Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

campesan, marika (2016) THE ROLE OF THE MITOCHONDRIAL CALCIUM UNIPORTER (MCU) IN THE CARDIAC INJURY INDUCED BY ISCHEMIA AND REPERFUSION. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF (tesi di dottorato) - Versione sottomessa
2218Kb

Abstract (inglese)

Mitochondrial Ca2+ uptake has been suggested to contribute to the cardiac injury induced by ischemia reperfusion. This notion has been derived from studies using pharmacological approaches due to the lack of information in protein involved in mitochondrial Ca2+ uptake (Ferrari, Di Lisa et al. 1982). The recent identification of the molecular identity of the mitochondrial Ca2+ uniporter (MCU) (De Stefani, Raffaello et al. 2011) allows a genetic approaches. Based on the available notion MCU deletion could be protected against I/R injury , that should be exacerbated by MCU overexpression. The present result provide a more complex picture where by a model increase in mitochondrial Ca2+ elicits cardioprotection that is lost under condition of mitochondrial Ca2+ overload.
Neonatal rat ventricular myocytes (NRVMs) overexpressing MCU by adenovirus infection showed a reduction in I/R-induced cell death as compared to wild type (wt) cells (41.82% ±8.37 vs 60.44% ±11.68, p<0.05). The in vitro evidence of cardioprotection was confirmed also ex vivo in perfused hearts overexpressing MCU by means of adenoassociated virus infection. Indeed, reperfusion after 40 min of global ischemia resulted in a significant decrease of lactate dehydrogenase release as compared to wt hearts (16.14 ±11.69 vs 67.01 ±0.07). This increased tolerance to I/R injury was associated with a large decrease in levels of reactive oxygen species (ROS) upon reperfusion. However, starting at 12 h after infection NRVMs displayed a slight increase in ROS levels associated with an increase in Akt phosphorylation (1.98± 0.06 fold) leading to the activation of this pro-survival kinase. Upstream of Akt, protein phosphatase 2A (PP2A) was more phosphorylated (2.8 ± 0.26 fold) resulting in its inactivation. Notably, Akt activation is abolished by antioxidants treatment.
Overall, these findings suggest that a slight increase in mitochondrial Ca2+ induced by MCU overexpression triggers a protective response involving a mild oxidative stress that eventually stimulates the activity of survival pathways. The protection by MCU overexpression was abolished when a further increase in mitochondrial Ca2+ was induced by the co-expression of MICU1. This latter evidence confirms that mitochondrial Ca2+ overload is a determining factor in the loss of cardiac viability occurring during post ischemic reperfusion. Therefore, the balance between protection and injury appears to be modulated by levels of intramitochondrial Ca2+. In this respect, the results of this Thesis provide novel evidence that a mild increase in mitochondrial Ca2+ elicits cardioprotection by stimulating ROS formation. It is tempting to speculate that this mechanism is involved also in the protective effect against cardiac diseases induced by exercise.

Abstract (italiano)

L’uptake di Ca2+ mitocondriale contribuisce al danno cardiaco indotto da ischemia/riperfusione. Questo concetto è derivato da numerosi studi che hanno valutato il ruolo della proteina deputata all’uptake di Ca2+ mitocondriale servendosi di un approccio farmacologico. Tuttavia, la recente identificazione della struttura molecolare del canale responsabile dell’uptake di calcio definito MCU, ha reso possibile un approccio di tipo genetico, evitando i numerosi effetti collaterali degli inibitori farmacologici. Basandosi su i dati finora raccolti si presuppone che il silenziamento di MCU porti ad una riduzione del danno cardiaco in seguito ad I/R, e al contrario la sua sovraespressione ad un aumento del danno. Tuttavia i dati presentati in questa tesi mostrano un quadro più complesso in cui un moderato aumento del Ca2+ induce un effetto cardioprotettivo, che invece viene abrogato da un eccessivo carico di Ca2+ a livello mitocondriale.
Cardiomiociti neonatali di ratto sovraesprimenti MCU tramite un infezione con adenovirus, mostrano una riduzione della mortalità sottoposti ad un protocollo di I/R (41.82%±8.37 vs 60.44%±11.68, p<0.05). L’evidenzia di questo effetto cardioprotettivo viene confermato anche da dati ottenuti ex vivo, in topi infettati con un virus adeno-associato di tipo 9 codificante per MCU-flag. Il cuore isolato sovraesprimente MCU sottoposto ad un protocollo di I/R in Langendorff mostra una riduzione della mortalità se comparato ad animali controllo (17.14±7.71 vs 30.16 ±10.35). Questa marcata riduzione della mortalità è accompagnata da una riduzione dello stress ossidativo in seguito all’evento post ischemico. Tuttavia, i cardiomiociti neonatali sovraesprimenti MCU mostrano un aumento dei ROS a livello basale, che correla con l’attivazione di Akt, chinasi coinvolta nei meccanismi di sopravvivenza cellulare. PP2A, fosfatasi coinvolta nella regolazione a monte di Akt, risulta essere più fosforilata quando MCU è sovraespresso, risultando perciò inattiva. Inoltre, l’attivazione di Akt viene abolita in seguito al trattamento con antiossidanti.
Queste evidenze suggeriscono che un moderato aumento dell’uptake di Ca2+ mitocondriale indotto dalla sovraespressione di MCU sia responsabile dell’attivazione di un meccanismo di cardioprotezione che porta all’attivazione di meccanismi di sopravvivenza cellulare. Tuttavia, la cardioprotezione indotta dalla sola sovraespressione di MCU viene abrogata dalla co-espressione di MCU e MICU1, che determinano un massivo aumento di Ca2+ mitocondriale. Quest’ultima osservazione conferma che l’overload di Ca2+ mitocondriale è un fattore determinante nella mortalità indotta dal danno ischemico. Inoltre, appare evidente che il livello di Ca2+ mitocondriale sia il fattore determinante tra danno e protezione cardiaca. Questa tesi dimostra come un moderato aumento di Ca2+ mitocondriale possa determinare un effetto cardio-protettivo mediato da ROS. Inoltre, si potrebbe speculare che questo meccanismo di protezione rimandi all’effetto cardio-protettivo indotto dall’esercizio fisico.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Di Lisa, Fabio
Dottorato (corsi e scuole):Ciclo 28 > Scuole 28 > BIOSCIENZE E BIOTECNOLOGIE > BIOCHIMICA E BIOFISICA
Data di deposito della tesi:29 Gennaio 2016
Anno di Pubblicazione:29 Gennaio 2016
Parole chiave (italiano / inglese):MCU, mitochondrial calcium uniporter, ischemia/reperfusion, oxidative stress, Akt, preconditioning, calcium ischemia/riperfusione , uniporto del calcio mitocondriale, stress ossidativo, Akt
Settori scientifico-disciplinari MIUR:Area 05 - Scienze biologiche > BIO/10 Biochimica
Struttura di riferimento:Dipartimenti > Dipartimento di Scienze Biomediche
Codice ID:9387
Depositato il:06 Ott 2016 15:05
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Adam-Vizi, V. and A. A. Starkov (2010). "Calcium and mitochondrial reactive oxygen species generation: how to read the facts." J Alzheimers Dis 20 Suppl 2: S413-426. Cerca con Google

Allen, D. G. and C. H. Orchard (1987). "Myocardial contractile function during ischemia and hypoxia." Circ.Res. 60(2): 153-168. Cerca con Google

Baughman, J. M., F. Perocchi, H. S. Girgis, M. Plovanich, C. Belcher-Timme, Y. Sancak, X. R. Bao, L. Strittmatter, O. Goldberger, R. L. Bogorad, V. Koteliansky and V. K. Mootha (2011). "Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter." Nature. Cerca con Google

Bernardi, P. (1999). "Mitochondrial transport of cations: channels, exchangers, and permeability transition." Physiol.Rev. 79(4): 1127-1155. Cerca con Google

Bernardi, P., A. Krauskopf, E. Basso, V. Petronilli, E. Blachly-Dyson, F. Di Lisa and M. A. Forte (2006). "The mitochondrial permeability transition from in vitro artifact to disease target." FEBS J 273(10): 2077-2099. Cerca con Google

Bers, D. M. (2002). "Cardiac excitation-contraction coupling." Nature 415(6868): 198-205. Cerca con Google

Bienert, G. P. and F. Chaumont (2014). "Aquaporin-facilitated transmembrane diffusion of hydrogen peroxide." Biochim Biophys Acta 1840(5): 1596-1604. Cerca con Google

Bolli, R. (1998). "Causative role of oxyradicals in myocardial stunning: a proven hypothesis. A brief review of the evidence demonstrating a major role of reactive oxygen species in several forms of postischemic dysfunction." Basic Res Cardiol 93(3): 156-162. Cerca con Google

Brill, A., A. Torchinsky, H. Carp and V. Toder (1999). "The role of apoptosis in normal and abnormal embryonic development." J Assist Reprod Genet 16(10): 512-519. Cerca con Google

Brookes, P. S., Y. Yoon, J. L. Robotham, M. W. Anders and S. S. Sheu (2004). "Calcium, ATP, and ROS: a mitochondrial love-hate triangle." Am.J.Physiol Cell Physiol 287(4): C817-C833. Cerca con Google

Cadenas, E. and K. J. Davies (2000). "Mitochondrial free radical generation, oxidative stress, and aging." Free Radic.Biol.Med. 29(3-4): 222-230. Cerca con Google

Canton, M., S. Menazza, F. L. Sheeran, P. Polverino de Laureto, F. Di Lisa and S. Pepe (2011). "Oxidation of myofibrillar proteins in human heart failure." J.Am.Coll.Cardiol. 57(3): 300-309. Cerca con Google

Canton, M., I. Neverova, R. Menabò, J. E. Van Eyk and F. Di Lisa (2004). "Evidence of myofibrillar protein oxidation induced by postischemic reperfusion in isolated rat hearts." Am.J.Physiol Heart Circ.Physiol 286(3): H870-H877. Cerca con Google

Carafoli, E., W. X. Balcavage, A. L. Lehninger and J. R. Mattoon (1970). "Ca2+ metabolism in yeast cells and mitochondria." Biochim Biophys Acta 205(1): 18-26. Cerca con Google

Carafoli, E., C. S. Rossi and A. L. Lehninger (1965). "Uptake of Adenine Nucleotides by Respiring Mitochondria during Active Accumulation of Ca++ and Phosphate." J Biol Chem 240: 2254-2261. Cerca con Google

Carpi, A., R. Menabò, N. Kaludercic, P. Pelicci, F. Di Lisa and M. Giorgio (2009). "The cardioprotective effects elicited by p66(Shc) ablation demonstrate the crucial role of mitochondrial ROS formation in ischemia/reperfusion injury." Biochim.Biophys.Acta 1787(7): 774-780. Cerca con Google

Chaudhuri, D., Y. Sancak, V. K. Mootha and D. E. Clapham (2013). "MCU encodes the pore conducting mitochondrial calcium currents." Elife 2: e00704. Cerca con Google

Chen, L., L. Liu, J. Yin, Y. Luo and S. Huang (2009). "Hydrogen peroxide-induced neuronal apoptosis is associated with inhibition of protein phosphatase 2A and 5, leading to activation of MAPK pathway." Int J Biochem Cell Biol 41(6): 1284-1295. Cerca con Google

Chen, W., S. Gabel, C. Steenbergen and E. Murphy (1995). "A redox-based mechanism for cardioprotection induced by ischemic preconditioning in perfused rat heart." Circ Res 77(2): 424-429. Cerca con Google

Chiarugi, P. (2008). "Src redox regulation: there is more than meets the eye." Mol Cells 26(4): 329-337. Cerca con Google

Clarke, S. J., I. Khaliulin, M. Das, J. E. Parker, K. J. Heesom and A. P. Halestrap (2008). "Inhibition of mitochondrial permeability transition pore opening by ischemic preconditioning is probably mediated by reduction of oxidative stress rather than mitochondrial protein phosphorylation." Circ.Res. 102(9): 1082-1090. Cerca con Google

Csordas, G., T. Golenar, E. L. Seifert, K. J. Kamer, Y. Sancak, F. Perocchi, C. Moffat, D. Weaver, S. de la Fuente Perez, R. Bogorad, V. Koteliansky, J. Adijanto, V. K. Mootha and G. Hajnoczky (2013). "MICU1 controls both the threshold and cooperative activation of the mitochondrial Ca(2)(+) uniporter." Cell Metab 17(6): 976-987. Cerca con Google

Czerski, L. and G. Nunez (2004). "Apoptosome formation and caspase activation: is it different in the heart?" J Mol Cell Cardiol 37(3): 643-652. Cerca con Google

De Stefani, D., A. Raffaello, E. Teardo, I. Szabo and R. Rizzuto (2011). "A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter." Nature 476: 336-340. Cerca con Google

del Monte, F., D. Lebeche, J. L. Guerrero, T. Tsuji, A. A. Doye, J. K. Gwathmey and R. J. Hajjar (2004). "Abrogation of ventricular arrhythmias in a model of ischemia and reperfusion by targeting myocardial calcium cycling." Proc Natl Acad Sci U S A 101(15): 5622-5627. Cerca con Google

Denton, R. M. and J. G. McCormack (1990). "Ca2+ as a second messenger within mitochondria of the heart and other tissues." Annu Rev Physiol 52: 451-466. Cerca con Google

Di Lisa, F., A. Carpi, V. Giorgio and P. Bernardi (2011). "The mitochondrial permeability transition pore and cyclophilin D in cardioprotection." Biochim.Biophys.Acta 1813(7): 1316-1322. Cerca con Google

Dosenko, V. E., V. S. Nagibin, L. V. Tumanovska and A. A. Moibenko (2006). "Protective effect of autophagy in anoxia-reoxygenation of isolated cardiomyocyte?" Autophagy 2(4): 305-306. Cerca con Google

Drago, I., S. D. De, R. Rizzuto and T. Pozzan (2012). "Mitochondrial Ca2+ uptake contributes to buffering cytoplasmic Ca2+ peaks in cardiomyocytes." Proc.Natl.Acad.Sci.U.S.A 109(32): 12986-12991. Cerca con Google

Forbes, R. A., C. Steenbergen and E. Murphy (2001). "Diazoxide-induced cardioprotection requires signaling through a redox-sensitive mechanism." Circ Res 88(8): 802-809. Cerca con Google

Fujio, Y., T. Nguyen, D. Wencker, R. N. Kitsis and K. Walsh (2000). "Akt promotes survival of cardiomyocytes in vitro and protects against ischemia-reperfusion injury in mouse heart." Circulation 101(6): 660-667. Cerca con Google

Giorgio, M., E. Migliaccio, F. Orsini, D. Paolucci, M. Moroni, C. Contursi, G. Pelliccia, L. Luzi, S. Minucci, M. Marcaccio, P. Pinton, R. Rizzuto, P. Bernardi, F. Paolucci and P. G. Pelicci (2005). "Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis." Cell 122(2): 221-233. Cerca con Google

Giorgio, V., S. von Stockum, M. Antoniel, A. Fabbro, F. Fogolari, M. Forte, G. D. Glick, V. Petronilli, M. Zoratti, I. Szabo, G. Lippe and P. Bernardi (2013). "Dimers of mitochondrial ATP synthase form the permeability transition pore." Proc Natl Acad Sci U S A 110(15): 5887-5892. Cerca con Google

Golstein, P. and G. Kroemer (2007). "Cell death by necrosis: towards a molecular definition." Trends Biochem Sci 32(1): 37-43. Cerca con Google

Gorlach, A., K. Bertram, S. Hudecova and O. Krizanova (2015). "Calcium and ROS: A mutual interplay." Redox Biol 6: 260-271. Cerca con Google

Gottlieb, R. (2005). "ICE-ing the heart." Circ Res 96(10): 1036-1038. Cerca con Google

Griffiths, E. J. and A. P. Halestrap (1993). "Protection by Cyclosporin A of ischemia/reperfusion-induced damage in isolated rat hearts." J.Mol.Cell.Cardiol. 25(12): 1461-1469. Cerca con Google

Griffiths, E. J., C. J. Ocampo, J. S. Savage, G. A. Rutter, R. G. Hansford, M. D. Stern and H. S. Silverman (1998). "Mitochondrial calcium transporting pathways during hypoxia and reoxygenation in single rat cardiomyocytes." Cardiovasc.Res. 39(2): 423-433. Cerca con Google

Griffiths, E. J., C. J. Ocampo, J. S. Savage, M. D. Stern and H. S. Silverman (2000). "Protective effects of low and high doses of cyclosporin A against reoxygenation injury in isolated rat cardiomyocytes are associated with differential effects on mitochondrial calcium levels." Cell Calcium 27(2): 87-95. Cerca con Google

Halestrap, A. P., S. J. Clarke and I. Khaliulin (2007). "The role of mitochondria in protection of the heart by preconditioning." Biochim.Biophys.Acta 1767(8): 1007-1031. Cerca con Google

Hamacher-Brady, A., N. R. Brady and R. A. Gottlieb (2006). "The Interplay between Pro-Death and Pro-Survival Signaling Pathways in Myocardial Ischemia/Reperfusion Injury: Apoptosis Meets Autophagy." Cardiovasc.Drugs Ther. 20(6): 445-462. Cerca con Google

Han, D., F. Antunes, R. Canali, D. Rettori and E. Cadenas (2003). "Voltage-dependent anion channels control the release of the superoxide anion from mitochondria to cytosol." J Biol Chem 278(8): 5557-5563. Cerca con Google

Hawkins, B. J., M. Madesh, C. J. Kirkpatrick and A. B. Fisher (2007). "Superoxide flux in endothelial cells via the chloride channel-3 mediates intracellular signaling." Mol Biol Cell 18(6): 2002-2012. Cerca con Google

Hoffman, N. E., H. C. Chandramoorthy, S. Shanmughapriya, X. Q. Zhang, S. Vallem, P. J. Doonan, K. Malliankaraman, S. Guo, S. Rajan, J. W. Elrod, W. J. Koch, J. Y. Cheung and M. Madesh (2014). "SLC25A23 augments mitochondrial Ca(2)(+) uptake, interacts with MCU, and induces oxidative stress-mediated cell death." Mol Biol Cell 25(6): 936-947. Cerca con Google

Holmstrom, K. M. and T. Finkel (2014). "Cellular mechanisms and physiological consequences of redox-dependent signalling." Nat Rev Mol Cell Biol 15(6): 411-421. Cerca con Google

Hoyer-Hansen, M., L. Bastholm, P. Szyniarowski, M. Campanella, G. Szabadkai, T. Farkas, K. Bianchi, N. Fehrenbacher, F. Elling, R. Rizzuto, I. S. Mathiasen and M. Jaattela (2007). "Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-beta, and Bcl-2." Mol Cell 25(2): 193-205. Cerca con Google

Huang, B. K. and H. D. Sikes (2014). "Quantifying intracellular hydrogen peroxide perturbations in terms of concentration." Redox Biol 2C: 955-962. Cerca con Google

Hüser, J., C. E. Rechenmacher and L. A. Blatter (1998). "Imaging the permeability pore transition in single mitochondria." Biophys.J. 74: 2129-2137. Cerca con Google

Imahashi, K., C. Pott, J. I. Goldhaber, C. Steenbergen, K. D. Philipson and E. Murphy (2005). "Cardiac-specific ablation of the Na+-Ca2+ exchanger confers protection against ischemia/reperfusion injury." Circ Res 97(9): 916-921. Cerca con Google

Kaludercic, N., A. Carpi, R. Menabo, F. Di Lisa and N. Paolocci (2011). "Monoamine oxidases (MAO) in the pathogenesis of heart failure and ischemia/reperfusion injury." Biochim.Biophys.Acta 1813(7): 1323-1332. Cerca con Google

Kim, J. S., Y. Jin and J. J. Lemasters (2006). "Reactive oxygen species, but not Ca2+ overloading, trigger pH- and mitochondrial permeability transition-dependent death of adult rat myocytes after ischemia-reperfusion." Am.J.Physiol Heart Circ.Physiol 290(5): H2024-H2034. Cerca con Google

Kwong, J. Q., X. Lu, R. N. Correll, J. A. Schwanekamp, R. J. Vagnozzi, M. A. Sargent, A. J. York, J. Zhang, D. M. Bers and J. D. Molkentin (2015). "The Mitochondrial Calcium Uniporter Selectively Matches Metabolic Output to Acute Contractile Stress in the Heart." Cell Rep 12(1): 15-22. Cerca con Google

Lam, S. S., J. D. Martell, K. J. Kamer, T. J. Deerinck, M. H. Ellisman, V. K. Mootha and A. Y. Ting (2015). "Directed evolution of APEX2 for electron microscopy and proximity labeling." Nat Methods 12(1): 51-54. Cerca con Google

Lesnefsky, E. J., Q. Chen, S. Moghaddas, M. O. Hassan, B. Tandler and C. L. Hoppel (2004). "Blockade of electron transport during ischemia protects cardiac mitochondria." J Biol Chem 279(46): 47961-47967. Cerca con Google

Li, X., P. Fang, J. Mai, E. T. Choi, H. Wang and X. F. Yang (2013). "Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancers." J Hematol Oncol 6: 19. Cerca con Google

Lowe, S. W. and A. W. Lin (2000). "Apoptosis in cancer." Carcinogenesis 21(3): 485-495. Cerca con Google

Mallilankaraman, K., P. Doonan, C. Cardenas, H. C. Chandramoorthy, M. Muller, R. Miller, N. E. Hoffman, R. K. Gandhirajan, J. Molgo, M. J. Birnbaum, B. S. Rothberg, D. O. Mak, J. K. Foskett and M. Madesh (2012). "MICU1 is an essential gatekeeper for MCU-mediated mitochondrial Ca(2+) uptake that regulates cell survival." Cell 151(3): 630-644. Cerca con Google

Mammucari, C., G. Gherardi, I. Zamparo, A. Raffaello, S. Boncompagni, F. Chemello, S. Cagnin, A. Braga, S. Zanin, G. Pallafacchina, L. Zentilin, M. Sandri, D. De Stefani, F. Protasi, G. Lanfranchi and R. Rizzuto (2015). "The mitochondrial calcium uniporter controls skeletal muscle trophism in vivo." Cell Rep 10(8): 1269-1279. Cerca con Google

Melendez-Hevia, E., T. G. Waddell and M. Cascante (1996). "The puzzle of the Krebs citric acid cycle: assembling the pieces of chemically feasible reactions, and opportunism in the design of metabolic pathways during evolution." J Mol Evol 43(3): 293-303. Cerca con Google

Mocanu, M. M., G. F. Baxter and D. M. Yellon (2000). "Caspase inhibition and limitation of myocardial infarct size: protection against lethal reperfusion injury." Br J Pharmacol 130(2): 197-200. Cerca con Google

Murphy, E., H. Cross and C. Steenbergen (1999). "Sodium regulation during ischemia versus reperfusion and its role in injury." Circ Res 84(12): 1469-1470. Cerca con Google

Murphy, E., M. Perlman, R. E. London and C. Steenbergen (1991). "Amiloride delays the ischemia-induced rise in cytosolic free calcium." Circ Res 68(5): 1250-1258. Cerca con Google

Murry, C. E., R. B. Jennings and K. A. Reimer (1986). "Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium." Circulation 74(5): 1124-1136. Cerca con Google

Nishihara, M., T. Miura, T. Miki, M. Tanno, T. Yano, K. Naitoh, K. Ohori, H. Hotta, Y. Terashima and K. Shimamoto (2007). "Modulation of the mitochondrial permeability transition pore complex in GSK-3beta-mediated myocardial protection." J.Mol.Cell.Cardiol. 43(5): 564-570. Cerca con Google

Pan, X., J. Liu, T. Nguyen, C. Liu, J. Sun, Y. Teng, M. M. Fergusson, Rovira, II, M. Allen, D. A. Springer, A. M. Aponte, M. Gucek, R. S. Balaban, E. Murphy and T. Finkel (2013). "The physiological role of mitochondrial calcium revealed by mice lacking the mitochondrial calcium uniporter." Nat Cell Biol 15(12): 1464-1472. Cerca con Google

Petronilli, V., D. Penzo, L. Scorrano, P. Bernardi and F. Di Lisa (2001). "The mitochondrial permeability transition, release of cytochrome c and cell death. Correlation with the duration of pore openings in situ." J.Biol.Chem. 276: 12030-12034. Cerca con Google

Piper, H. M., Y. Abdallah, S. Kasseckert and K. D. Schluter (2008). "Sarcoplasmic reticulum-mitochondrial interaction in the mechanism of acute reperfusion injury. Viewpoint." Cardiovasc.Res. 77(2): 234-236. Cerca con Google

Piper, H. M., K. Meuter and C. Schafer (2003). "Cellular mechanisms of ischemia-reperfusion injury." Ann Thorac Surg 75(2): S644-648. Cerca con Google

Plovanich, M., R. L. Bogorad, Y. Sancak, K. J. Kamer, L. Strittmatter, A. A. Li, H. S. Girgis, S. Kuchimanchi, J. De Groot, L. Speciner, N. Taneja, J. Oshea, V. Koteliansky and V. K. Mootha (2013). "MICU2, a paralog of MICU1, resides within the mitochondrial uniporter complex to regulate calcium handling." PLoS One 8(2): e55785. Cerca con Google

Raffaello, A., D. De Stefani, D. Sabbadin, E. Teardo, G. Merli, A. Picard, V. Checchetto, S. Moro, I. Szabo and R. Rizzuto (2013). "The mitochondrial calcium uniporter is a multimer that can include a dominant-negative pore-forming subunit." EMBO J 32(17): 2362-2376. Cerca con Google

Rasmussen, T. P., Y. Wu, M. L. Joiner, O. M. Koval, N. R. Wilson, E. D. Luczak, Q. Wang, B. Chen, Z. Gao, Z. Zhu, B. A. Wagner, J. Soto, M. L. McCormick, W. Kutschke, R. M. Weiss, L. Yu, R. L. Boudreau, E. D. Abel, F. Zhan, D. R. Spitz, G. R. Buettner, L. S. Song, L. V. Zingman and M. E. Anderson (2015). "Inhibition of MCU forces extramitochondrial adaptations governing physiological and pathological stress responses in heart." Proc Natl Acad Sci U S A 112(29): 9129-9134. Cerca con Google

Rasola, A. and P. Bernardi (2011). "Mitochondrial permeability transition in Ca(2+)-dependent apoptosis and necrosis." Cell Calcium 50(3): 222-233. Cerca con Google

Rees, D. M., A. G. Leslie and J. E. Walker (2009). "The structure of the membrane extrinsic region of bovine ATP synthase." Proc Natl Acad Sci U S A 106(51): 21597-21601. Cerca con Google

Rizzuto, R., S. D. De, A. Raffaello and C. Mammucari (2012). "Mitochondria as sensors and regulators of calcium signalling." Nat.Rev.Mol.Cell Biol. 13(9): 566-578. Cerca con Google

Rouslin, W., J. L. Erickson and R. J. Solaro (1986). "Effects of oligomycin and acidosis on rates of ATP depletion in ischemic heart muscle." Am.J.Physiol. 250(3 Pt 2): H503-508. Cerca con Google

Sancak, Y., A. L. Markhard, T. Kitami, E. Kovacs-Bogdan, K. J. Kamer, N. D. Udeshi, S. A. Carr, D. Chaudhuri, D. E. Clapham, A. A. Li, S. E. Calvo, O. Goldberger and V. K. Mootha (2013). "EMRE is an essential component of the mitochondrial calcium uniporter complex." Science 342(6164): 1379-1382. Cerca con Google

Schiaffino, S. and C. Mammucari (2011). "Regulation of skeletal muscle growth by the IGF1-Akt/PKB pathway: insights from genetic models." Skelet Muscle 1(1): 4. Cerca con Google

Seshacharyulu, P., P. Pandey, K. Datta and S. K. Batra (2013). "Phosphatase: PP2A structural importance, regulation and its aberrant expression in cancer." Cancer Lett 335(1): 9-18. Cerca con Google

Sohal, R. S. and R. G. Allen (1985). "Relationship between metabolic rate, free radicals, differentiation and aging: a unified theory." Basic Life Sci 35: 75-104. Cerca con Google

Steenbergen, C., M. E. Perlman, R. E. London and E. Murphy (1993). "Mechanism of preconditioning. Ionic alterations." Circ Res 72(1): 112-125. Cerca con Google

Steller, H. (1995). "Mechanisms and genes of cellular suicide." Science 267(5203): 1445-1449. Cerca con Google

Stephanou, A., B. Brar, Z. Liao, T. Scarabelli, R. A. Knight and D. S. Latchman (2001). "Distinct initiator caspases are required for the induction of apoptosis in cardiac myocytes during ischaemia versus reperfusion injury." Cell Death Differ 8(4): 434-435. Cerca con Google

Takagi, H., Y. Matsui and J. Sadoshima (2007). "The role of autophagy in mediating cell survival and death during ischemia and reperfusion in the heart." Antioxid Redox Signal 9(9): 1373-1381. Cerca con Google

Tong, H., W. Chen, C. Steenbergen and E. Murphy (2000). "Ischemic preconditioning activates phosphatidylinositol-3-kinase upstream of protein kinase C." Circ Res 87(4): 309-315. Cerca con Google

Zweier, J. L., J. T. Flaherty and M. L. Weisfeldt (1987). "Direct measurement of free radical generation following reperfusion of ischemic myocardium." Proc.Natl.Acad.Sci.U.S.A. 84(5): 1404-1407. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record