Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Pellegrini, Giovanni (2008) Modeling the optical properties of nanocluster-based functional plasmonic materials. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
9Mb

Abstract (inglese)

Optical properties of nanocluster-based plasmonic materials were studied along this thesis by the Generalized Multiparticle Mie approach. Far- and local-field optical properties of basic plasmonic structures such as sphere dimers and chains were successfully analyzed as a function of their composition and their topological features.
The provided physical insight is then exploited in the modeling of strongly coupled complex structures obtained by ion beam processing. These systems were called nanoplanets since they are constituted by a large central cluster surrounded by small satellite ones very close to its surface. Nanoplanets show
extremely interesting far- and local-field properties which may be carefully tailored by varying the ion beam synthesis conditions. GMM theory allowed to establish that the strong interparticle coupling is at the base of their peculiar
optical features. Finally multiple coupled cluster are proposed as efficient nanoantennae. Nanoparticle dimers were proved to provide extremely efficient broadband light extraction. If regular sphere array are used instead, broadband limitation imposed by isolated antennae may be overcome and tunable wavelength selective recombination rate enhancement is obtained.
Overall this thesis gives an interesting insight in the plasmonic properties of functional multiple coupled cluster nanostructures.


Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Mattei, Giovanni
Dottorato (corsi e scuole):Ciclo 20 > Scuole per il 20simo ciclo > SCIENZA E INGEGNERIA DEI MATERIALI
Data di deposito della tesi:31 Gennaio 2008
Anno di Pubblicazione:31 Gennaio 2008
Parole chiave (italiano / inglese):Plamonics Metal Interacting Nanoparticles Nanoantennae
Settori scientifico-disciplinari MIUR:Area 02 - Scienze fisiche > FIS/03 Fisica della materia
Struttura di riferimento:Dipartimenti > Dipartimento di Scienze Chimiche
Codice ID:938
Depositato il:05 Nov 2008
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (1983). Cerca con Google

[2] U. Kreibig and M. Vollmer, Optical properties of metal clusters (Springer- Verlag, Berlin Heidelberg, 1995). Cerca con Google

[3] G. Battaglin, P. Calvelli, E. Cattaruzza, F. Gonella, R. Polloni, G. Mattei, and P. Mazzoldi, “Z-scan study on the nonlinear refractive index of copper nanocluster composite silica glass," Appl. Phys. Lett. 78, 3953 - 3955 (2001). Cerca con Google

[4] L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles," Phys. Rev. B 71, 235408 (2005). Cerca con Google

[5] S. L. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes," J. Chem. Phys. 120, 10871 - 10875 (2004). Cerca con Google

[6] J. J. Penninkhof, A. Polman, L. A. Sweatlock, S. A. Maier, H. A. Atwater, A. M. Vredenberg, and B. J. Kooi, “Mega-electron-volt ion beam induced anisotropic plasmon resonance of silver nanocrystals in glass," Appl. Phys. Lett. 83, 4137 - 4139 (2003). Cerca con Google

[7] V. Bello, G. De Marchi, C. Maurizio, G. Mattei, P. Mazzoldi, M. Parolin, and C. Sada, “Ion irradiation for controlling composition and structure of metal alloy nanoclusters in SiO2," J. Non-Cryst. Solids 345-46, 685 - 688 (2004). Cerca con Google

[8] G. Mattei, G. D. Marchi, C. Maurizio, P. Mazzoldi, C. Sada, V. Bello, and G. Battaglin, “Chemical- or radiation-assisted selective dealloying in bimetallic nanoclusters," Phys. Rev. Lett. 90, 085502 (2003). Cerca con Google

[9] K. R. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an effcient nanolens," Phys. Rev. Lett. 91, 227402 (2003). Cerca con Google

[10] C. Sönnichsen, B. Reinhard, J. Liphardt, and A. Alivisatos, “A molecular ruler based on plasmon coupling of single gold and silver nanoparticles," Nat. Biotech. 23, 741-745 (2005). Cerca con Google

[11] J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles," Phys. Rev. Lett. 82, 2590 - 2593 (1999). Cerca con Google

[12] F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence," Nano Lett. 7, 496 - 501 (2007). Cerca con Google

[13] S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2, 229 - 232 (2003). Cerca con Google

[14] M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles," Opt. Lett. 23, 1331 - 1333 (1998). Cerca con Google

[15] L. Rogobete, F. Kaminski, M. Agio, and V. Sandoghdar, “Design of plasmonic nanoantennae for enhancing spontaneous emission," Opt. Lett. 32, 1623 - 1625 (2007). Cerca con Google

[16] R. Ruppin, “Decay of an excited molecule near a small metal sphere," J. Chem. Phys. 76, 1681 - 1684 (1982). Cerca con Google

[17] Y. L. Xu, “Electromagnetic scattering by an aggregate of spheres," Appl. Optics 34, 4573 - 4588 (1995). Cerca con Google

[18] S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics - A route to nanoscale optical devices," Adv. Mater. 13, 1501 (2001). Cerca con Google

[19] H. A. Atwater, S. Maier, A. Polman, J. A. Dionne, and L. Sweatlock, “The new "p-n junction". Plasmonics enables photonic access to the nanoworld," MRS Bull. 30, 385 - 389 (2005). Cerca con Google

[20] S. A. Maier, “Plasmonics - Towards subwavelength optical devices," Curr. Nanosci. 1, 17 - 23 (2005). Cerca con Google

[21] S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures," J. Appl. Phys. 98, 011101 (2005). Cerca con Google

[22] S. A. Maier, “Plasmonics: Metal nanostructures for subwavelength photonic devices," IEEE J. Sel. Top. Quant. 12, 1214 - 1220 (2006). Cerca con Google

[23] S. A. Maier, “Plasmonics: The promise of highly integrated optical devices," IEEE J. Sel. Top. Quant. 12, 1671 - 1677 (2006). Cerca con Google

[24] R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology," Materials Today 9, 20 - 27 (2006). Cerca con Google

[25] H. A. Atwater, “The promise of plasmonics," Sci. Am. 296, 56 - 63 (2007). Cerca con Google

[26] M. L. Brongersma, R. Zia, and J. A. Schuller, “Plasmonics - the missing link between nanoelectronics and microphotonics," Appl. Phys. A-Mater. 89, 221 - 223 (2007). Cerca con Google

[27] C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates," Nano Lett. 5, 1569 - 1574 (2005). Cerca con Google

[28] C. Oubre and P. Nordlander, “Optical properties of metallodielectric nanostructures calculated using the finite difference time domain method," J. Phys. Chem. B 108, 17740 - 17747 (2004). Cerca con Google

[29] S. L. Zou and G. C. Schatz, “Coupled plasmonic plasmon/photonic resonance effects in SERS," Top. Appl. Phys. 103, 67 - 85 (2006). Cerca con Google

[30] S. A. Maier, P. G. Kik, and H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss," Appl. Phys. Lett. 81, 1714 – 1716 (2002). Cerca con Google

[31] S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides," Phys. Rev. B 67, 205402 (2003). Cerca con Google

[32] M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit," Phys. Rev. B 62, 16356 - 16359 (2000). Cerca con Google

[33] S. A. Maier, M. L. Brongersma, and H. A. Atwater, “Electromagnetic energy transport along arrays of closely spaced metal rods as an analogue to plasmonic devices," Appl. Phys. Lett. 78, 16 - 18 (2001). Cerca con Google

[34] S. A. Maier, M. L. Brongersma, and H. A. Atwater, “Electromagnetic energy transport along Yagi arrays," Mat. Sci. Eng. C-Bio. S. 19, 291 - 294 (2002). Cerca con Google

[35] L. Novotny, “Effective wavelength scaling for optical antennas," Phys. Rev. Lett. 98, 266802 (2007). Cerca con Google

[36] S. Gerber, F. Reil, U. Hohenester, T. Schlagenhaufen, J. R. Krenn, and A. Leitner, “Tailoring light emission properties of fluorophores by coupling to resonance-tuned metallic nanostructures," Phys. Rev. B 75, 073404 (2007). Cerca con Google

[37] D. W. Mackowski, “Analysis of radiative scattering for multiple sphere configurations," P. Roy. Soc. Lond. A. Mat. 433, 599 - 614 (1991). Cerca con Google

[38] Y. L. Xu, “Fast evaluation of the Gaunt coefficients," Math. Comput. 65, 1601 - 1612 (1996). Cerca con Google

[39] Y. L. Xu, “Calculation of the addition coe±cients in electromagnetic multisphere-scattering theory," J. Comput. Phys. 127, 285 - 298 (1996). Cerca con Google

[40] Y. L. Xu, “Calculation of the addition coefficients in electromagnetic multisphere-scattering theory (vol 127, pg 285, 1996)," J. Comput. Phys. 134, 200 - 200 (1997). Cerca con Google

[41] Y. L. Xu, “Fast evaluation of Gaunt coe±cients: recursive approach," J. Comput. Appl. Math. 85, 53 - 65 (1997). Cerca con Google

[42] Y. L. Xu, “Efficient evaluation of vector translation coe±cients in multiparticle light-scattering theories," J. Comput. Phys. 139, 137 – 165 (1998). Cerca con Google

[43] Y. L. Xu, “Electromagnetic scattering by an aggregate of spheres: far field," Appl. Optics 36, 9496 - 9508 (1997). Cerca con Google

[44] Y. L. Xu, B. A. S. Gustafson, F. Giovane, J. Blum, and S. Tehranian, “Calculation of the heat-source function in photophoresis of aggregated spheres," Phys. Rev. E 60, 2347 - 2365 (1999). Cerca con Google

[45] Y. L. Xu, B. A. S. Gustafson, F. Giovane, J. Blum, and S. Tehranian, “Calculation of the heat-source function in photophoresis of aggregated spheres (vol E 60, pg 2347, 1999)," Phys. Rev. E 6403, 039903 (2001). Cerca con Google

[46] Sleijpen G. L. G. and Fokkema D. R., “BiCGstab(ell) for linear Equations involgin unsymmetric matrices with complex spectrum," ETNA pp. 11 - 32 (1993). Cerca con Google

[47] Y. L. Xu, “Electromagnetic scattering by an aggregate of spheres: asymmetry parameter," Phys. Lett. A 269, 30 - 36 (1998). Cerca con Google

[48] H. Du, “Mie-scattering calculation," Appl. Opt. 43, 1951 (2004). Cerca con Google

[49] A. R. Edmonds, Angular momentum in quantum mechanics (Princeton University Press, Princeton, 1957). Cerca con Google

[50] R. Ruppin, “Effects of high-order multipoles on the extinction spectra of dispersive bispheres," Opt. Commun. 168, 35 - 38 (1999). Cerca con Google

[51] S. L. Zou and G. C. Schatz, “Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays," J. Chem. Phys. 121, 12606 - 12612 (2004). Cerca con Google

[52] G. Pellegrini, G. Mattei, V. Bello, and P. Mazzoldi, “Interacting metal nanoparticles: Optical properties from nanoparticle dimers to core- satellite systems," Mat. Sci. Eng. C-Bio. S. 27, 1347 - 1350 (2007). Cerca con Google

[53] P. B. Johnson and R. W. Christy, “Optical nonstants of noble metals," Phys. Rev. B 6, 4370 (1972). Cerca con Google

[54] H. Hovel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances - Bulk dielectric functions and chemical interface damping," Phys. Rev. B 48, 18178 - 18188 (1993). Cerca con Google

[55] P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridizaton in nanoparticle dimers," Nano Lett. 4, 899 - 903 (2004). Cerca con Google

[56] E. M. Hicks, S. L. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Kall, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography," Nano Lett. 5, 1065 - 1070 (2005). Cerca con Google

[57] S. L. Zou and G. C. Schatz, “Response to "Comment on 'Silver nanoparticle array structures that produce remarkable narrow plasmon line shapes' " [J. Chem. Phys. 120, 10871 (2004)]," J. Chem. Phys. 122, 097102 (2005). Cerca con Google

[58] S. L. Zou and G. C. Schatz, “Theoretical studies of plasmon resonances in one-dimensional nanoparticle chains: narrow lineshapes with tunable widths," Nanotechnology 17, 2813 - 2820 (2006). Cerca con Google

[59] A. F. Koenderink, J. V. Hernandez, F. Robicheaux, L. D. Noordam, and A. Polman, “Programmable nanolithography with plasmon nanoparticle arrays," Nano Lett. 7, 745 - 749 (2007). Cerca con Google

[60] R. de Waele, A. F. Koenderink, and A. Polman, “Tunable nanoscale localization of energy on plasmon particle arrays," Nano Lett. 7, 2004 - 2008 (2007). Cerca con Google

[61] S. E. Sburlan, L. A. Blanco, and M. Nieto-Vesperinas, “Plasmon excitation in sets of nanoscale cylinders and spheres," Phys. Rev. B 73, 035403 (2006). Cerca con Google

[62] C. Oubre and P. Nordlander, “Finite-difference time-domain studies of the optical properties of nanoshell dimers," J. Phys. Chem. B 109, 10042 - 10051 (2005). Cerca con Google

[63] L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Kall, S. L. Zou, and G. C. Schatz, “Confined plasmons in nanofabricated single silver particle pairs: Experimental observations of strong interparticle interactions," J. Phys. Chem. B 109, 1079 - 1087 (2005). Cerca con Google

[64] Z. P. Li, Z. L. Yang, and H. X. Xu, “Comment on "Self-similar chain of metal nanospheres as an e±cient nanolens"," Phys. Rev. Lett. 97, 079701 (2006). Cerca con Google

[65] G. Battaglin, Nucl.Instr.Meth.B 116, 102 (1996). Cerca con Google

[66] E. Cattaruzza, Nucl.Instr.Meth.B 169, 141 (2000). Cerca con Google

[67] F. Gonella and P. Mazzoldi, Handbook of nanostructured Materials and Nanotechnology, vol. 4 (Academic Press, San Diego, 2000). Cerca con Google

[68] G. Mattei, “Alloy nanoclusters in dielectric matrix," Nucl. Instrum. Meth. B 191, 323 - 332 (2002). Cerca con Google

[69] G. Mattei, G. De Marchi, C. Maurizio, P. Mazzoldi, C. Sada, V. Bello, and G. Battaglin, Phys. Rev. Lett. 90, 085502-1-4 (2003). Cerca con Google

[70] F. Gonella, G. Mattei, P. Mazzoldi, C. Sada, G. Battaglin, and E. Cattaruzza, Appl. Phys. Lett. 75, 55 (1999). Cerca con Google

[71] C. de Julian Fernandez, C. Sangregorio, G. Mattei, C. Battaglin, F. Gonella, A. Lascialfari, S. Lo Russo, D. Gatteschi, P. Mazzoldi, and J. Gonzalez, Nucl.Instr.Meth.B 479, 4249 (2001). Cerca con Google

[72] P. Mazzoldi, G. Arnold, G. Battaglin, F. Gonella, and R. Haglund, Nonlin. Opt. Phys. Mat. 5, 285 (1996). Cerca con Google

[73] G. Mattei, V. Bello, G. Battaglin, G. De Marchi, C. Maurizio, P. Mazzoldi, M. Parolin, and C. Sada, J. Non-Cryst. Solids 322, 17 (2003). Cerca con Google

[74] L. Thome, J. Jagielski, G. Rizza, F. Garrido, and J. Pivin, Appl.Phys. A 66, 327 (1998). Cerca con Google

[75] J. Pivin, Mat.Sci.and Eng. A 293, 30 (2000). Cerca con Google

[76] R. Zimmerman, D. Ila, C. Muntele, and I. Muntele, Nucl.Instr.Meth.B 241, 506 (2005). Cerca con Google

[77] R. Birtcher, S. Donnelly, L. Rehn, and L. Thome, Nucl.Instr.Meth.B 175, 40 (2001). Cerca con Google

[78] G. Rizza, M. Strobel, K. Heinig, and H. Bernas, Nucl.Instr.Meth.B 178, 78 (2001). Cerca con Google

[79] K. Heinig, T. Muller, B. Schmidt, M. Strobel, and W. Moller, App. Phys. A 77, 17 (2003). Cerca con Google

[80] J. Pivin and G. Rizza, Thin Solid Films 366, 284 (2000). Cerca con Google

[81] G. C. Schatz, M. A. Young, and R. P. Van Duyne, “Electromagnetic mechanism of SERS," Top. Appl. Phys. 103, 19 - 45 (2006). Cerca con Google

[82] W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles," Opt. Commun. 220, 137 - 141 (2003). Cerca con Google

[83] G. Pellegrini, V. Bello, G. Mattei, and P. Mazzoldi, “Local-field enhancement and plasmon tuning in bimetallic nanoplanets," Opt. Express 15, 10097-10102 (2007). Cerca con Google

[84] K. Ripken, “Die optischen konstanten von au, ag und ihren legierungen im energiebereich 2, 4 bis 4, 4 ev," Z. Phys A-Hadron Nucl. 250, 228-234 (1972). Cerca con Google

[85] D. E. Aspnes, “Local-field effects and effective medium theory: a microscopic perspective," Am. J. Phys. 50, 704 (1982). Cerca con Google

[86] H.Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: A hybrid plasmonic nanostructure," Nano Lett. 6, 827 - 832 (2006). Cerca con Google

[87] J. Penninkhof, C. Graf, T. van Dillen, A. M. Vredenberg, A. van Blaaderen, and A. Polman, “Angle-dependent extinction of anisotropic silica/Au core/shell colloids made via ion irradiation," Adv. Mater. 17, 1484 - 1488 (2005). Cerca con Google

[88] S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, “Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy," Phys. Rev. B 65, 193408 (2002). Cerca con Google

[89] G. Mattei, G. Battaglin, V. Bello, G. De Marchi, C. Maurizio, P. Mazzoldi, M. Parolin, and C. Sada, “De-alloying behaviour of metal nanoclusters in SiO2 upon irradiation and thermal treatments," J. Non-Cryst. Solids 322, 17 - 21 (2003). Cerca con Google

[90] E. Purcell, “Modification of spontaneous emission," Phys. Rev 69, 681 (1946). Cerca con Google

[91] O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, and J. G. Rivast, “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas," Nano Lett. 7, 2871 - 2875 (2007). Cerca con Google

[92] J. S. Biteen, N. S. Lewis, H. A. Atwater, H. Mertens, and A. Polman, “Spectral tuning of plasmon-enhanced silicon quantum dot luminescence," Appl. Phys. Lett. 88, 131109 (2006). Cerca con Google

[93] H. Mertens and A. Polman, “Plasmon-enhanced erbium luminescence," Appl. Phys. Lett. 89, 211107 (2006). Cerca con Google

[94] H. Mertens, J. S. Biteen, H. A. Atwater, and A. Polman, “Polarization- selective plasmon-enhanced silicon quantum-dot luminescence," Nano Lett. 6, 2622 - 2625 (2006). Cerca con Google

[95] P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence," Phys. Rev. Lett. 96, 113002 (2006). Cerca con Google

[96] P. Bharadwaj, P. Anger, and L. Novotny, “Nanoplasmonic enhancement of single-molecule °uorescence," Nanotechnology 18, 044017 (2007). Cerca con Google

[97] B. M. Deutsch and L. Novotny, “Optical antennae enable nanoscale microscopy and spectroscopy," Laser Focus World 42, 91 - + (2006). Cerca con Google

[98] J. S. Biteen, L. A. Sweatlock, H. Mertens, N. S. Lewis, A. Polman, and H. A. Atwater, “Plasmon-enhanced photoluminescence of silicon quantum dots: Simulation and experiment," J. Phys. Chem. C 111, 13372 – 13377 (2007). Cerca con Google

[99] R. Ruppin and O. J. F. Martin, “Lifetime of an emitting dipole near various types of interfaces including magnetic and negative refractive materials," J. Chem. Phys. 121, 11358 - 11361 (2004). Cerca con Google

[100] P. Bharadwaj and L. Novotny, “Spectral dependence of single molecule fluorescence enhancement," Opt. Express 15, 14266-14274 (2007). Cerca con Google

[101] J. Jackson, Classical Electrodynamics: second edition (John Wiley & Sons, New York, 1975). Cerca con Google

[102] H. Mertens, A. F. Koenderink, and A. Polman, “Plasmon-enhanced luminescence near noble-metal nanospheres: Comparison of exact theory and an improved Gersten and Nitzan model," Phys. Rev. B 76, 115123 (2007). Cerca con Google

[103] R. Carminati, M. Nieto-Vesperinas, and J. Greffet, “Reciprocity of evanescent electromagnetic waves," J. Opt. Soc. Am. A 15, 706-712 (1998). Cerca con Google

[104] S. Kuhn, U. Hakanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna," Phys. Rev. Lett. 97, 017402 (2006). Cerca con Google

[105] E. M. Hicks, O. Lyandres, W. P. Hall, S. L. Zou, M. R. Glucksberg, and R. P. Van Duyne, “Plasmonic properties of anchored nanoparticles fabricated by reactive ion etching and nanosphere lithography," J. Phys. Chem. C 111, 4116 - 4124 (2007). Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record