Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Bolzonello, Luca (2016) Ultrafast relaxation dynamics of multichromophoric systems through advanced optical spectroscopies. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
36Mb

Abstract (inglese)

The light-matter interaction is one of the most interesting phenomena occurring in Nature. The interaction with light provides energy to the molecules, which is then released in the process of relaxation. This thesis deals with the investigation of relaxation mechanisms of molecules from a semi-quantum point of view. The use of quantum mechanics models is necessary to understand the operations and the results of advanced optical spectroscopies, such as 2D electronic spectroscopy, used precisely for the study of excitation and relaxation of molecules. The study and characterization of relaxation processes is of crucial importance to devise strategies to exploit and gain energy from them. Relaxation, as widely known, is strongly influenced by the surroundings and by the vibrations of the molecules. Therefore, we compared the relaxation dynamics of two systems with very different couplings with the environment. The first are aggregates of porphyrins that have weak coupling with the environment. However, it will be shown that the excitation is coupled with low frequency vibrations. The second is a quadrupolar system studied in its monomeric and dimeric form in different solvents. Surprisingly, a strong coupling between the dye transitions and a vibration of the solvent molecules was found. If confirmed, this effect could lead to new strategies for engineering light harvesting systems.

Abstract (italiano)

L’interazione luce-materia è sicuramente uno dei più interessanti fenomeni in Natura. L’interazione con la luce fornisce energia alle molecole, che viene poi rilasciata nel processo di rilassamento. Questa tesi tratta meccanismi di rilassamento di molecole da un punto di vista semi-quantomeccanico. Questa trattazione è necessaria per comprendere il funzionamento e i risultati di spettroscopie ottiche avanzate, come la spettroscopia ottica 2D, utilizzate appunto per lo studio dell’eccitazione e del rilassamento delle molecole. Lo studio e la caratterizzazione di processi di rilassamento è di fondamentale importanza per ideare strategie per sfruttare il rilassamento al fine di ricavare parte dell’energia. Rilassamento che, come è noto, è fortemente influenzato dall'intorno e dalle vibrazioni delle molecole. Si sono quindi confrontate le dinamiche di rilassamento di due sistemi caratterizzati da accoppiamenti con l’intorno molto diversi. Il primo sistema considerato sono aggregati di porfirine che hanno uno scarso accoppiamento con l’intorno. Tuttavia si dimostrerà invece che tali sistemi sono caratterizzati da un forte accoppiamento con vibrazioni a bassa frequenza. Il secondo invece è un sistema quadrupolare del quale si studiano sia il monomero che il dimero in solventi diversi. Sorprendentemente si è trovato un forte accoppiamento delle molecole con una vibrazione del solvente, che se si dimostrerà vera, potrebbe aprire a nuove strategie per l’ingegnerizzazione di sistemi di light harvesting.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Collini, Elisabetta
Dottorato (corsi e scuole):Ciclo 28 > Scuole 28 > SCIENZE MOLECOLARI > SCIENZE CHIMICHE
Data di deposito della tesi:29 Gennaio 2016
Anno di Pubblicazione:29 Gennaio 2016
Parole chiave (italiano / inglese):2DES, 2DPE, vibronic coupling, quantum coherences
Settori scientifico-disciplinari MIUR:Area 03 - Scienze chimiche > CHIM/02 Chimica fisica
Struttura di riferimento:Dipartimenti > Dipartimento di Scienze Chimiche
Codice ID:9370
Depositato il:24 Ott 2016 14:47
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] R. A. Marcus, “Chemical and Electrochemical Electron-Transfer Theory,” Nov. 2003. Cerca con Google

[2] R. A. Marcus, “On the Theory of Oxidation-Reduction Reactions Involving Electron Transfer. I,” J. Chem. Phys., vol. 24, no. 5, p. 966, Dec. 1956. Cerca con Google

[3] T. Förster, “Intermolecular energy transference and fluorescence,” Ann Phys., vol. 2, pp. 55–75, 1948. Cerca con Google

[4] D. L. Dexter, “A Theory of Sensitized Luminescence in Solids,” J. Chem. Phys., vol. 21, no. 5, p. 836, Dec. 1953. Cerca con Google

[5] “Wiley: Molecular Excitation Dynamics and Relaxation: Quantum Theory and Spectroscopy - Leonas Valkunas, Darius Abramavicius, Tomás Mancal.” [Online]. Available: http://eu.wiley.com/WileyCDA/WileyTitle/productCd-3527410082,subjectCd-CH15.html. [Accessed: 28-Jan-2016]. Vai! Cerca con Google

[6] a W. Chin, S. F. Huelga, and M. B. Plenio, “Coherence and decoherence in biological systems: principles of noise-assisted transport and the origin of long-lived coherences.,” Philos. Trans. A. Math. Phys. Eng. Sci., vol. 370, no. 1972, pp. 3638–57, Aug. 2012. Cerca con Google

[7] P. Drude, “Zur Elektronentheorie der Metalle,” Ann. Phys., vol. 306, no. 3, pp. 566–613, 1900. Cerca con Google

[8] E. Schrödinger, “An Undulatory Theory of the Mechanics of Atoms and Molecules,” Phys. Rev., vol. 28, no. 6, pp. 1049–1070, Dec. 1926. Cerca con Google

[9] P. Hamm, “Principles of Nonlinear Optical Spectroscopy : A Practical Approach or : Mukamel for Dummies,” 2005. Cerca con Google

[10] “Mukamel S. Principles of nonlinear optical spectroscopy (Oxford, 1996)(T)(549s).pdf.” . Cerca con Google

[11] W. W. Parson, Modern Optical Spectroscopy: With Examples from Biophysics. 2009. Cerca con Google

[12] M. Blume, “Stochastic theory of line shape: Generalization of the Kubo-Anderson model,” Phys. Rev., vol. 174, no. 2, pp. 351–358, 1968. Cerca con Google

[13] R. Kubo, Advances in Chemical Physics, vol. 15. Hoboken, NJ, USA: John Wiley & Sons, Inc., 1969. Cerca con Google

[14] T. Azumi and K. Matsuzaki, “What does the term “vibronic coupling’ mean?,” Photochem. Photobiol., vol. 25, no. 4, pp. 315–326, 1977. Cerca con Google

[15] “Vibronic Coupling: The Interaction Between the Electronic and Nuclear Motions: Gad Fischer: 9780122572401: Books - Amazon.ca.” [Online]. Available: http://www.amazon.ca/Vibronic-Coupling-Interaction-Between-Electronic/dp/0122572408. [Accessed: 26-Jan-2016]. Vai! Cerca con Google

[16] A. Tokmakoff, “Time-Dependent Quantum Mechanics and Spectroscopy,” 2014. Cerca con Google

[17] A. Nemeth, F. Milota, T. Mancal, T. Pullerits, J. Sperling, J. Hauer, H. F. Kauffmann, and N. Christensson, “Double-quantum two-dimensional electronic spectroscopy of a three-level system: Experiments and simulations.,” J. Chem. Phys., vol. 133, no. 9, p. 094505, Sep. 2010. Cerca con Google

[18] D. B. Turner, R. Dinshaw, K.-K. Lee, M. S. Belsley, K. E. Wilk, P. M. G. Curmi, and G. D. Scholes, “Quantitative investigations of quantum coherence for a light-harvesting protein at conditions simulating photosynthesis.,” Phys. Chem. Chem. Phys., vol. 14, no. 14, pp. 4857–74, Apr. 2012. Cerca con Google

[19] M. Rey, A. W. Chin, S. F. Huelga, and M. B. Plenio, “Exploiting Structured Environments for E ffi cient Energy Transfer: The Phonon Antenna Mechanism,” 2013. Cerca con Google

[20] L. Rosenfeld, “Quantum-mechanical theory of the natural optical activity of liquids and gases,” Zeitschrift fuer Phys., vol. 52, p. 161, 1928. Cerca con Google

[21] B. Nordén, A. Rodger, and T. Dafforn, “Linear Dichroism and Circular Dichroism.” Cerca con Google

[22] W. Becker, “The bh TCSPC Handbook,” Scanning, no. 800, pp. 1–566, 2010. Cerca con Google

[23] W. Becker and A. Bergmann, “Timing stability of TCSPC experiments,” in Optics East 2006, 2006, pp. 637209–637209–7. Cerca con Google

[24] D. Phillips, R. C. Drake, D. V O’Connor, and R. L. Christensen, “Time Correlated Single-Photon Counting (Tcspc) Using Laser Excitation,” Instrum. Sci. Technol., vol. 14, no. 3, pp. 267–292, 1985. Cerca con Google

[25] W. Becker, A. Bergmann, and C. Biskup, “Multispectral fluorescence lifetime imaging by TCSPC,” in Microscopy Research and Technique, 2007, vol. 70, no. 5, pp. 403–409. Cerca con Google

[26] I. H. M. van Stokkum, D. S. Larsen, and R. van Grondelle, “Global and target analysis of time-resolved spectra.,” Biochim. Biophys. Acta, vol. 1657, no. 2–3, pp. 82–104, Jul. 2004. Cerca con Google

[27] A. L. Dobryakov, S. A. Kovalenko, A. Weigel, J. L. Pérez-Lustres, J. Lange, A. Müller, and N. P. Ernsting, “Femtosecond pump/supercontinuum-probe spectroscopy: Optimized setup and signal analysis for single-shot spectral referencing,” Rev. Sci. Instrum., vol. 81, no. 11, p. 113106, 2010. Cerca con Google

[28] C. Manzoni, D. Polli, and G. Cerullo, “Two-color pump-probe system broadly tunable over the visible and the near infrared with sub-30 fs temporal resolution,” Rev. Sci. Instrum., vol. 77, no. 2, p. 023103, 2006. Cerca con Google

[29] C. Bonetti, M. T. a Alexandre, I. H. M. van Stokkum, R. G. Hiller, M. L. Groot, R. van Grondelle, and J. T. M. Kennis, “Identification of excited-state energy transfer and relaxation pathways in the peridinin-chlorophyll complex: an ultrafast mid-infrared study.,” Phys. Chem. Chem. Phys., vol. 12, no. 32, pp. 9256–66, Aug. 2010. Cerca con Google

[30] C. Niezborala and F. Hache, “Measuring the dynamics of circular dichroism in a pump-probe experiment with a Babinet-Soleil compensator: erratum,” J. Opt. Soc. Am. B, vol. 24, no. 4, p. 1012, 2007. Cerca con Google

[31] “libra manual on Coherent inc.” [Online]. Available: http://lasers.coherent.com/lasers/libra-manual. [Accessed: 28-Jan-2016]. Vai! Cerca con Google

[32] P. F. Tekavec, J. A. Myers, K. L. M. Lewis, F. D. Fuller, and J. P. Ogilvie, “Effects of chirp on two-dimensional Fourier transform electronic spectra.,” Opt. Express, vol. 18, no. 11, pp. 11015–24, May 2010. Cerca con Google

[33] P. Tournois, “Acousto-optic programmable dispersive filter for adaptive compensation of group delay time dispersion in laser systems,” Opt. Commun., vol. 140, no. 4–6, pp. 245–249, Aug. 1997. Cerca con Google

[34] R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum., vol. 68, no. 9, p. 3277, Sep. 1997. Cerca con Google

[35] A. Nemeth, J. Sperling, J. Hauer, H. F. Kauffmann, and F. Milota, “Compact phase-stable design for single- and electronic spectroscopy,” vol. 34, no. 21, pp. 3301–3303, 2009. Cerca con Google

[36] T. Brixner, T. Mancal, I. V Stiopkin, and G. R. Fleming, “Phase-stabilized two-dimensional electronic spectroscopy.,” J. Chem. Phys., vol. 121, no. 9, pp. 4221–36, Sep. 2004. Cerca con Google

[37] R. Augulis and D. Zigmantas, “Two-dimensional electronic spectroscopy with double modulation lock-in detection: enhancement of sensitivity and noise resistance.,” Opt. Express, vol. 19, no. 14, pp. 13126–13133, 2011. Cerca con Google

[38] R. Augulis and D. Zigmantas, “Two-dimensional electronic spectroscopy with double modulation lock-in detection: enhancement of sensitivity and noise resistance.,” Opt. Express, vol. 19, no. 14, pp. 13126–33, Jul. 2011. Cerca con Google

[39] V. P. Singh, A. F. Fidler, B. S. Rolczynski, and G. S. Engel, “Independent phasing of rephasing and non-rephasing 2D electronic spectra.,” J. Chem. Phys., vol. 139, no. 8, p. 084201, Aug. 2013. Cerca con Google

[40] F. Fassioli, A. Olaya-Castro, and G. D. Scholes, “Coherent Energy Transfer under Incoherent Light Conditions.,” J. Phys. Chem. Lett., vol. 3, no. 21, pp. 3136–42, Nov. 2012. Cerca con Google

[41] F. V. A. Camargo, H. L. Anderson, S. R. Meech, and I. A. Heisler, “Time-Resolved Twisting Dynamics in a Porphyrin Dimer Characterized by Two-Dimensional Electronic Spectroscopy,” J. Phys. Chem. B, p. acs.jpcb.5b09964, 2015. Cerca con Google

[42] E. E. Ostroumov, R. M. Mulvaney, J. M. Anna, R. J. Cogdell, and G. D. Scholes, “Energy transfer pathways in light-harvesting complexes of purple bacteria as revealed by global kinetic analysis of two-dimensional transient spectra.,” J. Phys. Chem. B, vol. 117, no. 38, pp. 11349–62, Sep. 2013. Cerca con Google

[43] K. M. Mullen and I. H. M. van Stokkum, “The variable projection algorithm in time-resolved spectroscopy, microscopy and mass spectrometry applications,” Numer. Algorithms, vol. 51, no. 3, pp. 319–340, Sep. 2008. Cerca con Google

[44] S. T. Cundiff, “Optical three dimensional coherent spectroscopy.,” Phys. Chem. Chem. Phys., vol. 16, no. 18, pp. 8193–200, 2014. Cerca con Google

[45] F. Milota, V. I. Prokhorenko, T. Mancal, H. von Berlepsch, O. Bixner, H. F. Kauffmann, and J. Hauer, “Vibronic and vibrational coherences in two-dimensional electronic spectra of supramolecular J-aggregates.,” J. Phys. Chem. A, vol. 117, no. 29, pp. 6007–14, 2013. Cerca con Google

[46] A. Volpato and E. Collini, “Time-frequency methods for coherent spectroscopy.,” Opt. Express, vol. 23, no. 15, pp. 20040–50, Jul. 2015. Cerca con Google

[47] J. Prior, E. Castro, A. W. Chin, J. Almeida, S. F. Huelga, and M. B. Plenio, “Wavelet analysis of molecular dynamics: efficient extraction of time-frequency information in ultrafast optical processes.,” J. Chem. Phys., vol. 139, no. 22, p. 224103, Dec. 2013. Cerca con Google

[48] E. E. Jelly, “No Title,” Nature, vol. 139, p. 631, 1937. Cerca con Google

[49] G. Scheibe, “No Title,” Angew. Chem., vol. 50, p. 212, 1937. Cerca con Google

[50] J. Franck and E. Teller, “Migration and Photochemical Action of Excitation Energy in Crystals,” J. Chem. Phys., vol. 6, no. 12, p. 861, Dec. 1938. Cerca con Google

[51] T. Kobayashi, J-Aggregates, vol. 2. 2012. Cerca con Google

[52] A. S. R. Koti and N. Periasamy, “Self-Assembly of Template-Directed J-Aggregates of Porphyrin,” Chem. Mater., vol. 15, no. 2, pp. 369–371, 2003. Cerca con Google

[53] S. . Ma, “Theoretical studies on the structural change in the N-protonated meso-tetrakis(p-sulfonatophenyl)porphyrin,” Chem. Phys. Lett., vol. 332, no. December, pp. 603–610, 2000. Cerca con Google

[54] T. Kobayashi, J-Aggregates. World scientific, 1996. Cerca con Google

[55] E. W. Knapp, “Lineshapes of molecular aggregates, exchange narrowing and intersite correlation,” Chem. Phys., vol. 85, no. 1, pp. 73–82, Mar. 1984. Cerca con Google

[56] M. A. Castriciano, A. Romeo, G. De Luca, V. Villari, L. M. Scolaro, and N. Micali, “Scaling the chirality in porphyrin J-nanoaggregates.,” J. Am. Chem. Soc., vol. 133, no. 4, pp. 765–7, Feb. 2011. Cerca con Google

[57] N. Micali, V. Villari, M. A. Castriciano, A. Romeo, and L. Monsù Scolaro, “From fractal to nanorod porphyrin J-aggregates. Concentration-induced tuning of the aggregate size.,” J. Phys. Chem. B, vol. 110, no. 16, pp. 8289–95, Apr. 2006. Cerca con Google

[58] M. A. Castriciano, A. Romeo, V. Villari, N. Micali, and L. M. Scolaro, “Structural Rearrangements in 5,10,15,20-Tetrakis(4-sulfonatophenyl)porphyrin J-Aggregates under Strongly Acidic Conditions,” J. Phys. Chem. B, vol. 107, no. 34, pp. 8765–8771, Aug. 2003. Cerca con Google

[59] T. K. Chandrashekar, H. Van Willigen, and M. H. Ebersole, “Optical and electron spin resonance study of cation and cation-crown ether induced dimerization of tetrakis(4-sulfonatophenyl)porphyrin,” J. Phys. Chem., vol. 88, no. 19, pp. 4326–4332, Sep. 1984. Cerca con Google

[60] G. Panitchayangkoon, D. Hayes, K. a Fransted, J. R. Caram, E. Harel, J. Wen, R. E. Blankenship, and G. S. Engel, “Long-lived quantum coherence in photosynthetic complexes at physiological temperature.,” Proc. Natl. Acad. Sci. U. S. A., vol. 107, no. 29, pp. 12766–12770, 2010. Cerca con Google

[61] H. E. Ungnade, “The Effect of Solvents on the Absorption Spectra of Aromatic Compounds,” J. Am. Chem. Soc., vol. 75, no. 2, pp. 432–434, 1953. Cerca con Google

[62] X. Liu, J. M. Cole, and K. S. Low, “Solvent effects on the uv-vis absorption and emission of optoelectronic coumarins: A Comparison of three empirical solvatochromic models,” J. Phys. Chem. C, vol. 117, no. 28, pp. 14731–14741, 2013. Cerca con Google

[63] M. Homocianu, “Solvent effects on the electronic absorption and fluorescence spectra,” J. Adv. Res. Phys., vol. 2, no. 1, p. 011105, 2011. Cerca con Google

[64] W. R. Ware, “Nanosecond Time-Resolved Emission Spectroscopy: Spectral Shifts due to Solvent-Excited Solute Relaxation,” J. Chem. Phys., vol. 54, no. 11, p. 4729, 1971. Cerca con Google

[65] E. Collini, L. Bolzonello, M. Zerbetto, C. Ferrante, N. Manfredi, and A. Abbotto, “Lifetime Shortening and Fast Energy-Tansfer Processes upon Dimerization of a A-π-D-π-A Molecule,” ChemPhysChem, vol. 15, no. 2, pp. 310–319, 2014. Cerca con Google

[66] C. Sissa, F. Terenziani, A. Painelli, A. Abbotto, L. Bellotto, C. Marinzi, E. Garbin, C. Ferrante, and R. Bozio, “Dimers of quadrupolar chromophores in solution: electrostatic interactions and optical spectra.,” J. Phys. Chem. B, vol. 114, no. 2, pp. 882–93, 2010. Cerca con Google

[67] R. Signorini, C. Ferrante, D. Pedron, M. Zerbetto, E. Cecchetto, M. Slaviero, I. Fortunati, E. Collini, R. Bozio, A. Abbotto, L. Beverina, and G. a Pagani, “Effective two-photon absorption cross section of heteroaromatic quadrupolar dyes: dependence on measurement technique and laser pulse characteristics.,” J. Phys. Chem. A, vol. 112, no. 18, pp. 4224–34, 2008. Cerca con Google

[68] R. Moca, S. R. Meech, and I. A. Heisler, “Two-Dimensional Electronic Spectroscopy of Chlorophyll a: Solvent Dependent Spectral Evolution,” J. Phys. Chem. B, vol. 119, no. 27, pp. 8623–8630, 2015. Cerca con Google

[69] S. Constantine, Y. Zhou, J. Morais, and L. D. Ziegler, “Dispersed optical heterodyne detected birefringence and dichroism of transparent liquids,” J. Phys. Chem. A, vol. 101, no. 30, pp. 5456–5462, 1997. Cerca con Google

[70] D. B. Turner, K. E. Wilk, P. M. G. Curmi, and G. D. Scholes, “Comparison of Electronic and Vibrational Coherence Measured by,” pp. 1904–1911, 2011. Cerca con Google

[71] V. Barone, M. Biczysko, and M. Borkowska-panek, “A Multifrequency Virtual Spectrometer for Complex Bio- Organic Systems : Vibronic and Environmental Effects on the UV / Vis Spectrum of Chlorophyll a,” pp. 3355–3364, 2014. Cerca con Google

[72] A. Tokmakoff, “Private communication.” . Cerca con Google

[73] S.-H. Shim and M. T. Zanni, “How to turn your pump-probe instrument into a multidimensional spectrometer: 2D IR and Vis spectroscopies via pulse shaping.,” Phys. Chem. Chem. Phys., vol. 11, no. 5, pp. 748–61, Feb. 2009. Cerca con Google

[74] J. A. Myers, K. L. Lewis, P. F. Tekavec, and J. P. Ogilvie, “Two-color two-dimensional Fourier transform electronic spectroscopy with a pulse-shaper,” Opt. Express, vol. 16, no. 22, p. 17420, Oct. 2008. Cerca con Google

[75] P. F. Tekavec, J. A. Myers, K. L. M. Lewis, and J. P. Ogilvie, “Two-dimensional electronic spectroscopy with a continuum probe,” Opt. Lett., vol. 34, no. 9, p. 1390, Apr. 2009. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record