Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Todesco, Sara (2008) Tomato (Solanum lycopersicum) genome: sequencing and analysis of chromosome 12. [Tesi di dottorato]

Full text disponibile come:

Documento PDF

Abstract (inglese)

The Solanaceae family includes a number of closely related plant species with diverse phenotypes that have been exploited for agronomic, pharmaceutical and ornamental purposes. In 2003 'The International Solanaceae Genome Project' (SOL) launched the initiative to sequence the 220 Mb of euchromatin of the tomato (Solanum lycopersicum) genome as the central part of a wider project aiming to increase our knowledge about diversity and adaptation in crop species ( The sequencing proceeds on a BAC-by-BAC basis with the 12 chromosomes divided over several genomic laboratories of ten different countries. As a member of the project, the Italian research team is involved in the sequencing of the euchromatin portions of chromosome 12.
During my PhD project, I had the opportunity to face this challenging project from different points of view including molecular, cytogenetic and bioinformatic analysis.
A large part of my effort was focused in setting up a sequencing pipeline and starting the construction of a minimal subset of BAC clones covering the chromosome 12 euchromatin with minimal overlaps. The progress can be viewed through the development of the TPF and AGP files, available from the SGN repository (
A key step for the success of the sequencing project is the identification of a reliable minimal tiling path of neighbouring BAC clones. To improve this process, I contributed to the development of a informatics pipeline called PABS (Platform Assisted BAC-by-BAC Sequencing), freely available to the community at our web site ( (Todesco S. et al., 2008). PABS has been specifically designed to minimize the negative impact of genomic repeats, considering that a repeat element can connect non-contiguous regions of the genome,
leading to misalignment of BACs and possible "jumps" along the genome. PABS has two main functions: 1) PABS-Select, to choose suitable overlapping clones for the sequencing walk; 2) PABS-Validate to verify whether a BAC under analysis is actually overlapping the preceding BAC.
A BAC-based physical map is a fundamental tool to further assist the sequencing work but also to connect the minimal tiling path of BACs. In my study, I improved the molecular combing technique (Lebofsky R. et al., 2003; Monier K et al., 2001; Allemand JF et al., 1997) for producing multicolour FISH on stretched genomic DNA molecules. This technique allows accurate mapping of BAC clones and precise measurement of physical distances between contigs with a spatial resolution of 1 to 5 kb.
Finally, to explore the data generated by the BAC-by-BAC sequencing I contributed to a preliminary annotation of the tomato BACs sequences. As a result of this analysis, we outlined some features of the gene organization in the tomato genome.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Valle, Giorgio
Dottorato (corsi e scuole):Ciclo 20 > Corsi per il 20simo ciclo > FISIOLOGIA MOLECOLARE E BIOLOGIA STRUTTURALE
Data di deposito della tesi:31 Gennaio 2008
Anno di Pubblicazione:31 Gennaio 2008
Parole chiave (italiano / inglese):Genome sequencing; Tomato; Gene Prediction; FISH
Settori scientifico-disciplinari MIUR:Area 05 - Scienze biologiche > BIO/11 Biologia molecolare
Struttura di riferimento:Dipartimenti > Dipartimento di Biologia
Codice ID:940
Depositato il:23 Set 2008
Simple Metadata
Full Metadata
EndNote Format


I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. Allemand JF, Bensimon D, Jullien L, Bensimon A, Croquette V. (1997). pH-dependent specific binding and combing of DNA. Biophysical journal 73(4):2064-2070. Cerca con Google

2. Allen JE, Salzberg SL. (2005). JIGSAW: integration of multiple sources of evidence for gene prediction. Bioinformatics 21(18):3596-3603. Cerca con Google

3. Andrews PD, Knatko E, Moore WJ, Swedlow JR. (2003). Mitotic mechanics: the auroras come into view. Current opinion in cell biology 15(6):672-683. Cerca con Google

4. Arabidopsis Genome Initiative. (2000). Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796-815. Cerca con Google

5. Arumuganathan, K and Earle, ED. (1991). Estimation of nuclear DNA content of plants by flow cytometry. Plant Molecular Biology Reporter 9:229-233. Cerca con Google

6. Bairoch A, Apweiler R, Wu CH, Barker WC, Boeckmann B, Ferro S, Gasteiger E, Huang H, et al. (2005). The Universal Protein Resource (UniProt). Nucleic Acids Research 33:D154-159. Cerca con Google

7. Batzoglou S, Berger B, Mesirov J, Lander ES. (1999). Sequencing a genome by walking with clone-end sequences: a mathematical analysis. Genome Research 9(12):1163-1174. Cerca con Google

8. Birney E, Clamp M, Durbin R. (2004). GeneWise and Genomewise. Genome Research 14(5):988-995. Cerca con Google

9. Budiman MA, Chang SB, Lee S, Yang TJ, Zhang HB, de Jong H, Wing RA. (2004). Localization of jointless-2 gene in the centromeric region of tomato chromosome 12 based on high resolution genetic and physical mapping. Theoretical and applied genetics 108(2):190-196. Cerca con Google

10. Budiman MA, Mao L, Wood TC, Wing RA. 2000. A deep-coverage tomato BAC library and prospects toward development of an STC framework for genome sequencing. Genome Research 10(1):129-136. Cerca con Google

11. Campagna D, Romualdi C, Vitulo N, Del Favero M, Lexa M, Cannata N, Valle G. (2005). RAP: a new computer program for de novo identification of repeated sequences in whole genomes. Bioinformatics 21(5):582-588. Cerca con Google

12. Carmena M, Earnshaw WC. (2003). The cellular geography of aurora kinases. Nature reviews Molecular cell biology 4(11):842-854. Cerca con Google

13. Chen JM, Dando PM, Stevens RA, Fortunato M, Barrett AJ. (1998). Cloning and expression of mouse legumain, a lysosomal endopeptidase. The Biochemical journal 335 (1):111-117. Cerca con Google

14. Conti C, Bensimon A. (2002). A combinatorial approach for fast, high-resolution mapping. Genomics 80(2):135-137. Cerca con Google

15. Demidov D, Van Damme D, Geelen D, Blattner FR, Houben A. (2005). Identification and dynamics of two classes of aurora-like kinases in Arabidopsis and other plants. The Plant cell 17(3):836-848. Cerca con Google

16. Demidov D, Van Damme D, Geelen D, Blattner FR, Houben A. (2005). Identification and dynamics of two classes of aurora-like kinases in Arabidopsis and other plants. The Plant Cell 17(3):836-848. Cerca con Google

17. Doganlar S, Frary A, Daunay MC, Lester RN, Tanksley SD. (2002). A comparative genetic linkage map of eggplant (Solanum melongena) and its implications for genome evolution in the solanaceae. Genetics 161(4):1697-1711. Cerca con Google

18. Engler FW, Hatfield J, Nelson W, Soderlund CA. (2003). Locating sequence on FPC maps and selecting a minimal tiling path. Genome Research 13(9):2152-2163. Cerca con Google

19. Eshed Y, Zamir D. (1995). An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics 141(3):1147-1162. Cerca con Google

20. Ewing B, Green P. (1998). Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Research 8(3):186-194. Cerca con Google

21. Fei Z, Tang X, Alba RM, White JA, Ronning CM, Martin GB, Tanksley SD, Giovannoni JJ. (2004). Comprehensive EST analysis of tomato and comparative genomics of fruit ripening. The Plant Journal 40(1):47-59. Cerca con Google

22. Fransz PF, Alonso-Blanco C, Liharska TB, Peeters AJ, Zabel P, de Jong JH. (1996). High-resolution physical mapping in Arabidopsis thaliana and tomato by fluorescence in situ hybridization to extended DNA fibres. The Plant journal 9(3):421-430. Cerca con Google

23. Ganal M, Young ND, Tanksley SD. (1989). Pulsed field gel electrophoresis and phyiscal mapping of large DNA fragments in the Tm-2a region of chromsosome 9 in tomato. Molecular and general genetics 215:395-400. Cerca con Google

24. Ganal MW, Czihal R, Hannappel U, Kloos DU, Polley A, Ling HQ.(1998). Sequencing of cDNA clones from the genetic map of tomato (Lycopersicon esculentum). Genome Research 8(8):842-7. Cerca con Google

25. Ganal MW, Lapitan NL, Tanksley SD. (1991). Macrostructure of the tomato telomeres. The Plant Cell 3(1):87-94. Cerca con Google

26. Ganal MW, Tanksley SD. (1989). Analysis of tomato DNA by pulsed field gel electrophoresis. Plant Molecular Biology Reporter 7(1): 17-27. Cerca con Google

27. Gordon D, Abajian C, Green P. (1998). Consed: a graphical tool for sequence finishing. Genome Research 8(3):195-202. Cerca con Google

28. Gordon D, Abajian C, Green P. (1998). Consed: a graphical tool for sequence finishing. Genome Research 8(3):195-202. Cerca con Google

29. Gordon D, Desmarais C, Green P. (2001). Automated finishing with autofinish. Genome Research 11(4):614-25. Cerca con Google

30. Green ED. (2001). Strategies for the systematic sequencing of complex genomes. Nature reviews Genetics 2(8):573-583. Cerca con Google

31. Guigo R. (1998). Assembling genes from predicted exons in linear time with dynamic programming. Journal of Computational Biology 5:681-702. Cerca con Google

32. Guindon S, Gascuel O. (2003). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology 52(5):696-704. Cerca con Google

33. Hanahan D, Joel Jessee J, Bloom FR. (1999). Plasmid transformation of Escherichia coli and other bacteria. Methods in Enzymology 204:63-113. Cerca con Google

34. Hara-Nishimura I, Hatsugai N, Nakaune S, Kuroyanagi M, Nishimura M. (2005). Vacuolar processing enzyme: an executor of plant cell death. Current Opinion in Plant Biology 8(4):404-408. Cerca con Google

35. International Rice Genome Sequencing Project. (2005). The map-based sequence of the rice genome. Nature 436(7052):793-800. Cerca con Google

36. Jackson SA, Cheng Z, Wang ML, Goodman HM, Jiang J. (2000). Comparative fluorescence in situ hybridization mapping of a 431-kb Arabidopsis thaliana bacterial artificial chromosome contig reveals the role of chromosomal duplications in the expansion of the Brassica rapa genome. Genetics 156(2):833-838. Cerca con Google

37. Jackson SA, Wang ML, Goodman HM, Jiang J. (1998). Application of fiber-FISH in physical mapping of Arabidopsis thaliana. Genome 41(4):566-572. Cerca con Google

38. Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, et al. (2007). The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449(7161):463-467. Cerca con Google

39. Kawabe A, Matsunaga S, Nakagawa K, Kurihara D, Yoneda A, Hasezawa S, Uchiyama S, Fukui K. (2005). Characterization of plant Aurora kinases during mitosis. Plant molecular biology 58(1):1-13. Cerca con Google

40. Kent WJ. (2002). BLAT--the BLAST-like alignment tool. Genome Research 12(4):656-64. Cerca con Google

41. Kinoshita T, Yamada K, Hiraiwa N, Kondo M, Nishimura M, Hara-Nishimura I. (1999). Vacuolar processing enzyme is up-regulated in the lytic vacuoles of vegetative tissues during senescence and under various stressed conditions. The Plant journal 19(1):43-53. Cerca con Google

42. Korf I. (2004). Gene finding in novel genomes. BMC Bioinformatics 5:59. Cerca con Google

43. Ku HM, Vision T, Liu J, Tanksley SD. (2000). Comparing sequenced segments of the tomato and Arabidopsis genomes: large-scale duplication followed by selective gene loss creates a network of synteny. Proceedings of the National Academy of Sciences of the United States of America 97(16):9121-9126. Cerca con Google

44. Kulikova O, Gualtieri G, Geurts R, Kim DJ, Cook D, Huguet T, de Jong JH, Fransz PF, Bisseling T. (2001). Integration of the FISH pachytene and genetic maps of Medicago truncatula. The Plant journal 27(1):49-58. Cerca con Google

45. Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, Salzberg SL. (2004). Versatile and open software for comparing large genomes. Genome Biology 5(2):R12. Cerca con Google

46. Lebofsky R, Bensimon A. (2003). Single DNA molecule analysis: applications of molecular combing. Briefings in functional genomics and proteomics 1(4):385-396. Cerca con Google

47. Li L, Yang J, Tong Q, Zhao L, Song Y. (2005). A novel approach to prepare extended DNA fibers in plants. Cytometry Part A 63(2):114-117. Cerca con Google

48. Lin C, Mueller LA, Mc Carthy J, Crouzillat D, Pétiard V, Tanksley SD. (2005). Coffee and tomato share common gene repertoires as revealed by deep sequencing of seed and cherry transcripts. Theoretical and applied genetics 112(1):114-130. Cerca con Google

49. Livingstone KD, Lackney VK, Blauth JR, van Wijk R, Jahn MK. (1999). Genome mapping in capsicum and the evolution of genome structure in the solanaceae. Genetics 152(3):1183-1202. Cerca con Google

50. Lockton S, Gaut BS. (2005). Plant conserved non-coding sequences and paralogue evolution. Trends in genetics 21(1):60-65. Cerca con Google

51. Marra MA, Kucaba TA, Dietrich NL, Green ED, Brownstein B, Wilson RK, McDonald KM, Hillier LW, McPherson JD, Waterston RH. (1997). High throughput fingerprint analysis of large-insert clones. Genome Research 7(11):1072-1084. Cerca con Google

52. Monier K, Heliot L, Rougeulle C, Heard E, Robert-Nicoud M, Vourc'h C, Bensimon A, Usson Y. (2001). Improvement of FISH mapping resolution on combed DNA molecules by iterative constrained deconvolution: a quantitative study. Cytogenetics and Cell Genetics 92(1-2):59-62. Cerca con Google

53. Mueller LA, Solow TH, Taylor N, Skwarecki B, Buels R, Binns J, Lin C, Wright MH, et al. 2005. The SOL Genomics Network. A comparative resource for Solanaceae biology and beyond. Plant Physiology 138:1310-1317. Cerca con Google

54. Ouyang S, Buell CR. (2004). The TIGR Plant Repeat Databases: a collective resource for the identification of repetitive sequences in plants. Nucleic Acids Research 32:D360-363. Cerca con Google

55. Peterson DG, Pearson WR, Stack SM. (1998). Characterization of the tomato (Lycopersicon esculentum) genome using in vitro and in situ DNA reassociation. Genome 41:346–356. Cerca con Google

56. Peterson DG, Price HJ, Johnson JS, Stack SM. (1996). DNA content of. heterochromatin in tomato (Lycopersicon esculentum) pachytene chromosomes. Genome 39:77-82. Cerca con Google

57. Sherman JD, Stack SM. (1989). Two-dimensional spreads of synaptonemal complexes from solanaceous plants. VI. High-resolution recombination nodule map for tomato (Lycopersicon esculentum). Genetics 141(2):683-708. Cerca con Google

58. Shirahama-Noda K, Yamamoto A, Sugihara K, Hashimoto N, Asano M, Nishimura M, Hara-Nishimura I. (2003). Biosynthetic processing of cathepsins and lysosomal degradation are abolished in asparaginyl endopeptidase-deficient mice. The Journal of biological chemistry 278(35):33194-33199. Cerca con Google

59. Siegel AF, Trask B, Roach JC, Mahairas GG, Hood L, van den Engh G. (1999). Analysis of sequence-tagged-connector strategies for DNA sequencing. Genome Research 9(3):297-307. Cerca con Google

60. Stupar RM, Lilly JW, Town CD, Cheng Z, Kaul S, Buell CR, Jiang J. (2001). Complex mtDNA constitutes an approximate 620-kb insertion on Arabidopsis thaliana chromosome 2: implication of potential sequencing errors caused by large-unit repeats. Proceedings of the National Academy of Sciences of the United States of America 98(9):5099-5103. Cerca con Google

61. Tanksley SD, Ganal MW, Prince JP, de Vicente MC, Bonierbale MW, Broun P, Fulton TM, Giovannoni JJ, et al. 1992. High density molecular linkage maps of the tomato and potato genomes. Genetics 132:1141-1160. Cerca con Google

62. Thompson JD, Higgins DG, Gibson TJ. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22: 4673–4680. Cerca con Google

63. Todesco S, Campagna D, Levorin F, D'Angelo M, Schiavon R, Valle G, Vezzi A. (2008). PABS: An online platform to assist BAC-by-BAC sequencing projects. BioTechniques 44(1):60-64. Cerca con Google

64. Tor M, Manning K, King GJ, Thompson AJ, Jones GH, Seymour GB, Amstrong SJ. (2002). Genetic analysis and FISH mapping of the Colourless non-ripening locus of tomato. Theoretical and applied genetics 104:165-170. Cerca con Google

65. Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, et al. (2006). The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313(5793):1596-1604. Cerca con Google

66. van Der Hoeven RS, Monforte AJ, Breeden D, Tanksley SD, Steffens JC. (2000). Genetic control and evolution of sesquiterpene biosynthesis in Lycopersicon esculentum and L. hirsutum. The Plant Cell 12(11):2283-2294. Cerca con Google

67. van der Knaap E, Sanyal A, Jackson SA, Tanksley SD. (2004). High-resolution fine mapping and fluorescence in situ hybridization analysis of sun, a locus controlling tomato fruit shape, reveals a region of the tomato genome prone to DNA rearrangements. Genetics 168(4):2127-2140. Cerca con Google

68. Wang Y, Tang X, Cheng Z, Mueller L, Giovannoni J, Tanksley SD. (2006). Euchromatin and pericentromeric heterochromatin: comparative composition in the tomato genome. Genetics 172(4):2529-2540. Cerca con Google

69. Wang Y, van der Hoeven RS, Nielsen R, Mueller LA, Tanksley SD. (2005). Characteristics of the tomato nuclear genome as determined by sequencing undermethylated EcoRI digested fragments. Theoretical and applied genetics 112(1):72-84. Cerca con Google

70. Weier HU. (2001). DNA fiber mapping techniques for the assembly of high-resolution physical maps. The journal of histochemistry and cytochemistry 49(8):939-948. Cerca con Google

71. Wendl MC, Marra MA, Hillier LW, Chinwalla AT, Wilson RK, Waterston RH. (2001). Theories and applications for sequencing randomly selected clones. Genome Research 11(2):274-280. Cerca con Google

72. Wu TD, Watanabe CK. (2005). GMAP: a genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics 21(9):1859-1875. Cerca con Google

73. Yamada K, Shimada T, Kondo M, Nishimura M, Hara-Nishimura I. (1999). Multiple functional proteins are produced by cleaving Asn-Gln bonds of a single precursor by vacuolar processing enzyme. The Journal of biological chemistry 274(4):2563-2570. Cerca con Google

74. Yamamoto N, Tsugane T, Watanabe M, Yano K, Maeda F, Kuwata C, Torki M, Ban Y, Nishimura S, Shibata D. (2005). Expressed sequence tags from the laboratory-grown miniature tomato (Lycopersicon esculentum) cultivar Micro-Tom and mining for single nucleotide polymorphisms and insertions/deletions in tomato cultivars. Gene 356:127-134. Cerca con Google

75. Yang TJ, Lee S, Chang SB, Yu Y, de Jong H, Wing RA. (2005). In-depth sequence analysis of the tomato chromosome 12 centromeric region: identification of a large CAA block and characterization of pericentromere retrotranposons. Chromosoma 114(2):103-117. Cerca con Google

76. Zakharov A, Müntz K. (2004). Seed legumains are expressed in stamens and vegetative legumains in seeds of Nicotiana tabacum L. Journal of experimental botany 55(402):1593-1595. Cerca con Google

77. Zhong XB, Fransz PF, Wennekes-Eden J, Ramanna MS, van Kammen A, Zabel P, Hans de Jong J. (1998). FISH studies reveal the molecular and chromosomal organization of individual telomere domains in tomato. The Plant journal : for cell and molecular biology 13(4):507-517. Cerca con Google

78. Zwick MS, Hanson RE, McKnight TD, Islam-Faridi MN, Stelly DM, Wing RA. (1997). A rapid procedure for the isolation of Cot-1 DNA from plants. Genome 40:138-142. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record