in polyglutamine-induced motor neuron degeneration. Journal of Neuroscience 26, 12106–12117. Cerca con Google

103. Katsuno, M., Adachi, H., Minamiyama, M., Waza, M., Doi, H., Kondo, N., Mizoguchi, H., Nitta, A., Yamada, K., Banno, H., Suzuki, K., Tanaka, F., Sobue, G., 2010a. Disrupted transforming growth factor-beta signaling in spinal and bulbar muscular atrophy. Journal of Neuroscience 30, 5702–5712. Cerca con Google

104. Katsuno, M., Banno, H., Suzuki, K., Takeuchi, Y., Kawashima, M., Yabe, I., Sasaki, H., Aoki, M., Morita, M., Nakano, I., Kanai, K., Ito, S., Ishikawa, K., Mizusawa, H., Yamamoto, T., Tsuji, S., Hasegawa, K., Shimohata, T., Nishizawa, M., Miyajima, H., Kanda, F., Watanabe, Y., Nakashima, K., Tsujino, A., Yamashita, T., Uchino, M., Fujimoto, Y., Tanaka, F., Sobue, G., 2010b. Efficacy and safety of leuprorelin in patients with spinal and bulbar muscular atrophy (JASMITT study): a multicentre, randomised, double-blind, placebo-controlled trial. The Lancet Neurology 9, 875–884. Cerca con Google

105. Kalmar, B., Novoselov, S., Gray, A., Cheetham, M.E., Margulis, B., Greensmith, L., 2008. Late stage treatment with arimoclomol delays disease progression and prevents protein aggregation in the SOD1 mouse model of ALS. J Neurochem 107, 339-50. Cerca con Google

106. Keller, E.T., Ershler, W.B., Chang, C., 1996. The androgen receptor: a mediator of diverse responses. Front Biosci 1:d59-71. Cerca con Google

107. Kemp, M.Q., Poort, J.L., Baqri, R.M., Lieberman, A.P., Breedlove, S.M., Miller, K.E., Jordan, C.L., 2011. Impaired motoneuronal retrograde transport in two models of SBMA implicates two sites of androgen action. Human Molecular Genetics 20, 4475–4490. Cerca con Google

108. Kennedy, W.R., Alter, M., Sung, J.H., 1968. Progressive proximal spinal and bulbar muscular atrophy of late onset. A sex-linked recessive trait. Neurology 18, 671–680. Cerca con Google

109. Kim, I., Rodriguez-Enriquez, S., Lemasters, J.J., 2007. Selective degradation of mitochondria by mitophagy. Arch Biochem Biophys 462, 245–253. Cerca con Google

110. Kinirons, P., Rouleau, G.A., 2008. Administration of testosterone results in reversible deterioration in Kennedy’s disease. Journal of Neurology, Neurosurgery and Psychiatry 79, 106–107. Cerca con Google

111. Klement, I.A., Skinner, P.J., Kaytor, M.D., Yi, H., Hersch, S.M., Clark, H.B., Zoghbi, H.Y., Orr, H.T., 1998. Ataxin-1 nuclear localization and aggregation: role in in polyglutamine-induced disease in SCA1 transgenic mice. Cell 95, 41–53. Cerca con Google

112. Kobayashi, Y., Kume, A., Li, M., Doyu, M., Hata, M., Ohtsuka, K., Sobue, G., 2000. Chaperones Hsp70 and Hsp40 suppress aggregate formation and apoptosis in cultured neuronal cells expressing truncated androgen receptor protein with expanded polyglutamine tract. Journal of Biological Chemistry 275, 8772–8778. Cerca con Google

113. Kobayashi, Y., Miwa, S., Merry, D.E., Kume, A., Mei, L., Doyu, M., Sobue, G., 1998. Caspase-3 cleaves the expanded androgen receptor protein of spinal and bulbar muscular atrophy in a polyglutamine repeat length-dependent manner. Biochem Biophys Res Commun 252, 145-50. Cerca con Google

114. Komatsu, M., Ichimura, Y., 2010. Selective autophagy regulates various cellular functions. Genes Cells 15, 923-33. Cerca con Google

115. Konecki, D.S., Foetisch, K., Zimmer, K.P., Schlotter, M., Lichter-Konecki, U., 1995. An alternatively spliced form of the human lysosome-associated membrane protein-2 gene is expressed in a tissue-specific manner. Biochem Biophys Res Commun 215, 757-67. Cerca con Google

116. Kornfeld, S., Mellman, I., 1989. The biogenesis of lysosomes. Annu Rev Cell Biol 5, 483-525. Cerca con Google

117. Kujawa, K.A., Jacob, J.M., Jones, K.J., 1993. Testosterone regulation of the regenerative properties of injured rat sciatic motor neurons. J Neurosci Res 35, 268-73. Cerca con Google

118. La Cognata, V., Iemmolo, R., D'Agata, V., Scuderi, S., Drago, F., Zappia, M., et al., 2014. Increasing the Coding Potential of Genomes Through Alternative Splicing: The Case of PARK2 Gene. Current genomics 15, 203-16. Cerca con Google

119. LaFevre-Bernt, M.A., Ellerby, L.M., 2003. Kennedy’s disease. Phosphorylation of the polyglutamine-expanded form of androgen receptor regulates its cleavage by caspase-3 and enhances cell death. Journal of Biological Chemistry 278, 34918–34924. Cerca con Google

120. Lagouge, M., Argmann, C., Gerhart-Hines, Z., Meziane, H., Lerin, C., Daussin, F., Messadeq, N., Milne, J., Lambert, P., Elliott, P., Geny, B., Laakso, M., Puigserver, P., Auwerx, J., 2006. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 127, 1109-22. Cerca con Google

121. Langley, E., Zhou, Z.X., Wilson, E.M., 1995. Evidence for an anti-parallel orientation of the ligand-activated human androgen receptor dimer. J Biol Chem 270, 29983-90. Cerca con Google

122. La Spada, A.R., Wilson, E.M., Lubahn, D.B., Harding, A.E., Fischbeck, K.H., 1991. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 352, 77–79. Cerca con Google

123. La Spada, A.R., Roling, D.B., Harding, A.E., Warner, C.L., Spiegel, R., Hausmanowa-Petrusewicz, I., Yee, W.C., Fischbeck, K.H., 1992. Meiotic stability and genotype-phenotype correlation of the trinucleotide repeat in X-linked spinal and bulbar muscular atrophy. Nature Genetics 2, 301-304. Cerca con Google

124. La Spada, A.R., Peterson, K.R., Meadows, S.A., McClain, M.E., Jeng, G., Chmelar, R.S., Haugen, H.A., Chen, K., Singer, M.J., Moore, D., Trask, B.J., Fischbeck, K.H., Clegg, C.H., McKnight, G.S., 1998. Androgen receptor YAC transgenic mice carrying CAG 45 alleles show trinucleotide repeat instability. Hum Mol Genet 7, 959-67. Cerca con Google

125. La Spada, A., Spinal and Bulbar Muscular Atrophy, 1999. Source: GeneReviews® [Internet]. Cerca con Google

126. Lemasters, J.J., Qian, T., He, L., Kim, J.S., Elmore, S.P., Cascio, W.E., Brenner, D.A., 2002. Role of mitochondrial inner membrane permeabilization in necrotic cell death, apoptosis, and autophagy. Antioxid Redox Signal 4, 769-81. Cerca con Google

127. Li, M., Chevalier-Larsen, E.S., Merry, D.E., Diamond, M.I., 2007. Soluble androgen receptor oligomers underlie pathology in a mouse model of spinobulbar muscular atrophy. Journal of Biological Chemistry 282, 3157–3164. Cerca con Google

128. Li, M., Miwa, S., Kobayashi, Y., Merry, D.E., Yamamoto, M., Tanaka, F., Doyu, M., Hashizume, Y., Fischbeck, K.H., Sobue, G., 1998a. Nuclear inclusions of the androgen receptor protein in spinal and bulbar muscular atrophy. Annals of Neurology 44, 249–254. Cerca con Google

129. Li, M., Nakagomi, Y., Kobayashi, Y., Merry, D.E., Tanaka, F., Doyu, M., Mitsuma, T., Hashizume, Y., Fischbeck, K.H., Sobue, G., 1998b. Nonneural nuclear inclusions of androgen receptor protein in spinal and bulbar muscular atrophy. American Journal of Pathology 153, 695–701. Cerca con Google

130. Lieberman, A.P., Yu, Z., Murray, S., Peralta, R., Low, A., Guo, S., Yu, X.X., Cortes, C.J., Bennett, C.F., Monia, B.P., La Spada, A.R., Hung, G., 2014. Peripheral androgen receptor gene suppression rescues disease in mouse models of spinal and bulbar muscular atrophy. Cell Rep 7, 774-84. Cerca con Google

131. Lieberman, A.P., Harmison, G., Strand, A.D., Olson, J.M., Fischbeck, K.H.,2002. Altered transcriptional regulation in cells expressing the expanded polyglutamine androgen receptor. Hum Mol Genet 11, 1967-76. Cerca con Google

132. Lin, J., Wu, H., Tarr, P.T., Zhang, C.Y., Wu, Z., Boss, O., Michael, L.F., Puigserver, P., Isotani, E., Olson, E.N., Lowell, B.B., Bassel-Duby, R., Spiegelman, B.M., 2002. Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature 418, 797-801. Cerca con Google

133. Lu, Y.W., Claypool, S.M., 2015. Disorders of phospholipid metabolism: an emerging class of mitochondrial disease due to defects in nuclear genes. Front Genet 6, 3. Cerca con Google

134. Luévano-Martínez, L.A., Forni, M.F., dos Santos, V.T., Souza-Pinto, N.C., Kowaltowski, A.J., 2015. Cardiolipin is a key determinant for mtDNA stability and segregation during mitochondrial stress. Biochim Biophys Acta 1847, 587-98. Cerca con Google

135. Lund, A., Udd, B., Juvonen, V., Andersen, P.M., Cederquist, K., Davis, M., Gellera, C., Kolmel, C., Ronnevi, L.O., Sperfeld, A.D., Sorensen, S.A., Tranebjaerg, L., Van Maldergem, L., Watanabe, M., Weber, M., Yeung, L., Savontaus, M.L., 2001. Multiple founder effects in spinal and bulbar muscular atrophy (SBMA, Kennedy disease) around the world. European Journal of Human Genetics 9, 431–436. Cerca con Google

136. McCampbell, A., Taylor, J.P., Taye, A.A., Robitschek, J., Li, M., Walcott, J., Merry, D., Chai, Y., Paulson, H., Sobue, G., Fischbeck, K.H., 2000. CREB-binding protein sequestration by expanded polyglutamine. Hum Mol Genet 9, 2197-202. Cerca con Google

137. McKenzie, M., Lazarou, M., Thorburn, D.R., Ryan, M.T., 2006. Mitochondrial respiratory chain supercomplexes are destabilized in Barth Syndrome patients. J Mol Biol 361, 462-9. Cerca con Google

138. McManamny, P., Chy, H.S., Finkelstein, D.I., Craythorn, R.G., Crack, P.J., Kola, I., Cheema, S.S., Horne, M.K., Wreford, N.G., O'Bryan, M.K., De Kretser, D.M., Morrison, J.R., 2002. A mouse model of spinal and bulbar muscular atrophy. Hum Mol Genet 11, 2103-11. Cerca con Google

139. Malena, A., Loro, E., Di Re, M., Holt, I.J., Vergani, L., 2009. Inhibition of mitochondrial fission favours mutant over wild-type mitochondrial DNA. Hum Mol Genet 18, 3407-16. Cerca con Google

140. Malena, A., Pennuto, M., Tezze, C., Querin, G., D'Ascenzo, C., Silani, V., Cenacchi, G., Scaramozza, A., Romito, S., Morandi, L., Pegoraro, E., Russell, A.P., Sorarù, G., Vergani, L., 2013. Androgen-dependent impairment of myogenesis in spinal and bulbar muscular atrophy. Acta Neuropathol 126, 109-21. Cerca con Google

141. Malik, B., Nirmalananthan, N., Gray, A.L., La Spada, A.R., Hanna, M.G., Greensmith, L., 2013. Co-induction of the heat shock response ameliorates disease progression in a mouse model of human spinal and bulbar muscular atrophy: implications for therapy. Brain 136, 926-43. Cerca con Google

142. Matsumoto, A., Micevych, P.E., Arnold, A.P., 1988. Androgen regulates synaptic input to motoneurons of the adult rat spinal cord. J Neurosci. 8, 4168-76. Cerca con Google

143. Matsuura, T., Demura, T., Aimoto, Y., Mizuno, T., Moriwaka, F., Tashiro, K., 1992. Androgen receptor abnormality in X-linked spinal and bulbar muscular atrophy. Neurology 42, 1724-6. Cerca con Google

144. Merry, D. E., McCampbell, A., Taye, A. A., Winston, R. L., Fischbeck, K. H., 1996. Toward a mouse model for spinal and bulbar muscular atrophy: e¡ect of neuronal expression of androgen receptor in transgenic mice (abstract). Am. J. Hum. Genet. 59, A271. Cerca con Google

145. Minamiyama, M., Katsuno, M., Adachi, H., Waza, M., Sang, C., Kobayashi, Y., Tanaka, F., Doyu, M., Inukai, A., Sobue, G., 2004. Sodium butyrate ameliorates phenotypic expression in a transgenic mouse model of spinal and bulbar muscular atrophy. Human Molecular Genetics 13, 1183–1192. Cerca con Google

146. Mirowska-Guzel, D., Seniow, J., Sulek, A., Lesniak, M., Czlonkowska, A., 2009. Are cognitive and behavioural deficits a part of the clinical picture in Kennedy’s disease? A case study. Neurocase 15, 332–337. Cerca con Google

147. Miyazaki, Y., Adachi, H., Katsuno, M., Minamiyama, M., Jiang, Y.M., Huang, Z., Doi, H., Matsumoto, S., Kondo, N., Iida, M., Tohnai, G., Tanaka, F., Muramatsu, S., Sobue, G., 2012. Viral delivery of miR-196a ameliorates the SBMA phenotype via the silencing of CELF2. Nat Med 18, 1136-41 Cerca con Google

148. Mizushima, N., 2010. Autophagy. FEBS Lett 584, 1279. Cerca con Google

149. Mizushima, N., 2007. Autophagy: process and function. Genes Dev 21, 2861-73. Cerca con Google

150. Mizushima, N., Kuma, A., 2008. Autophagosomes in GFP-LC3 Transgenic Mice. Methods Mol Biol 445, 119-24. Cerca con Google

151. Mizushima, N., Komatsu, M., 2011. Autophagy: renovation of cells and tissues. Cell 147, 728-41. Cerca con Google

152. Mo, K., Razak, Z., Rao, P., Yu, Z., Adachi, H., Katsuno, M., Sobue, G., Lieberman, A.P., Westwood, J.T., Monks, D.A., 2010. Microarray analysis of gene expression by skeletal muscle of three mouse models of kennedy disease/spinal bulbar muscular atrophy. PLoS One 5, e12922. Cerca con Google

153. Monks, D.A., Johansen, J.A., Mo, K., Rao, P., Eagleson, B., Yu, Z., Lieberman, A.P., Breedlove, S.M., Jordan, C.L., 2007. Overexpression of wild-type androgen receptor in muscle recapitulates polyglutamine disease. Proceedings of the National Academy of Sciences of the United States of America 104, 18259–18264. Cerca con Google

154. Montie, H.L., Cho, M.S., Holder, L., Liu, Y., Tsvetkov, A.S., Finkbeiner, S., Merry, D.E., 2009. Cytoplasmic retention of polyglutamine-expanded androgen receptor ameliorates disease via autophagy in a mouse model of spinal and bulbar muscular atrophy. Human Molecular Genetics 18, 1937–1950. Cerca con Google

155. Montie, H.L., Pestell, R.G., Merry, D.E., 2011. SIRT1 modulates aggregation and toxicity through deacetylation of the androgen receptor in cell models of SBMA. Journal of Neuroscience 31, 17425–17436 Cerca con Google

156. Morfini, G., Pigino, G., Szebenyi, G., You, Y., Pollema, S., Brady, S.T., 2006. JNK mediates pathogenic effects of polyglutamine-expanded androgen receptor on fast axonal transport. Nature Neuroscience 9, 907–916. Cerca con Google

157. Morrish, F., Giedt, C., Hockenbery, D., 2003. c-MYC apoptotic function is mediated by NRF-1 target genes. Genes Dev 17, 240-55. Cerca con Google

158. Moss, F.P., Leblond, C.P., 1971. Satellite cells as the source of nuclei in muscles of growing rats. Anat Rec 170, 421–435. Cerca con Google

159. Mukherjee, S., Thomas, M., Dadgar, N., Lieberman, A.P., Iniguez-Lluhi, J.A., 2009. Small ubiquitin-like modifier (SUMO) modification of the androgen receptor attenuates polyglutamine-mediated aggregation. Journal of Biological Chemistry 284, 21296–21306. Cerca con Google

160. Nagai, Y., Fujikake, N., Popiel, H.A., Wada, K., 2010. Induction of molecular chaperones as a therapeutic strategy for the polyglutamine diseases. Current Pharmaceutical Biotechnology 11, 188–197. Cerca con Google

161. Nagashima, T., Seko, K., Hirose, K., Mannen, T., Yoshimura, S., Arima, R., Nagashima, K., Morimatsu, Y., 1988. Familial bulbo-spinal muscular atrophy associated with testicular atrophy and sensory neuropathy (Kennedy-Alter-Sung syndrome). Autopsy case report of two brothers. Journal of the Neurological Sciences 87, 141–152. Cerca con Google

162. Nakamura, M., Mita, S., Murakami, T., Uchino, M., Watanabe, S., Tokunaga, M., Kumamoto, T., Ando, M., 1994. Exonic trinucleotide repeats and expression of androgen receptor gene in spinal cord from X-linked spinal and bulbar muscular atrophy. J Neurol Sci 122, 74-9. Cerca con Google

163. Narendra, D., Kane, L.A., Hauser, D.N., Fearnley, I.M., Youle, R.J., 2010. p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both. Autophagy 6, 1090-106. Cerca con Google

164. Narkar, V.A., Fan, W., Downes, M., Yu, R.T., Jonker, J.W., Alaynick, W.A., Banayo, E., Karunasiri, M.S., Lorca, S., Evans, R.M., 2011. Exercise and PGC-1α-independent synchronization of type I muscle metabolism and vasculature by ERRγ. Cell Metab 13, 283-93. Cerca con Google

165. Nedelsky, N.B., Pennuto, M., Smith, R.B., Palazzolo, I., Moore, J., Nie, Z., Neale, G., Taylor, J.P., 2010. Native functions of the androgen receptor are essential to pathogenesis in a Drosophila model of spinobulbar muscular atrophy. Neuron 67, 936–952. Cerca con Google

166. Neuschmid-Kaspar, F., Gast, A., Peterziel, H., Schneikert, J., Muigg, A., Ransmayr, G., Klocker, H., Bartsch, G., Cato, A.C., 1996. CAG-repeat expansion in androgen receptor in Kennedy's disease is not a loss of function mutation. Mol Cell Endocrinol 117, 149-56. Cerca con Google

167. Novak, I., 2012. Mitophagy: a complex mechanism of mitochondrial removal. Antioxid Redox Signal 17, 794-802. Cerca con Google

168. Novak, I., Dikic, I., 2011. Autophagy receptors in developmental clearance of mitochondria. Autophagy 7, 301-3. Cerca con Google

169. Olesen, J., Kiilerich, K., Pilegaard, H., 2010. PGC-1alpha-mediated adaptations in skeletal muscle. Pflugers Arch 460, 153-62. Cerca con Google

170. Orr, C.R., Montie, H.L., Liu, Y., Bolzoni, E., Jenkins, S.C., Wilson, E.M., Joseph, J.D., McDonnell, D.P., Merry, D.E., 2010. An interdomain interaction of the androgen receptor is required for its aggregation and toxicity in spinal and bulbar muscular atrophy. Journal of Biological Chemistry 285, 35567–35577. Cerca con Google

171. Orsucci, D., Rocchi, A., Caldarazzo Ienco, E., Alì, G., LoGerfo, A., Petrozzi, L., Scarpelli, M., Filosto, M., Carlesi, C., Siciliano, G., Bonuccelli, U., Mancuso, M., 2014. Myopathic involvement and mitochondrial pathology in Kennedy disease and in other motor neuron diseases. Curr Mol Med. 14,598-602. Cerca con Google

172. Ostojic, O., O'Leary, M.F., Singh, K., Menzies, K.J., Vainshtein, A., Hood, D.A., 2012. The effects of chronic muscle use and disuse on cardiolipin metabolism. J Appl Physiol 114, 444-52. Cerca con Google

173. Palazzolo, I., Burnett, B.G., Young, J.E., Brenne, P.L., La Spada, A.R., Fischbeck, K.H., Howell, B.W., Pennuto, M., 2007. Akt blocks ligand binding and protects against expanded polyglutamine androgen receptor toxicity. Human Molecular Genetics 16, 1593–1603. Cerca con Google

174. Palazzolo, I., Gliozzi, A., Rusmini, P., Sau, D., Crippa, V., Simonini, F., Onesto, E., Bolzoni, E., Poletti, A., 2008. The role of the polyglutamine tract in androgen receptor. Journal of Steroid Biochemistry and Molecular Biology 108, 245–253. Cerca con Google

175. Palazzolo, I., Stack, C., Kong, L., Musaro, A., Adachi, H., Katsuno, M., Sobue, G., Taylor, J.P., Sumner, C.J., Fischbeck, K.H., Pennuto, M., 2009. Overexpression of IGF-1 in muscle attenuates disease in a mouse model of spinal and bulbar muscular atrophy. Neuron 63, 316–328. Cerca con Google

176. Palmieri, M., Impey, S., Kang, H., di Ronza, A., Pelz, C., Sardiello, M., Ballabio, A., 2011. Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum Mol Genet 20, 3852-66. Cerca con Google

177. Pandey, U.B., Nie, Z., Batlevi, Y., McCray, B.A., Ritson, G.P., Nedelsky, N.B., Schwartz, S.L., DiProspero, N.A., Knight, M.A., Schuldiner, O., Padmanabhan, R., Hild, M., Berry, D.L., Garza, D., Hubbert, C.C., Yao, T.P., Baehrecke, E.H., Taylor, J.P., 2007. HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature 447, 859–863. Cerca con Google

178. Palazzolo, I., Nedelsky, N.B., Askew, C.E., Harmison, G.G., Kasantsev, A.G., Taylor, J.P., Fischbeck, K.H., Pennuto, M., 2010. B2 attenuates polyglutamine-expanded androgen receptor toxicity in cell and fly models of spinal and bulbar muscular atrophy. J Neurosci Res 88, 2207-16. Cerca con Google

179. Paradas, C., Solano, F., Carrillo, F., Fernández, C., Bautista, J., Pintado, E., Lucas, M., 2008. Highly skewed inactivation of the wild-type X-chromosome in asymptomatic female carriers of spinal and bulbar muscular atrophy (Kennedy's disease). J Neurol 255, 853-7. Cerca con Google

180. Paradies, G., Paradies, V., De Benedictis, V., Ruggiero, F.M., Petrosillo, G., 2014. Functional role of cardiolipin in mitochondrial bioenergetics. Biochim Biophys Acta 18374, 08-17. Cerca con Google

181. Parodi, S., Pennuto, M., 2011. Neurotoxic effects of androgens in spinal and bulbar muscular atrophy. Frontiers in Neuroendocrinology 32, 416–425. Cerca con Google

182. Patil, V.A., Greenberg, M.L., 2013. Cardiolipin-mediated cellular signaling. Adv Exp Med Biol 991, 195-213. Cerca con Google

183. Piantadosi, C.A., Suliman, H.B., 2012. Redox regulation of mitochondrial biogenesis. Free Radic Biol Med 53, 2043-53. Cerca con Google

184. Piccioni, F., Pinton, P., Simeoni, S., Pozzi, P., Fascio, U., Vismara, G., Martini, L., Rizzuto, R., Poletti, A., 2002. Androgen receptor with elongated polyglutamine tract forms aggregates that alter axonal trafficking and mitochondrial distribution in motor neuronal processes. FASEB Journal 16, 1418–1420. Cerca con Google

185. Piccioni, F., Simeoni, S., Andriola, I., Armatura, E., Bassanini, S., Pozzi, P., Poletti A., 2001. Polyglutamine tract expansion of the androgen receptor in a motoneuronal model of spinal and bulbar muscular atrophy. Brain Res Bull 56, 215-20. Cerca con Google

186. Poletti, A., 2004. The polyglutamine tract of androgen receptor: from functions to dysfunctions in motor neurons. Frontiers in Neuroendocrinology 25, 1–26. Cerca con Google

187. Poletti, A., Negri-Cesi, P., Martini, L., 2005. Reflections on the diseases linked to mutations of the androgen receptor. Endocrine 28, 243-62. Cerca con Google

188. Qiang, Q., Adachi, H., Huang, Z., Jiang, Y.M., Katsuno, M., Minamiyama, M., Doi, H., Matsumoto, S., Kondo, N., Miyazaki, Y., Iida, M., Tohnai, G., Sobue, G., 2013. Genistein, a natural product derived from soybeans, ameliorates polyglutamine-mediated motor neuron disease. J Neurochem 126, 122-30. Cerca con Google

189. Querin, G., D'Ascenzo, C., Peterle, E., Ermani, M., Bello, L., Melacini, P., Morandi, L., Mazzini, L., Silani, V., Raimondi, M., Mandrioli, J., Romito, S., Angelini, C., Pegoraro, E., Sorarù, G., 2013. Pilot trial of clenbuterol in spinal and bulbar muscular atrophy. Neurology 80, 2095-8. Cerca con Google

190. Quigley, C.A., De Bellis, A., Marschke, K.B., el-Awady, M.K., Wilson, E.M,. French, F.S., 1995. Androgen receptor defects: historical, clinical, and molecular perspectives. Endocr Rev 16, 271-321. Cerca con Google

191. Ranganathan, S., Harmison, G.G., Meyertholen, K., Pennuto, M., Burnett, B.G., Fischbeck, K.H., 2009. Mitochondrial abnormalities in spinal and bulbar muscular atrophy. Human Molecular Genetics 18, 27–42. Cerca con Google

192. Rehfeldt, C., Mantilla, C.B., Sieck, G.C., Hikida, R.S., Booth, F.W., Kadi, F., Bodine, S.C., Lowe, D.A., 2007. Satellite cell addition is/is not obligatory for skeletal muscle hypertrophy. J Appl Physiol 103, 1104–1106. Cerca con Google

193. Ren, M., Phoon, C.K., Schlame, M., 2014. Metabolism and function of mitochondrial cardiolipin. Prog Lipid Res 55, 1-16. Cerca con Google

194. Rhodes, L.E., Freeman, B.K., Auh, S., Kokkinis, A.D., La Pean, A., Chen, C., Lehky, T.J., Shrader, J.A., Levy, E.W., Harris-Love, M., Di Prospero, N.A., Fischbeck, K.H., 2009. Clinical features of spinal and bulbar muscular atrophy. Brain 132, 3242–3251. Cerca con Google

195. Rietveld, A.G., Killian, J.A., Dowhan, W., de Kruijff, B., 1993. Polymorphic regulation of membrane phospholipid composition in Escherichia coli. J Biol Chem. 268, 12427-33. Cerca con Google

196. Rinaldi, C., Bott, L.C., Chen, K.L., Harmison, G.G., Katsuno, M., Sobue, G., Pennuto, M., Fischbeck, K.H., 2012. Insulinlike growth factor (IGF)-1 administration ameliorates disease manifestations in a mouse model of spinal and bulbar muscular atrophy. Mol Med 18, 1261-8. Cerca con Google

197. Rocchi, C., Greco, V., Urbani, A., Di Giorgio, A., Priori, M., Massa, R., Bernardi, G., Marfia, G.A., 2011. Subclinical autonomic dysfunction in spinobulbar muscular atrophy (Kennedy disease). Muscle and Nerve 44, 737–740. Cerca con Google

198. Rocchi, A., Pennuto, M., 2013. New routes to therapy for spinal and bulbar muscular atrophy. J Mol Neurosci 50, 514-23. Cerca con Google

199. Romanello, V., Sandri, M., 2013. Mitochondrial biogenesis and fragmentation as regulators of protein degradation in striated muscles. J Mol Cell Cardiol 55, 64-72. Cerca con Google

200. Rusmini, P., Simonini, F., Crippa, V., Bolzoni, E., Onesto, E., Cagnin, M., Sau, D., Ferri, N., Poletti, A., 2011. 17-AAG increases autophagic removal of mutant androgen receptor in spinal and bulbar muscular atrophy. Neurobiology of Disease 41, 83–95. Cerca con Google

201. Rusmini, P., Sau, D., Crippa, V., Palazzolo, I., Simonini, F., Onesto, E., Martini, L., Poletti, A., 2007. Aggregation and proteasome: the case of elongated polyglutamine aggregation in spinal and bulbar muscular atrophy. Neurobiol Aging 28, 1099-111. Cerca con Google

202. Rusmini, P., Bolzoni, E., Crippa, V., Onesto, E., Sau, D., Galbiati, M., Piccolella, M., Poletti, A., 2010. Proteasomal and autophagic degradative activities in spinal and bulbar muscular atrophy. Neurobiol Dis 40, 361-9. Cerca con Google

203. Sakuma, K., Yamaguchi, A., 2010. The functional role of calcineu¬rin in hypertrophy, regeneration, and disorders of skeletal muscle. J Biomed Biotechnol 721219. Cerca con Google

204. Sandri, M., Coletto, L., Grumati, P., Bonaldo, P., 2013. Misregulation of autophagy and protein degradation systems in myopathies and muscular dystrophies. J Cell Sci 126, 5325-33. Cerca con Google

205. Sandri, M., 2008. Signaling in Muscle Atrophy and Hypertrophy. PHYSIOLOGY 23, 160–170. Cerca con Google

206. Sartorelli, V., Fulco, M., 2004. Molecular and cellular determinants of skeletal muscle atrophy and hypertrophy. Sci STKE 2004: re11. Cerca con Google

207. Scarpulla, R.C., Vega, R.B., Kelly, D.P., 2012. Transcriptional integration of mitochondrial biogenesis. Trends Endocrinol Metab 23, 459-66. Cerca con Google

208. Scarpulla, R.C., 2008. Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiol Rev 88, 611-38. Cerca con Google

209. Schiaffin, S., Bormioli, S.P., Aloisi, M., 1976. The fate of newly formed satellite cells during compensatory muscle hypertrophy. Virchows Arch B Cell Pathol 21, 113–118. Cerca con Google

210. Schmidt, B.J., Greenberg, C.R., Allingham-Hawkins, D.J., Spriggs, E.L., 2002. Expression of X-linked bulbospinal muscular atrophy (Kennedy disease) in two homozygous women. Neurology 59, 770–772. Cerca con Google

211. Schoenmakers, E., Verrijdt, G., Peeters, B., Verhoeven, G., Rombauts, W., Claessens, F., 2000. Differences in DNA binding characteristics of the androgen and glucocorticoid receptors can determine hormone-specific responses. Biol Chem 275, 12290-7. Cerca con Google

212. Scuderi, S., La Cognata, V., Drago, F., Cavallaro, S., D'Agata, V., 2014. Alternative splicing generates different parkin protein isoforms: evidences in human, rat, and mouse brain. BioMed research international 2014:690796. Cerca con Google

213. Settembre, C., Ballabio, A., 2011. TFEB regulates autophagy: an integrated coordination of cellular degradation and recycling processes. Autophagy 7, 1379-81. Cerca con Google

214. Settembre, C., Di Malta, C., Polito, V.A., Garcia Arencibia, M., Vetrini, F., Erdin, S., Erdin, S.U., Huynh ,T., Medina, D., Colella, P., Sardiello, M., Rubinsztein, D.C., Ballabio, A., 2011. TFEB links autophagy to lysosomal biogenesis. Science 332, 1429-33. Cerca con Google

215. Simeoni, S., Mancini, M.A., Stenoien, D.L., Marcelli, M., Weigel, N.L., Zanisi, M., Martini, L., Poletti, A., 2000. Motoneuronal cell death is not correlated with aggregate formation of androgen receptors containing an elongated polyglutamine tract. Human Molecular Genetics 9, 133–144. Cerca con Google

216. Sinclair, R., Greenland, K.J., Egmond, S., Hoedemaker, C., Chapman, A., Zajac, J.D., 2007. Men with Kennedy disease have a reduced risk of androgenetic alopecia. British Journal of Dermatology 157, 290–294. Cerca con Google

217. Sinha-Hikim, I., Taylor, W.E., Gonzalez-Cadavid, N.F., Zheng, W., Bhasin, S. 2004. Androgen receptor in human skeletal muscle and cultured muscle satellite cells: up-regulation by androgen treatment. J Clin Endocrinol Metab 89, 5245–5255. Cerca con Google

218. Sobue, G., Hashizume, Y., Mukai, E., Hirayama, M., Mitsuma, T., Takahashi, A., 1989. X-linked recessive bulbospinal neuronopathy. A clinicopathological study. Brain 112 (Pt 1), 209–232. Cerca con Google

219. Sopher, B.L., Thomas Jr., P.S., LaFevre-Bernt, M.A., Holm, I.E., Wilke, S.A., Ware, C.B., Jin, L.W., Libby, R.T., Ellerby, L.M., La Spada, A.R., 2004. Androgen receptor YAC transgenic mice recapitulate SBMA motor neuronopathy and implicate VEGF164 in the motor neuron degeneration. Neuron 41, 687–699. Cerca con Google

220. Soraru, G., D’Ascenzo, C., Polo, A., Palmieri, A., Baggio, L., Vergani, L., Gellera, C., Moretto, G., Pegoraro, E., Angelini, C., 2008. Spinal and bulbar muscular atrophy: skeletal muscle pathology in male patients and heterozygous females. Journal of the Neurological Sciences 264, 100–105. Cerca con Google

221. Sorenson, E.J., Klein, C.J., 2007. Elevated creatine kinase and transaminases in asymptomatic SBMA. Amyotroph Lateral Scler 8, 62-4. Cerca con Google

222. Spencer, T.E., Jenster, G., Burcin, M.M., Allis, C.D., Zhou, J., Mizzen, C.A., McKenna, N.J., Onate, S.A., Tsai, S.Y., Tsai, M.J., O'Malley, B.W., 1997. Steroid receptor coactivator-1 is a histone acetyltransferase. Nature 389, 194-8. Cerca con Google

223. Sperfeld, A.D., Karitzky, J., Brummer, D., Schreiber, H., Haussler, J., Ludolph, A.C., Hanemann, C.O., 2002. X-linked bulbospinal neuronopathy: Kennedy disease. Archives of Neurology 59, 1921–1926. Cerca con Google

224. Sperfeld, A.D., Hanemann, C.O., Ludolph, A.C., Kassubek, J., 2005. Laryngospasm: an underdiagnosed symptom of X-linked spinobulbar muscular atrophy. Neurology 64, 753–754. Cerca con Google

225. Spinazzi, M., Casarin, A., Pertegato, V., Salviati, L., Angelini, C., 2012. Assessment of mitochondrial respiratory chain enzymatic activities on tissues and cultured cells. Nat protoc 7, 1235-46. Cerca con Google

226. Stenoien, D.L., Cummings, C.J., Adams, H.P., Mancini, M.G., Patel, K., DeMartino, G.N., Marcelli, M., Weigel, N.L., Mancini, M.A., 1999. Polyglutamine-expanded androgen receptors form aggregates that sequester heat shock proteins, proteasome components and SRC-1, and are suppressed by the HDJ-2 chaperone. Hum Mol Genet 8, 731-41. Cerca con Google

227. Su, S., Jou, S., Cheng, W., Lin, T., Li, J., Huang, C., Lee, Y., Soong, B., Liu, C., 2010. Mitochondrial DNA damage in spinal and bulbar muscular atrophy patients and carriers. Clin Chim Acta 411, 626-30. Cerca con Google

228. Sugars, K.L., Rubinsztein, D.C., 2003. Transcriptional abnormalities in Huntington disease. Trends Genet 19, 233-8. Cerca con Google

229. Suzuki, E., Zhao, Y., Ito, S., Sawatsubashi, S., Murata, T., Furutani, T., Shirode, Y., Yamagata, K., Tanabe, M., Kimura, S., Ueda, T., Fujiyama, S., Lim, J., Matsukawa, H., Kouzmenko, A.P., Aigaki, T., Tabata, T., Takeyama, K., Kato, S., 2009. Aberrant E2F activation by polyglutamine expansion of androgen receptor in SBMA neurotoxicity. Proceedings of the National Academy of Sciences of the United States of America 106, 3818–3822. Cerca con Google

230. Suzuki, K., Katsuno, M., Banno, H., Takeuchi, Y., Atsuta, N., Ito, M., Watanabe, H., Yamashita, F., Hori, N., Nakamura, T., Hirayama, M., Tanaka, F., Sobue, G., 2008. CAG repeat size correlates to electrophysiological motor and sensory phenotypes in SBMA. Brain 131, 229–239. Cerca con Google

231. Takeyama, K., Ito, S., Yamamoto, A., Tanimoto, H., Furutani, T., Kanuka, H., Miura, M., Tabata, T., Kato, S., 2002. Androgen-dependent neurodegeneration by polyglutamine- expanded human androgen receptor in Drosophila. Neuron 35, 855–864. Cerca con Google

232. Tanaka, F., Doyu, M., Ito, Y., Matsumoto, M., Mitsuma, T., Abe, K., Aoki, M., Itoyama, Y., Fischbeck, K.H., Sobue, G., 1996. Founder effect in spinal and bulbar muscular atrophy (SBMA). Human Molecular Genetics 5, 1253–1257. Cerca con Google

233. Tanaka, F., Reeves, M.F., Ito, Y., Matsumoto, M., Li, M., Miwa, S., Inukai, A., Yamamoto, M., Doyu, M., Yoshida, M., Hashizume, Y., Terao, S., Mitsuma, T., Sobue, G., 1999. Tissue-specific somatic mosaicism in spinal and bulbar muscular atrophy is dependent on CAG-repeat length and androgen receptor–gene expression level. American Journal of Human Genetics 65, 966–973. Cerca con Google

234. Tassa, A., Roux, M.P., Attaix, D., Bechet, D.M., 2003. Class III phosphoinositide 3-kinase--Beclin1 complex mediates the amino acid-dependent regulation of autophagy in C2C12 myotubes. Biochem J 376, 577-86. Cerca con Google

235. Tatsuta, T., Scharwey, M., Langer, T., 2014. Mitochondrial lipid trafficking. Trends Cell Biol 24, 44-52. Cerca con Google

236. Taylor, J.P., Tanaka, F., Robitschek, J., Sandoval, C.M., Taye, A., Markovic-Plese, S., Fischbeck, K.H., 2003. Aggresomes protect cells by enhancing the degradation oftoxic polyglutamine-containing protein. Human Molecular Genetics 12, 749–757. Cerca con Google

237. Thomas, P.S. Jr, Fraley, G.S., Damian, V., Woodke, L.B., Zapata, F., Sopher, B.L., Plymate, S.R., La Spada, A.R.., 2006. Loss of endogenous androgen receptor protein accelerates motor neuron degeneration and accentuates androgen insensitivity in a mouse model of X-linked spinal and bulbar muscular atrophy. Hum Mol Genet 15, 2225-38. Cerca con Google

238. Tilley, W.D., Wilson, C.M., Marcelli, M., McPhaul, M.J., 1990. Androgen receptor gene expression in human prostate carcinoma cell lines. Cancer Res 50, 5382-6. Cerca con Google

239. Todd, T.W., Kokubu, H., Miranda, H.C., Cortes, C.J., La Spada, A.R., Lim, J.., 2015. Nemo-like kinase is a novel regulator of spinal and bulbar muscular atrophy. Elife 4, e08493. Cerca con Google

240. Tohnai, G., Adachi, H., Katsuno, M., Doi, H., Matsumoto, S., Kondo, N., Miyazaki, Y., Iida, M., Nakatsuji, H., Qiang, Q., Ding, Y., Watanabe, H., Yamamoto, M., Ohtsuka, K., Sobue, G., 2014. Paeoniflorin eliminates a mutant AR via NF-YA-dependent proteolysis in spinal and bulbar muscular atrophy. Hum Mol Genet 23, 3552-65. Cerca con Google

241. Tomik, B., Partyka, D., Sułek, A., Kurek-Gryz, E.A., Banach, M., Ostrowska, M., Zaremba, J., Figlewicz, D.A., Szczudlik, A., 2006. A phenotypic-genetic study of a group of Polish patients with spinal and bulbar muscular atrophy. Amyotroph Lateral Scler. 7, 72-9. Cerca con Google

242. Tokui, K., Adachi, H., Waza, M., Katsuno, M., Minamiyama, M., Doi, H., Tanaka, K., Hamazaki, J., Murata, S., Tanaka, F., Sobue, G., 2009. 17-DMAG ameliorates polyglutamine-mediated motor neuron degeneration through well-preserved proteasome function in an SBMA model mouse. Human Molecular Genetics 18, 898–910. Cerca con Google

243. Trapman, J., Brinkmann, A.O., 1996. The androgen receptor in prostate cancer. Pathol Res Pract 192,752-60. Cerca con Google

244. Trotter, P.J., Pedretti, J., Voelker, D.R., 1993. Phosphatidylserine decarboxylase from Saccharomyces cerevisiae. Isolation of mutants, cloning of the gene, and creation of a null allele. J Biol Chem 268, 21416-24. Cerca con Google

245. Trushina, E., McMurray, C.T., 2007. Oxidative stress and mitochondrial dysfunction in neurodegenerative diseases. Neuroscience 145, 1233-48. Cerca con Google

246. Tyagi, R.K., Lavrovsky, Y., Ahn, S.C., Song, C.S., Chatterjee, B., Roy, A.K., 2000. Dynamics of intracellular movement and nucleocytoplasmic recycling of the ligand-activated androgen receptor in living cells. Mol Endocrinol 14, 1162-74. Cerca con Google

247. Umesono, K., Evans, R.M., 1989. Determinants of target gene specificity for steroid/thyroid hormone receptors. Cell 57, 1139-46. Cerca con Google

248. Verhovshek, T., Cai, Y., Osborne, M.C., Sengelaub, D.R., 2010. Androgen regulates brain-derived neurotrophic factor in spinal motoneurons and their target musculature. Endocrinology 151, 253–261. Cerca con Google

249. von Mikecz, A., 2009. PolyQ fibrillation in the cell nucleus: who's bad? Trends Cell Biol 19, 685-91. Cerca con Google

250. Walcott, J.L., Merry, D.E., 2002. Ligand promotes intranuclear inclusions in a novel cell model of spinal and bulbar muscular atrophy. J Biol Chem 27, 50855-9. Cerca con Google

251. Wang, D.W., Peng, Z.J., Ren, G.F., Wang, G.X., 2015. The different roles of selective autophagic protein degradation in mammalian cells. Oncotarget 6, 37098-116. Cerca con Google

252. Wang, G., Jones, S.J., Marra, M.A., Sadar, M.D., 2006. Identification of genes targeted by the androgen and PKA signaling pathways in prostate cancer cells. Oncogene 25, 7311-23. Cerca con Google

253. Warnecke, T., Oelenberg, S., Teismann, I., Suntrup, S., Hamacher, C., Young, P., Ringelstein, EB., Dziewas, R., 2009. Dysphagia in X-linked bulbospinal muscular atrophy (Kennedy disease). Neuromuscul Disord 19, 704-8. Cerca con Google

254. Warner, C.L., Griffin, J.E., Wilson, J.D., Jacobs, L.D., Murray, K.R., Fischbeck, K.H., Dickoff, D., Griggs, R.C., 1992. X-linked spinomuscular atrophy: a kindred with associated abnormal androgen receptor binding. Neurology 42, 2181-4. Cerca con Google

255. Watson, N.V., Freeman, L.M., Breedlove, S.M., 2001. Neuronal size in the spinal nucleus of the bulbocavernosus: direct modulation by androgen in rats with mosaic androgen insensitivity. J Neurosci 21, 1062-6. Cerca con Google

256. Waza, M., Adachi, H., Katsuno, M., Minamiyama, M., Sang, C., Tanaka, F., Inukai, A., Doyu, M., Sobue, G., 2005. 17-AAG, an Hsp90 inhibitor, ameliorates polyglutamine-mediated motor neuron degeneration. Nature Medicine 11, 1088–1095. Cerca con Google

257. Wenz, T., Hielscher, R., Hellwig, P., Schägger, H., Richers, H., Hunte, C., 2009. Role of phospholipids in respiratory cytochrome bc(1) complex catalysis and supercomplex formation, Biochim. Biophys. Acta 1787, 609–616. Cerca con Google

258. Wenz, T., 2013. Regulation of mitochondrial biogenesis and PGC-1α under cellular stress. Mitochondrion 13, 134-42. Cerca con Google

259. Wicks, K.L., Hood, D.A., 1991. Mitochondrial adaptations in denervated muscle: relationship to muscle performance. Am J Physiol 260, C841-50. Cerca con Google

260. Xie, Z., Klionsky, D.J., 2007. Autophagosome formation: core machinery and adaptations. Nat Cell Biol 9, 1102-9. Cerca con Google

261. Yamamoto, T., Yokota, K., Amao, R., Maeno, T., Haga, N., Taguri, M., Ohtsu, H., Ichikawa, Y., Goto, J., Tsuji, S., 2013. An open trial of long-term testosterone suppression in spinal and bulbar muscular atrophy. Muscle Nerve 47, 816-22. Cerca con Google

262. Yang, Z., Chang, Y.J., Yu, I.C., Yeh, S., Wu, C.C., Miyamoto, H., Merry, D.E., Sobue, G., Chen, L.M., Chang, S.S., Chang, C., 2007. ASC-J9 ameliorates spinal and bulbar muscular atrophy phenotype via degradation of androgen receptor. Nature Medicine 13, 348–353. Cerca con Google

263. Youle, R.J., Narendra, D.P., 2011. Mechanisms of mitophagy. Nat Rev Mol Cell Biol 12, 9-14. Cerca con Google

264. cc, J.E., Garden, G.A., Martinez, R.A., Tanaka, F., Sandoval, C.M., Smith, A.C., Sopher, B.L., Lin, A., Fischbeck, K.H., Ellerby, L.M., Morrison, R.S., Taylor, J.P., La Spada, A.R., 2009. Polyglutamine-expanded androgen receptor truncation fragments activate a Bax-dependent apoptotic cascade mediated by DP5/Hrk. Journal of Neuroscience 29, 1987–1997. Cerca con Google

265. Yu, Z., Dadgar, N., Albertelli, M., Gruis, K., Jordan, C., Robins, D.M., Lieberman, A.P., 2006. Androgen-dependent pathology demonstrates myopathic contribution to the Kennedy disease phenotype in a mouse knock-in model. Journal of Clinical Investigation 116, 2663–2672. Cerca con Google

266. Yu, Z., Wang, A.M., Adachi, H., Katsuno, M., Sobue, G., Yue, Z., Robins, D.M., Lieberman, A.P., 2011. Macroautophagy is regulated by the UPR-mediator CHOP and accentuates the phenotype of SBMA mice. PLoS Genetics 7, e1002321. Cerca con Google

267. Yu, W.H., 1989. Administration of testosterone attenuates neuronal loss following axotomy in the brain-stem motor nuclei of female rats. J Neurosci 9, 3908-14. Cerca con Google

268. Zhang, J., Ney, P.A., 2009. Autophagy-dependent and -independent mechanisms of mitochondrial clearance during reticulocyte maturation. Autophagy 5, 1064-5. Cerca con Google

269. Zeng, X., Overmeyer, J.H., Maltese, W.A., 2006. Functional specificity of the mammalian Beclin-Vps34 PI 3-kinase complex in macroautophagy versus endocytosis and lysosomal enzyme trafficking. J Cell Sci 119, 259-70. Cerca con Google

270. Zhong, Q., Gohil, V.M., Ma, L., Greenberg, M.L., 2004. Absence of cardiolipin results in temperature sensitivity, respiratory defects, and mitochondrial DNA instability independent of pet56. J Biol Chem 279, 32294-300. Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record