Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Michelini, Tamara (2016) Analisi sperimentale delle scabrezze di superficie e di fondo per la modellazione dinamica dei flussi torrentizi e della caduta massi. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF (Tesi di Dottorato) - Versione accettata
13Mb

Abstract (inglese)

This research project is aimed to study the mechanisms of motion resistance in mountain streams and slopes to better understand the explanation dynamics of some natural processes. In particular, the role-played by the local topography and the effects of the presence of vegetation. Scientific objectives are to analyse in detail the interactions between processes, sliding surface, and vegetation. The investigation was carry out through field observations and surveys of two real events of debris flows and rockfall event, and small-scale experiment of debris flow and full-scale experiment of rockfall.
The project objectives have been structured on three main points: 1. providing a critical review of the literature procedures for estimating motion resistance for each investigated process; 2. exploring the possible relationship between process and roughness elements, in particular morphology, topography, and vegetation; 3. defining a new methodology for surface roughness quantification spatially distributed and implement it within a numerical model.
The final goal of this study is to deepen knowledge about the kinematics of natural processes and to improve guidelines management for protection forest. Consequently, at first the issues are dealt with a scientific way and later providing practical guidance.
The following study areas are chosen for the investigation: a) a portion of the slopes of Mount Antelao (Vodo di Cadore, Belluno Province) recently affected by a massive rockfall and the forest stand downstream; b) an avalanche channel in the Belledonne Massif (municipal forest of Vaujany, France) where full-scale tests of rockfalls were carried out; c) two debris-flow deposits and the flood-involved trees along the Somprade (Auronzo di Cadore, Belluno Province) and Senago (Bolzano, Bolzano) creeks; d) two reaches of a fish ladder built on the river bank of Vanoi torrent (Canal San Bovo, Trento Province) with a step-pool morphology, offering an equivalent to a full-scale physical model.
In addition, to support the field work, the study of the relations between debris flows and forest stand was deepened by executing small-scale laboratory tests on a tilting plane rheometer of the faculty of agricultural and food sciences of Milan.
The study of the mutual interactions between rockfall and debris flows and forest stand was carried out at different scales of analysis: through field post-event investigations, small-scale laboratory tests (for debris-flow process) and finally performing some numerical modelling. The field surveys have allowed to increase the knowledges of the damage produced by the boulders and by debris-flows impacts on trees, and how they can provide an effective mobility suppression. Laboratory tests have allowed to examine the effect of the forest management (high forest and coppice forest) on the final deposits. The numerical modelling have allowed to explore in more detail the way and the limitations of the implementation of trees and how the protection offered by an even-aged forest changes in the medium to long term.
Field evidences and laboratory simulations confirm that shrubs and trees influence the deposition processes of rockfall and debris flows. In particular, the importance of coupling forest population growth model and process numerical model for the study of rockfall and comparing the scenario without forest with forested scenarios.
The different debris-flow regimes affect the contribution of trees in the sediment deposition and mobility suppression. When, the collisional regime dominates, large trees with low-density produce higher deposit thicknesses, directly proportional to the diameter. Whereas, when frictional regime dominates, debris-flow suppression depends mainly on the surface resistance, so a dense forest of small trees, or shrubs, provides better retention capacity. In addition, coppice forest seems able to contribute to debris-flows deposition on shorter distances, which decrease with increasing of the solid concentration.
The study of the hydraulic kinematic in step-pool morphology confirms previous researches: the standard deviation of the bed profile provides a more reliable measure of roughness over different channel morphologies, as opposed to grain size. Moreover, in these morphologies, the relative submergence decreasing and the slope increasing seem to collaborate in the dissipation of energy and the most of the energy loss, especially for low discharge, is due to the 'spill resistance’.
A general overestimation of the variables analysed was produced by the implementation in RockyFOR-3D of the new automated method for defining the roughness parameter proposed in this work. Nevertheless, the good approximation of the maximum values indicates a potential for development of the proposed method.

Abstract (italiano)

Questa ricerca è finalizzata allo studio dei meccanismi di resistenza al moto nei corsi d’acqua montani e sui versanti per comprendere meglio le dinamiche di esplicazione dei diversi processi naturali. In particolare il ruolo svolto dalla topografia locale e gli effetti della presenza della vegetazione arborea. Gli intenti scientifici sono quindi quelli di analizzare in modo approfondito le interazioni tra i singoli processi naturali, la superficie di scorrimento e il soprassuolo arboreo nella definizione delle resistenza al moto. L’indagine è stata condotta attraverso osservazioni e rilievi di campo relativi a due eventi reali di debris flow ed un evento di rockfall; inoltre, sono stati condotti test in scala ridotta di debris flow e in scala reale di caduta massi e correnti idrauliche.
Gli obiettivi del progetto sono stati strutturati su tre tematiche principali: 1.fornire una revisione critica delle procedure utilizzate in letteratura per la stima della resistenza al moto nei confronti dei singoli processi consideranti; 2. esaminare le possibili interrelazioni tra il processo e gli elementi di scabrezza, in particolare la morfologia e la topografia del terreno e la vegetazione arborea ed arbustiva; 3. definire una nuova metodologia per la quantificazione della scabrezza superficiale spazialmente distribuita, in grado di rappresentare gli effetti dell’irregolarità del terreno e implementarla all'interno di un programma di modellazione numerica.
Scopo finale della ricerca è quello di approfondire le conoscenze riguardanti la cinematica dei processi naturali analizzati e giungere alla definizione di indicazioni per la gestione dei boschi di protezione.
Le aree di studio scelte sono state le seguenti: a) una porzione di versante del Monte Antelao (Vodo di Cadore, Belluno) recentemente oggetto di un crollo di roccia che ha interessato il popolamento forestale posto a valle; b) un canale da valanga presente nel massiccio di Belledonne, nella foresta comunale di Vaujany (Francia) in cui sono state condotte prove a scala reale di caduta massi; c) il deposito detritico di due eventi di debris flow e la componente forestale coinvolta lungo i rii Somprade (Auronzo di Cadore, Belluno) ed Senago (Val di Vizze, Bolzano); d) due tratti di una scala di rimonta per pesci collocata a lato del Torrente Vanoi (Canal San Bovo, Trento), costruite con una morfologia a step-pool, assimilabili ad un modello fisico a scala reale. Inoltre, a supporto del lavoro di campo, lo studio dei debris flow e le relazioni con la componente forestale sono state approfondite conducendo test di laboratorio in scala ridotta su reometro a piano inclinato presso la Facoltà di Agraria dell’Università di Milano.
Lo studio delle mutue relazioni del crollo di roccia e delle colate detritiche con la foresta è stato condotto a diversa scala: attraverso indagini di campo post-evento, prove di laboratorio a scala ridotta (limitatamente per il processo di colata detritica) ed infine eseguendo alcune modellazioni numeriche. La campagna di rilievi ha permesso di approfondire le conoscenze sui danni prodotti dall’impatto dei massi e dei flussi detritici sugli alberi e come questi reagiscono, nonché il modo in cui possono fornire, con la loro presenza, un’effettiva azione di contenimento delle runout. I test di laboratorio hanno consentito di esaminare l’effetto complessivo del popolamento forestale in conoide sui depositi dei debris flow e come questo cambia in funzione del tipo di governo (a fustaia o a ceduo). Le modellazioni numeriche hanno invece permesso di esplorare più in dettaglio le modalità e le limitazioni dell’implementazione della componente arborea ed arbustiva all'interno del modelli stessi e come cambia il potere di protezione offerto da un soprassuolo forestale nei confronti del crollo di roccia durante il suo ciclo di sviluppo, cioè nel medio/lungo periodo. I software impiegati sono stati RockyFOR-3D per la caduta massi e il crollo di roccia e FLO-2D per le colate detritiche.
Le evidenze di campo e le simulazioni in laboratorio hanno messo in luce come l’effetto della vegetazione arborea ed arbustiva influenzi i processi deposizionali del crollo di roccia e dei debris flow. In particolare, l’importanza di accoppiare modelli di crescita del popolamento forestale a modelli di simulazione numerica del processo del crollo di roccia e della caduta massi e il confronto tra lo scenario non boscato con gli scenari boscati. Per le colate detritiche è emerso che il diverso regime di deflusso influenza il modo in cui gli alberi concorrono alla soppressione del movimento, ovvero quando domina il regime collisionale, alberi di grandi dimensioni e bassa densità producono spessori di deposito più elevati, direttamente proporzionali al diametro stesso, mentre, quando domina il regime frizionale, il deposito del materiale è favorito dall'aumento della superficie di scorrimento, perciò una foresta densa composta da alberi di piccole dimensioni o arbusti forniscono una migliore capacità di ritenzione. Inoltre, una gestione a ceduo sembra capace di contribuire sempre alla deposizione delle colate detritiche su distanze che diminuiscono all’aumentare della concentrazione solida.
Per quanto riguarda lo studio cinematico delle correnti idrauliche condotto eseguendo prove di diversa portata sui tratti a step-pool hanno confermato precedenti studi che affermano che la deviazione standard fornisce una misura più affidabile di scabrezza nelle diverse morfologie di canale, al contrario della granulometria; che la maggior parte della perdita di energia, soprattutto per le portate basse, è dovuta alla "spill resistance"; e che, in queste morfologie, la sommergenza relativa diminuendo e la pendenza aumentando cooperano nel favorire la dissipazione di energia.
Il tentativo di proporre un nuovo metodo automatizzato per la definizione del parametro di scabrezza da impiegare nel modello numerico di simulazione tridimensionale della caduta massi ha prodotto una generale sovrastima delle variabili analizzate. Ciononostante, la buona approssimazione dei valori massimi ne indicano un potenziale di sviluppo.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:D'AGOSTINO, VINCENZO
Dottorato (corsi e scuole):Ciclo 28 > Scuole 28 > TERRITORIO, AMBIENTE, RISORSE E SALUTE
Data di deposito della tesi:30 Gennaio 2016
Anno di Pubblicazione:30 Gennaio 2016
Informazioni aggiuntive:Indirizzo: Idronomia Ambientale
Parole chiave (italiano / inglese):pericoli naturali/caduta massi/colate detritiche/correnti idrauliche/step-pool/scabrezza/foreste di protezione
Settori scientifico-disciplinari MIUR:Area 07 - Scienze agrarie e veterinarie > AGR/08 Idraulica agraria e sistemazioni idraulico-forestali
Struttura di riferimento:Dipartimenti > Dipartimento Territorio e Sistemi Agro-Forestali
Codice ID:9407
Depositato il:20 Ott 2016 09:53
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Abe, K., and Iwamoto, M. (1986). An evaluation of tree-root effect on slope stability by tree-root strength. Journal of the Japanese Forestry Society, 68, 505-510. Cerca con Google

Aberle, J., and Smart, G.M. (2003). The influence of roughness structure on flow resistance on steep slopes. Journal of Hydraulic Research, 41(3), 259-269. Doi:10.1080/00221680309499971 Cerca con Google

Abernethy, B., and Rutherfurd, I.D. (2000). Does the weight of riparian trees destabilize riverbanks?. Regulated Rivers: Research and Management, 16(6), 565-576. Doi:10.1002/1099-1646(200011/12)16:6<565::aid-rrr585>3.0.co;2-1 Cerca con Google

Abrahams, A.D., and Parsons, A.J. (1991). Resistance to overland flow on desert pavement and its implications for sediment transport modeling. Water Resources Research, 27(8), 1827-1836. Doi:10.1029/91wr01010 Cerca con Google

Abrahams, A.D., Li, G., and Atkinson, J.F. (1995). Step-pool streams: Adjustment to maximum flow resistance. Water Resources Research, 31(10), 2593-2602. Doi:10.1029/95WR01957 Cerca con Google

Agliardi, F., and Crosta, G.B. (2003). High resolution three-dimensional numerical modelling of rockfalls. International Journal of Rock Mechanics and Mining Sciences, 40(4), 455-471. Doi:10.1016/s1365-1609(03)00021-2 Cerca con Google

Albani, M., Klinkenberg, B., Andison, D.W., and Kimmins, J.P. (2004). The choice of window size in approximating topographic surfaces from Digital Elevation Models. International Journal of Geographical Information Science, 18(6), 577-593. Doi:10.1080/13658810410001701987 Cerca con Google

Ancey, C., and Charlier, C. (1996). Quelques réflexions autour de la classification des avalanches / Some thoughts on a classification of avalanches. Revue de Géographie Alpine, 84(1), 9-21. Doi:10.3406/rga.1996.3844 Cerca con Google

Ancey, C. (2001). 21 Debris Flows and Related Phenomena. Lecture Notes in Physics, 528-547. Doi:10.1007/3-540-45670-8_21 Cerca con Google

Anderson, G., and McClung, D. (2012). Snow avalanche penetration into mature forest from timber-harvested terrain. Canadian Geotechnical Journal, 49(4), 477-484. Doi:10.1139/t2012-018 Cerca con Google

Arattano, M., Franzi, L., and Marchi, L. (2006). Influence of rheology on debris-flow simulation. Natural Hazards and Earth System Science, 6(4), 519-528. Doi:10.5194/nhess-6-519-2006 Cerca con Google

Armanini A., and Scotton, P. (1992). Experimental analysis on the dynamic impact of a debris flow on structures. In: Proceedings of the International Symposium Interpraevent, 6, 107-116. Cerca con Google

Armanini, A. (1999). Dinamica delle Colate di Detriti. In: Conferenza Previsione e Prevenzione di Movimenti Franosi Rapidi. GEAM. Trento, June 17-18-19 1999. Trento, pp. 207-221. Cerca con Google

Armanini, A., Righetti, M., and Grisenti, P. (2005). Direct measurement of vegetation resistance in prototype scale. Journal of Hydraulic Research, 43(5), 481-487. Doi:10.1080/00221680509500146ASCE Task Force (1963). Reports on friction factors on open channels. Journal of the Hydraulics Division, 89(2), 97-143. Cerca con Google

Attiwill, P.M. (1994). The disturbance of forest ecosystems: the ecological basis for conservative management. Forest Ecology and Management, 63(2-3), 247-300. Doi:10.1016/0378-1127(94)90114-7 Cerca con Google

Aydin, A., Köse, N., Akkemik, Ü., and Yurtseven, H. (2012). Assessment and analysis of rockfall-caused tree injuries in a Turkish fir stand: A case study from Kastamonu-Turkey. Journal of Mountain Science, 9(2), 137-146. Doi:10.1007/s11629-012-2233-9 Cerca con Google

Azzoni, A., and de Freitas, M.H. (1995). Experimentally gained parameters, decisive for rock fall analysis. Rock Mechanics and Rock Engineering, 28(2), 111-124. Doi:10.1007/bf01020064 Cerca con Google

Badran, W. (2012). Il bosco protettivo contro la caduta sassi – il legno è più duro del sasso?. http://www.bosco-di-protezione.ch Vai! Cerca con Google

Bagnold, R.A. (1954). Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear. In: Proceedings of the Royal Society of London A, 225: 49-63. Cerca con Google

Baptist M.J., Penning, W.E., Duel, H., Smits, A.J.M., Geerling, G.W., Lee, G.E.M., and Alphen, J.S.L. (2004). Assessment of the effects of cyclic floodplain rejuvenation on flood levels and biodiversity along the Rhine River. River Research and Application, 20, 285-297. Doi:10.1002/rra.778 Cerca con Google

Baptist, M.J., Babovic, V., Rodríguez Uthurburu, J., Keijzer, M., Uittenbogaard, R.E., Mynett, A., and Verwey, A. (2007). On inducing equations for vegetation resistance. Journal of Hydraulic Research, 45(4), 435-450. Doi:10.1080/00221686.2007.9521778 Cerca con Google

Barbolini, M. (1996). Sulla modellazione delle valanghe di neve densa. Politecnico di Milano. Tesi di Laurea. Cerca con Google

Baroni, C., Armiraglio, S., Gentili, R., and Carton, A. (2007). Landform-vegetation units for investigating the dynamics and geomorphologic evolution of alpine composite debris cones (Valle dell'Avio, Adamello Group, Italy). Geomorphology, 84(1), 59-79. Doi:10.1016/j.geomorph.2006.07.002 Cerca con Google

Bartelt, P., and Stöckli, V. (2001). The influence of tree and branch fracture, overturning and debris entrainment on snow avalanche flow. Annals of Glaciology, 32(1), 209-216. Doi:10.3189/172756401781819544 Cerca con Google

Bathurst, J.C. (1985). Flow resistance estimation in mountain rivers. Journal of Hydraulic Engineering, 111(4), 625-643. Cerca con Google

Bathurst, J.C., Burton, A., and Ward, T. J. (1997). Debris Flow Run-Out and Landslide Sediment Delivery Model Tests. Journal of Hydraulic Engineering, 123(5), 410-419. Doi:10.1061/(asce)0733-9429(1997)123:5(410 Cerca con Google

Bebi, P., Kulakowski, D., and Rixen, C. (2009). Snow avalanche disturbances in forest ecosystems-State of research and implications for management. Forest Ecology and Management, 257(9), 1883-1892. Doi:10.1016/j.foreco.2009.01.050 Cerca con Google

Benda, L.E., and Dunne, T. (1997). Stochastic forcing of sediment routing and storage in channel networks. Water Resources Research, 33(12), 2865–2880. Doi:/10.1029/97wr02387 Cerca con Google

Beretti, R., Deferrari, F., Dotta, A., Haudemand, J.C., Meloni, F., Motta, R., and Terzuolo, G. (2009). Le foreste di protezione diretta: definizione, cartografia ed analisi della attitudine dei popolamenti forestali a svolgere la funzione protettiva. In: Atti del Terzo Congresso Nazionale di Selvicoltura, Taormina, 16-19 Ottobre 2008. Accademia Italiana di Scienze Forestali, Firenze. Volume I: 460-465. Cerca con Google

Berger, F., Corominas, J., Lopez-Carreras, C., Brauner, M., Kienholz, H., and Grassl, H. (2001). ROCKFOR Project, Rockfall-Forest Interrelation efficiency of the Protective Function of Mountain Forest against Rockfall. First Annual Report. Cerca con Google

Berger, F., and Dorren, L.K.A. (2007). Principles of the tool Rockfor.net for quantifying the rockfall hazard below a protection forest. Schweizerische Zeitschrift Fur Forstwesen, 158(6), 157-165. Doi:10.3188/szf.2007.0157 Cerca con Google

Berti, M., and Simoni, A. (2007). Prediction of debris flow inundation areas using empirical mobility relationships. Geomorphology, 90(1-2), 144-161. Doi:10.1016/j.geomorph.2007.01.014 Cerca con Google

Bigelow, P.E., Benda, L.E., Miller, D.J., and Burnett, K.M. (2007). On debris flows, river networks, and the spatial structure of channel morphology. Forest Science, 53, 220–238. Cerca con Google

Bishop, M. P., Shroder, J. F., & Colby, J. D. (2003). Remote Sensing and geomorphometry for studying relief production in high mountains. Geomorphology, 55(1-4), 345–361. Doi:10.1016/s0169-555x(03)00149-1 Cerca con Google

Bourrier, F., Dorren, L., Nicot, F., Berger, F., and Darve, F. (2009). Toward objective rockfall trajectory simulation using a stochastic impact model. Geomorphology, 110(3-4), 6-79. Doi:10.1016/j.geomorph.2009.03.017 Cerca con Google

Bourrier, F., and Hungr, O. (2013). Rockfall Dynamics: A Critical Review of Collision and Rebound Models. Rockfall Engineering, 175-209. Doi:10.1002/9781118601532.ch6 Cerca con Google

Bozzolo, D., and Pamini, R. (1986). Simulation of rock falls down a valley side. Acta Mechanica, 63(1-4), 113-130. Doi:10.1007/bf01182543 Cerca con Google

Bozzolo, D., Pamini, R., and Hutter, K. (1988). Rockfall analysis - A mathematical model and its test with field data. In: Proceedings of the 5th International Symposium on Landslides, 555-563, Balkema, Rotterdamm, Lausanne, Switzerland. Cerca con Google

Brang, P., Schönenberger, W., Frehner, M., Schwitter, R., Thormann, J.J., and Wasser, B. (2006). Management of protection forests in the European Alps: An overview. Forest, Snow, and Landscape Research 80, 23-44. Cerca con Google

Brauner, M., Weinmeister, W., Agner, P., Vospernik, S., and Hoesle, B. (2005). Forest management decision support for evaluating forest protection effects against rockfall. Forest Ecology and Management, 207(1-2), 75-85. Doi:10.1016/j.foreco.2004.10.018 Cerca con Google

Brügelmann, R., and Bollweg, A.E. (2004). Laser altimetry for river management. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 35, 234-239. Cerca con Google

Brugger, S. (2002). Auswirkungen von Lawinen auf die Vegetation: Eine Studie im Dischmatal. Diploma Thesis, University of Zurich, Zurich, CH. Cerca con Google

Bühler, Y., Christen, M., Kowalski, J., and Bartelt, P. (2011). Sensitivity of snow avalanche simulations to digital elevation model quality and resolution. Annals of Glaciology, 52(58), 72-80. Doi:10.3189/172756411797252121 Cerca con Google

Bühler, Y., Marty, M., and Ginzler, C. (2012). High Resolution DEM Generation in High-Alpine Terrain Using Airborne Remote Sensing Techniques. Transactions in GIS, 16(5), 635-647. Doi:10.1111/j.1467-9671.2012.01331.x Cerca con Google

Bunn, J.T., and Montgomery, D. R. (2004). Patterns of wood and sediment storage along debris-flow impacted headwater channels in old-growth and industrial forests of the western Olympic Mountains, Washington. Water Science and Application, 99-112. Doi:10.1029/008wsa08 Cerca con Google

Calkins, D., and Dunne, T. (1970). A salt tracing method for measuring channel velocities in small mountain streams. Journal of Hydrology, 11, 379-392 Cerca con Google

Canovaro, F., and Solari, L. (2007). Dissipative analogies between a schematic macro-roughness arrangement and step-pool morphology. Earth Surface Processes and Landforms, 32(11), 1628-1640. Doi:10.1002/esp.1590 Cerca con Google

Carroll, M., Edwards, V., and Jackson, P. (2007). Investigating the Influence of Debris Flow Parameters when Scaling Physical Models. University of Canterbury, Christchurch. Cerca con Google

Casas, M.A., Lane, S.N., Hardy, R.J., Benito, G., and Whiting, P.J. (2010). Reconstruction of subgrid-scale topographic variability and its effect upon the spatial structure of three-dimensional river flow. Water Resources Research, 46(3), n/a-n/a. Doi:10.1029/2009wr007756 Cerca con Google

Casteller, A., Christen, M., Villalba, R., Martínez, H., Stöckli, V., Leiva, J.C., and Bartelt, P. (2008). Validating numerical simulations of snow avalanches using dendrochronology: the Cerro Ventana event in Northern Patagonia, Argentina. Natural Hazards and Earth System Science, 8(3), 433-443. Doi:10.5194/nhess-8-433-2008 Cerca con Google

Cavalli, M., Tarolli, P., Marchi, L., and Dalla Fontana, G. (2008). The effectiveness of airborne LiDAR data in the recognition of channel-bed morphology. CATENA, 73(3), 249-260. Doi:10.1016/j.CATENA.2007.11.001 Cerca con Google

Cavalli, M., and Tarolli, P. (2011). Application of LiDAR technology in river studies. Italian Journal of Engineering Geology and Environment. Cerca con Google

Chanson, H. (1999)a. The Hydraulics of Open Channel Flow. An Introduction. ButterworthHeinemann, Oxford, UK, pp. 512. Cerca con Google

Chanson, H. (1999)b. Critical flow in rockbed streams with estimated values for Manning's n-Comment. Geomorphology, 25(3), 279-282. Cerca con Google

Chanson, H. (2004). Physical modelling of hydraulics. Hydraulics of Open Channel Flow, 253-274. Doi:10.1016/b978-075065978-9/50021-0 Cerca con Google

Chen, C. (1988). Generalized viscoelastic modelling of debris flow. Journal of Hydraulic Engineering, 114(3), 237-258. Doi:10.1061/(asce)0733-9429(1988)114:3(237) Cerca con Google

Chin, A. (2003). The geomorphic significance of step-pools in mountain streams. Geomorphology, 55(1-4), 125-137. Doi:10.1016/S0169-555X(03)00136-3. Cerca con Google

Chin, A., and Wohl E.E. (2005). Toward a theory for step-pools in stream channels. Progress In Physical Geography, 29(3), 275-296. Doi:10.1191/0309133305pp449ra Cerca con Google

Chin, A., Anderson, S., Collison, A. Ellis-Sugai, B.J., Haltiner, J.P., Hogervorst, J.B., Kondolf, G.M., O’Hirok, L.S., Purcell, A.H., and Riley, A.L. (2009). Linking theory and practice for restoration of step-pool streams. Environmental Management, 43, 645-661. Doi:10.1007/s00267-008-9171-x Cerca con Google

Chow, V.T. (1973). Open Channel Hydraulics. McGraw-Hill International, New Yok, USA. Cerca con Google

Christen, M., Bartelt, P., and Kowalski, J. (2010). Back calculation of the In den Arelen avalanche with RAMMS: interpretation of model results. Annals of Glaciology, 51(54), 161-168. Doi:10.3189/172756410791386553 Cerca con Google

Christen, M., Bühler, Y., Bartelt, P., Leine, R., Glover, J., Schweizer, A., …, and Volkwein, A. (2012). Integral hazard management using a unified software environment. In: Proceedings of 12th Congress Interpraevent, 77-86. Cerca con Google

Church, M., and Zimmermann, A. (2007). Form and stability of step-pool channels: Research progress. Water Resources Research, 43, W03415. Doi:10.1029/2006WR005037 Cerca con Google

Ciabocco, G., Boccia, L., and Ripa, M.N. (2009). Energy dissipation of rockfalls by coppice structures. Natural Hazards and Earth System Science, 9(3), 993-1001. Doi:10.5194/nhess-9-993-2009 Cerca con Google

Clarke, J., and McClung, D. (1999). Full-depth avalanche occurrences caused by snow gliding, Coquihalla, British Columbia, Canada. Journal of Glaciology, 45(151), 539-546. Cerca con Google

Comiti, F., Mao, L., Wilcox, A., Wohl E.E., and Lenzi, M.A. (2007). Field derived relationships for flow velocity and resistance in high-gradient streams. J. Hydrol., 340(1-2), 48-62. Doi:10.1016/j.jhydrol.2007.03.021 Cerca con Google

Comiti, F., Cadol, D. and Wohl, E.E. (2009). Flow regimes, bed morphology, and flow resistance in self-formed step-pool channels. Water Resources Research 45, W04424 Doi:10.1029/2008WR007259. Cerca con Google

Comiti, F., Marchi, L., Macconi, P., Arattano, M., Bertoldi, G., Borga, M., … and Theule, J. (2014). A new monitoring station for debris flows in the European Alps: first observations in the Gadria basin. Natural Hazards, 73(3), 1175-1198. Doi:10.1007/s11069-014-1088-5 Cerca con Google

Connell, J.H. (1978). Diversity in Tropical Rain Forests and Coral Reefs. Science, 199(4335), 1302-1310. Doi:10.1126/science.199.4335.1302 Cerca con Google

Corominas, J., Copons, R., Moya, J., Vilaplana, J. M., Altimir, J., and Amigó, J. (2005). Quantitative assessment of the residual risk in a rockfall protected area. Landslides, 2(4), 343-357. Doi:10.1007/s10346-005-0022-z Cerca con Google

Corsini, A., Borgatti, L., Cervi, F., Dahne, A., Ronchetti, F., and Sterzai, P. (2009). Estimating mass-wasting processes in active earth slides-earth flows with time-series of high-resolution DEMs from photogrammetry and airborne LiDAR. Natural Hazards and Earth System Science, 9(2), 433-439. Doi:10.5194/nhess-9-433-2009 Cerca con Google

Coussot, P., and Proust, S. (1996). Slow, unconfined spreading of a mudflow. Journal of Geophysical Research, 101(B11), 25217. Doi:10.1029/96jb02486 Cerca con Google

Crosta, G.B., and Agliardi, F. (2004). Parametric evaluation of 3D dispersion of rockfall trajectories. Natural Hazards and Earth System Science, 4(4), 583-598. Doi:10.5194/nhess-4-583-2004 Cerca con Google

Cruden, D.M., and Varnes, D.J. (1996). Landslides types and processes. In: Turner A.K. and Schuster R.L. (Eds.) Landslides: investigation and mitigation. Transportation research board special report 247. National Academy Press, WA, 36-75. Cerca con Google

Curran, J.H., and Wohl E.E. (2003). Large woody debris and flow resistance in step-pool channels, Cascade Range, Washington. Geomorphology, 51(1-3), 141-157. Doi:10.1016/S0169-555X(02)00333-1. Cerca con Google

D‘Agostino, V., and Lenzi, M.A. (1998) La massimizzazione della resistenza al flusso nei torrenti con morfologia a step-pool. Atti del XXVI Convegno di Idraulica e Costruzioni Idrauliche, Volume I, pp. 281-293. Cerca con Google

D'Agostino V., and Marchi, L. (2003). Geomorphological estimation of debris flow volumes in alpine basins. Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment. 10-12 September 2003, Davos, vol. II, pp. 1097-1106 (ISBN/ISSN: 9077017 78X). Cerca con Google

D’Agostino, V. (2004). Sull’affidabilità delle misure di portata nei torrenti montani con il metodo della diluizione salina. In: Proceedings of the 29th Italian Congress of Hydraulics and Hydraulic Structures, Trento, Italy, September 7-10, pp. 1005-1012. Cerca con Google

D’Agostino, V. (2005). Velocità media della corrente in torrenti fortemente scabri. In: Proceedings of the Italian Congress AIIA2005, Associazione Italiana Ingegneria Agraria, June 27-30, Catania, Italy. Cerca con Google

D'agostino, V., and Tecca, P. (2006). Some considerations on the application of the FLO-2D model for debris flow hazard assessment. In: First International Conference on Monitoring, simulation, prevention and remediation of Dense and Debris Flows, Rodi, 7-9 Giugno, 2006, 159-170, WITpress, Southampton (ISBN/ISSN:1-84564-169-8/1746-448X). Cerca con Google

D’Agostino, V., Cesca, M., and Marchi, L. (2010). Field and laboratory investigations of runout distances of debris flows in the Dolomites (Eastern Italian Alps). Geomorphology, 115(3-4), 294-304. Doi:10.1016/j.geomorph.2009.06.032 Cerca con Google

David, G.C.L., Wohl E.E., Yochum, S.E., and Bledsoe, B.P. (2010). Controls on spatial variations in flow resistance along steep mountain streams. Water Resources Research, 46(3), n/a-n/a. Doi:10.1029/2009wr008134 Cerca con Google

David, G.C.L., Wohl E.E., Yochum, S.E., and Bledsoe, B.P. (2011). Comparative analysis of bed resistance partitioning in high-gradient streams. Water Resources Research 47(W07507). Doi:10.1029/2010WR009540 Cerca con Google

Davies, T.R. (1988). Debris flow surges: a laboratory investigation. Versuchsanstalt für Wasserbau-Hydrologie und Glaziologie an der ETHZ. Cerca con Google

Davies, T.R. (1994). Dynamically similar small-scale debris flow models. In International Workshop on Floods and Inundations related to Large Earth Movements. University of Trent, Department of Civil and Environmental Engineering, Trent, Italy. Cerca con Google

Dawson, F.H., and Charlton, F.G. (1988). Bibliography on the hydraulic resistance of vegetated watercourses. 25th Technical Report, Freshwater Biological Association. Occasional Publication, 25, ISNN 0308-6739. Cerca con Google

de Haas, T., Braat, L., Leuven, J.R.F.W., Lokhorst, I.R., and Kleinhans, M.G. (2015). Effects of debris flow composition on runout, depositional mechanisms, and deposit morphology in laboratory experiments. Journal of Geophysical Research: Earth Surface, 120(9), 1949-1972. Doi:10.1002/2015jf003525 Cerca con Google

de Quervain, M. (1979). Wald und Lawinen. In: Proceedings of the IUFRO Seminar Mountain Forests and Avalanches, Davos, Switzerland, 219-231. Cerca con Google

Dingam, L.S. (2007). Analytical derivation of at-a-station hydraulic-geometry relations. Journal of Hydrology, 334(1-2), 17-27. Doi:10.1016/j.jhydrol.2006.09.021 Cerca con Google

Dorren, L.K.A., and A.C. Seijmonsbergen (2003). Comparison of three GIS-based models for predicting rockfall runout zones at a regional scale. Geomorphology, 56(1-2), 49-64. Doi:10.1016/S0169-555X(03)00045-X. Cerca con Google

Dorren, L.K.A., Berger, F., Imeson, A.C., Maier, B., and Rey, F. (2004). Integrity, stability and management of protection forests in the European Alps. Forest Ecology and Management, 195(1-2), 165-176. Doi:10.1016/j.foreco.2004.02.057 Cerca con Google

Dorren, L.K., Berger, F., le Hir C., Mermin, E., and Tardif, P. (2005). Mechanisms effects and management implications of rockfall in forests. Forest Ecology and Management, 215(1), 183-195. Doi:10.1016/j.foreco.2005.05.012. Cerca con Google

Dorren, L.K., and Berger, F. (2006). Stem breakage of trees and energy dissipation during rockfall impacts. Tree Physiol., 26(1), 63-71. Doi:10.1093/treephys/26.1.63 Cerca con Google

Dorren, L.K.A., Berger, F., and Putters, U.S. (2006). Real-size experiments and 3-D simulation of rockfall on forested and non-forested slopes. Natural Hazards and Earth System Science, 6(1), 145-153. Doi:10.5194/nhess-6-145-2006 Cerca con Google

Dorren, L.K.A. (2012). Rockyfor3D (v.5.1) revealed-Transparent description of the complete 3D rockfall model ecorisq paper (www.ecorisq.org), 31 pp. Vai! Cerca con Google

Dunning, S.A., Massey, C.I., and Rosser, N.J. (2009). Structural and geomorphological features of landslides in the Bhutan Himalaya derived from Terrestrial Laser Scanning. Geomorphology, 103(1), 17-29. Doi:10.1016/j.geomorph.2008.04.013 Cerca con Google

Egashira, S., Honda, N., and Itoh, T. (2001). Experimental study on the entrainment of bed material into debris flow. Physics and Chemistry of the Earth, Part C: Solar, Terrestrial and Planetary Science, 26(9): 645-650. Cerca con Google

Einstein, H.A., and Banks, R.B. (1950). Fluid resistance of composite roughness. Transactions, American Geophysical Union, 31(4), 603. Doi:10.1029/tr031i004p00603 Cerca con Google

Einstein, H. A., and N. L. Barbarossa (1952). River channel roughness. Transactions of the ASCE, 117, 1121-1132. Cerca con Google

Emmett, W.W. (1970). The hydraulics of overland flow on hillslopes. U.S. Geological Survey Professional Paper, 662-A, 68. Cerca con Google

Evans, S.G., and Hungr, O. (1993). The assessment of rockfall hazard at the base of talus slopes. Canadian Geotechnical Journal, 30(4), 620-636. Doi:10.1139/t93-054 Cerca con Google

Faccoli M., Colombari, F., Dal Pont, C., Finozzi, V., D’Ambro E., and Battisti, A. (2010). Gravi infestazioni di bostrico acuminato in formazioni alpine di pino silvestre. Forest@-Italian Society of Silviculture and Forest Ecology, 7, 259-267. Cerca con Google

Fardin, N., Feng, Q., and Stephansson, O. (2004) Application of a new in situ 3D laser scanner to study the scale effect on the rock joint surface roughness. International Journal of Rock Mechanics and Mining Science, 41, 329-335. Doi:10.1016/S1365-1609(03)00111-4 Cerca con Google

Faug, T., Caccamo, P., and Chanut, B. (2011). Equation for the force experienced by a wall overflowed by a granular avalanche: experimental verification. Physical Review E, 84(5). Doi:10.1103/physreve.84.051301 Cerca con Google

Feistl, T., Bebi, P., Bühler, Y., Christen, M., Teich, M., and Bartelt, P. (2012). Stopping behaviour of snow avalanches in forests. In: Proceedings of the International Snow Science Workshop ISSW. Anchorage, Alaska, 420-426. Doi:10.5194/nhessd-1-5561-2013 Cerca con Google

Ferguson, R. (2007). Flow resistance equations for gravel- and boulder-bed streams. Water Resources Research, 43, W05427. Doi:10.1029/2006WR005422 Cerca con Google

Ferguson, R. (2010). Time to abandon the Manning equation?. Earth Surface Processes Landforms, 35(15), 1873-1876. Doi:10.1002/esp. 2091 Cerca con Google

Fidej, G., Mikoš, M., Rugani, T., Jež, J., Kumelj, S., and Diaci, J. (2015). Assessment of the protective function of forests against debris flows in a gorge of the Slovenian Alps. Forest-Biogeosciences and Forestry, 8(1), 73-81. Doi:10.3832/ifor0994-007 Cerca con Google

Fletcher, C.A.J. (1990). Computational Techniques for Fluid Dynamics. Vol. II: Specific Techniques for Different Flow Categories. Berlin etc., Springer-Verlag, XIV, 409 pp. 484 pp., ISBN 3-540-18151-2/3-540-18759-6. Cerca con Google

Folk, R.L., and Ward, W.C. (1957). Brazos River bar [Texas]; a study in the significance of grain size parameters. Journal of Sedimentary Research, 27(1), 3-26. Doi:10.1306/74d70646-2b21-11d7-8648000102c1865d Cerca con Google

Frankel, K.L., and Dolan, J.F. (2007). Characterizing arid region alluvial fan surface roughness with airborne laser swath mapping digital topographic data. Journal of Geophysical Research, 112(F2). Doi:10.1029/2006jf000644 Cerca con Google

Frehner M., Wasser, B., and Schwitter, R. (2005) Nachhaltigkeit und Erfolgskontrolle im Schutzwald - Wegleitung für Pflegemassnahmen in Wäldern mit Schutzfunktion. Bern, Bundesamt Umwelt Wald Landschaft, pp. 564 Cerca con Google

Frelich, L.E. (2002). Forest dynamics and disturbance regimes: studies from temperate evergreen-deciduous forests. Cambridge University Press. Cerca con Google

Ganas, A., Pavlides, S., and Karastathis, V. (2005). DEM-based morphometry of range-front escarpments in Attica, central Greece, and its relation to fault slip rates. Geomorphology, 65(3-4), 301-319. Doi:10.1016/j.geomorph.2004.09.006 Cerca con Google

Ghinoi, A., and Chung, C.-J. (2005). STARTER: a statistical GIS-based model for the prediction of snow avalanche susceptibility using terrain features-application to Alta Val Badia, Italian Dolomites. Geomorphology, 66(1-4), 305-325. Doi:10.1016/j.geomorph.2004.09.018 Cerca con Google

Giani, G.P. (1992). Rock Slope Stability Analysis, Balkema, Rotterdam. Cerca con Google

Gill, J.C., and Malamud, B.D. (2014). Reviewing and visualizing the interactions of Natural Hazards. Reviews of Geophysics, 52(4), 680-722. Doi:10.1002/2013rg000445 Cerca con Google

Gilley, J. E., and S.C. Finkner (1991). Hydraulic roughness coefficients as affected by random roughness. Transactions of the ASAE, 34, 897-903. Cerca con Google

Glasbey, C.A., and Jones, R. (1997). Fast computation of moving average and related filters in octagonal windows. Pattern Recognition Letters, 18(6), 555-565. Doi:10.1016/s0167-8655(97)00045-7 Cerca con Google

Glenn, N.F., Streutker, D.R., Chadwick, D.J., Thackray, G.D., and Dorsch, S.J. (2006). Analysis of LiDAR-derived topographic information for characterizing and differentiating landslide morphology and activity. Geomorphology, 73(1-2), 131-148. Doi:10.1016/j.geomorph.2005.07.006 Cerca con Google

Gomi, T., Sidle, R.C., Bryant, M.D., and Woodsmith, R.D. (2001). The characteristics of woody debris and sediment distribution in headwater streams, southeaster Alaska. Canadian Journal of Forest Research, 31(8), 1386-1399. Doi:10.1139/cjfr-31-8-1386 Cerca con Google

Govers, G., Takken, I., and Helming, K. (2000). Soil roughness and overland flow. Agronomie, 20(2), 131-146. Doi:10.1051/agro:2000114 Cerca con Google

Griswold, J.P., and Iverson, R.M. (2008). Mobility statistics and automated hazard mapping for debris flows and rock avalanches. (No. 2007-5276). US Geological Survey. Cerca con Google

Gritzner, M.L., Marcus, W.A., Aspinall, R., and Custer, S. G. (2001). Assessing landslide potential using GIS, soil wetness modeling and topographic attributes, Payette River, Idaho. Geomorphology, 37(1-2), 149-165. Doi:10.1016/s0169-555x(00)00068-4 Cerca con Google

Gsteiger, P. (1989). Steinschlag Wald Relief Empirische Grundlagen zur Steinschlagmodellierung. Diploma Thesis Geography, Department of Geography, University of Berne. Cerca con Google

Gubler, H., and Rychetnik, J. (1991). Effects of forests near timberline on avalanche formation. Snow, Hydrology and Forests in High Alpine Areas, 205, 19-38. Cerca con Google

Guo, J. (2002). Logarithmic matching and its applications in computational hydraulics and sediment transport. Journal of Hydraulic Research, 40(5), 555-564. Doi:10.1080/00221680209499900 Cerca con Google

Guthrie, R.H., Hockin, A., Colquhoun, L., Nagy, T. Evans, S.G., and Ayles, C. (2010). An examination of controls on debris flow mobility: Evidence from coastal British Columbia. Geomorphology, 114(4), 601-613. Doi:10.1016/j.geomorph.2009.09.021 Cerca con Google

Guzzetti, F., Crosta, G., Detti, R., and Agliardi, F. (2002). STONE: a computer program for the three-dimensional simulation of rock-falls. Computers and Geosciences, 28(9), 1079-1093. Doi:10.1016/s0098-3004(02)00025-0 Cerca con Google

Haneberg, W.C., Creighton, A.L., Medley E.W., and Jonas, D. (2005). Use of LiDAR to assess slope hazards at the Lihir gold mine, Papua New Guinea. In: Proceedings of the International Conference on Landslide Risk Management, Vancouver, British Columbia, May-June, 2005, A.A. Balkema, Leiden, Supplementary CD. Cerca con Google

Haneberg, W.C. (2007). Directional roughness profiles from three-dimensional photogrammetric or laser scanner point clouds. Rock mechanics: meeting society’s challenges and demands, 101-106. Doi:10.1201/noe0415444019-c13 Cerca con Google

Haubrock, S.-N., Kuhnert, M., Chabrillat, S., Güntner, A., and Kaufmann, H. (2009). Spatiotemporal variations of soil surface roughness from in-situ laser scanning. CATENA, 79(2), 128-139. Doi:10.1016/j.CATENA.2009.06.005 Cerca con Google

Hayashi, S., Nonoda, T., and Kawabe, H. (1999). Strength of tree roots and stability of trees: studies on stability of afforestation trees on slopes considering wind (in Japanese). Research Report of Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture, Japan, 07660192, 35-47 Cerca con Google

He, Y.P., Xie, H., Cui, P., Wei, F.Q., Zhong, D.L., and Gardner, J.S. (2003). GIS-based hazard mapping and zonation of debris flows in Xiaojiang Basin, southwestern China. Environmental Geology, 45(2), 286-293. Doi:10.1007/s00254-003-0884-0 Cerca con Google

Henderson, F.M. (1966), Open Channel Flow, Macmillan. Cerca con Google

Heritage, G. L., and Milan, D. J. (2009). Terrestrial Laser Scanning of grain roughness in a gravel-bed river. Geomorphology, 113(1-2), 4-11. Doi:10.1016/j.geomorph.2009.03.021 Cerca con Google

Herschel, W.H., and Bulkley, R. (1926). Konsistenzmessungen von gummi-benzollösungen. Kolloid-Zeitschrift, 39(4), 291-300. Cerca con Google

Hewlett, J.D. (1982). Principles of forest hydrology. University of Georgia Press. Cerca con Google

Hodge, R., Brasington, J., and Richards, K. (2009). In situ characterization of grain-scale fluvial morphology using Terrestrial Laser Scanning. Earth Surface Processes and Landforms, 34(7), 954-968. Doi:10.1002/esp.1780 Cerca con Google

Hollaus, M., Aubrecht, C., Höfle, B., Steinnocher, K., and Wagner, W. (2011). Roughness mapping on various vertical scales based on full-waveform Airborne Laser Scanning data. Remote Sensing, 3(12), 503-523. Doi:10.3390/rs3030503 Cerca con Google

Höller, P., Fromm, R., and Leitinger, G. (2009). Snow forces on forest plants due to creep and glide. Forest Ecology and Management, 257(2), 546-552. Doi:10.1016/j.foreco.2008.09.035 Cerca con Google

Horton, P., Jaboyedoff, M., Rudaz, B., and Zimmermann, M. (2013). Flow-R, a model for susceptibility mapping of debris flows and other gravitational hazards at a regional scale. Natural Hazards and Earth System Science, 13(4), 869-885. Doi:10.5194/nhess-13-869-2013 Cerca con Google

Hübl, J. and Holzinger, G., (2003). Entwicklung von Grundlagenzur Dimensionierung kronenoffener Bauwerke für die Geschiebebewirtschaftung in Wildbächen: Kleinmaßstäbliche Modellversuche zur Wirkung von Murbrechern. WLS Report 50 Band 3, Im Auftrag des BMLFUW VC 7a. Cerca con Google

Hungr, O. (1995). A model for the runout analysis of rapid flow slides, debris flows, and avalanches. Canadian Geotechnical Journal, 32(4), 610-623. Doi:10.1139/t95-063 Cerca con Google

Hungr, O. Evans, S.G., Bovis, M.J., and Hutchinson, J.N. (2001). A review of the classification of landslides of the flow type. Environmental and Engineering Geoscience, 7(3), 221-238. Doi:10.2113/gseegeosci.7.3.221 Cerca con Google

Hungr, O. (2005). Classification and terminology. Springer Praxis Books, 9-23. Doi:10.1007/3-540-27129-5_2 Cerca con Google

Hunt, B. (1994). Newtonian Fluid Mechanics Treatment of Debris Flows and Avalanches. Journal of Hydraulic Engineering, 120(12), 1350-1363. Doi:10.1061/(asce)0733-9429(1994)120:12(1350) Cerca con Google

Hürlimann, M., McArdell, B.W., and Rickli, C. (2015). Field and laboratory analysis of the runout characteristics of hillslope debris flows in Switzerland. Geomorphology, 232, 20-32. Doi:10.1016/j.geomorph.2014.11.030 Cerca con Google

Hutchinson, J.N. (1986). A sliding-consolidation model for flow slides. Canadian Geotechnical Journal, 23(2), 115-126. Doi:10.1139/t86-021 Cerca con Google

Ikeya, H. (1989). Debris flow and its countermeasures in Japan. Bulletin of the International Association of Engineering Geology, 40(1), 15-33. Doi:10.1007/bf02590339 Cerca con Google

Indri E. (1942). Misure sulla velocita dell’acqua in alvei montani a forte scabrezza. L’Acqua, 20(9), 113-121. Cerca con Google

Irasawa M, Ishikawa Y, Fukumoto A, Mizuyama T (1991) Control of debris flows by sabo tree zones (in Japanese). Civil Engineering Journal, Public Works Research Institute, Ministry of Construction. 33(5):30-37 Cerca con Google

Ishikawa, M., and Suzuki, T. (1961). Width of forest zone for preventing outflow of sediment (in Japanese). In: 10th Annual Meeting of the Hokkaido Branch, Japan Forestry Society, 155-160. Cerca con Google

Ishikawa, N., Inoue, R., Beppu, M., Hasegawa, Y., & Mizuyama, T. (2010). Dynamic load characteristics of debris flow model using different gravel size distribution. In: Proceedings of INTERPRAEVENT (pp. 207-216). Cerca con Google

Ishikawa, Y., Mizuhara, K., and Ashida, S. (2000). Effect of density of trees on drag exerted on trees in river channels. Journal of Forest Research, 5(4), 271-279. Doi:10.1007/BF02767121. Cerca con Google

Ishikawa, Y., Kawakami, S., Morimoto, C., and Mizuhara, K. (2003). Suppression of debris movement by forests and damage to forests by debris deposition. Journal of Forest Research, 8(1), 0037-0047. Doi:10.1007/s103100300004. Cerca con Google

Iverson, R.M. (1997). The physics of debris flow. Reviews of Geophysics, 35(3), 245-296. Cerca con Google

Iverson, R.M., Schilling, S.P., and Vallance, J.W. (1998). Objective delineation of lahar-inundation hazard zones. Geological Society of America Bulletin, 110(8), 972-984. Doi:10.1130/0016-7606(1998)110<0972:ODOLIH>2.3.CO;2 Cerca con Google

Iverson, R.M., and Denlinger, R.P. (2001). Flow of variably fluidized granular masses across three-dimensional terrain: 1. Coulomb mixture theory. Journal of Geophysical Research, 106(B1), 537. Doi:10.1029/2000jb900329 Cerca con Google

Iverson, R.M. (2003). The debris-flow rheology myth. In: Debris-flow hazards mitigation: mechanics, prediction, and assessment, 1, 303-314. Cerca con Google

Iverson, R.M., Reid, M.E., Logan, M., LaHusen, R.G., Godt, J.W., and Griswold, J.P., (2011). Positive feedback and momentum growth during debris-flow entrainment of wet bed sediment. Nature geoscience, 4(2), 116-121. Doi:10.1038/ngeo1040 Cerca con Google

Iverson, R.M. (2015). Scaling and design of landslide and debris-flow experiments. Geomorphology, 244, 9-20. Doi:10.1016/j.geomorph.2015.02.033 Cerca con Google

Jaboyedoff, M. and Labiouse, V. (2003). Preliminary assessment of rockfall hazard based on GIS data. In: 10th International Congress on Rock Mechanics (ISRM) 2003 - Technology roadmap for rock mechanics, South African Institute of Mining and Metallurgy, Johannesburg, South Africa, 575-578. Cerca con Google

Jaboyedoff, M., Oppikofer, T., Abellán, A., Derron, M.-H., Loye, A., Metzger, R., and Pedrazzini, A. (2010). Use of LIDAR in landslide investigations: a review. Natural Hazards, 61(1), 5-28. Doi:10.1007/s11069-010-9634-2 Cerca con Google

Jaccard, P. (1901). Étude comparative de la distribution florale dans une portion des Alpes et des Jura. Bulletin de la Société vaudoise des sciences naturelles, 37, 547-579. Cerca con Google

Jahn, J. (1988). Entwaldung und Steinschlag, International Congress Interpraevent, Graz. In: Proceedings of Conference, Volume 1, pp. 185-198. Cerca con Google

Jarrett, R.D. (1984). Hydraulics of high-gradient streams. Journal of Hydraulic Engineering, 110(11), 1519-1539. Doi:10.1061/(ASCE)0733-9429(1984)110: 11(1519) Cerca con Google

Johnson, A.M. (1970). Physical processes in geology: A method for interpretation of natural phenomena; intrusions in igneous rocks, fractures, and folds, flow of debris and ice. San Francisco: Freeman, Cooper. Cerca con Google

Johnson, A.M., and Rodine, J.R. (1984). Debris flow. In: Slope Instability, Brundsen, D., Prior, D.B. (eds). Wiley, Chichester, pp. 257-361. Cerca con Google

Johnson, S.L., Swanson, F J., Grant, G.E., and Wondzell, S.M. (2000). Riparian forest disturbances by a mountain flood Ð the influence of floated wood. Hydrological Processes, 14(16-17), 3031-3050. Doi:10.1002/1099-1085(200011/12)14:16/17<3031::aid-hyp133>3.0.co;2-6 Cerca con Google

Jones, C.L., Higgins, J.D., and Andrew, R.D. (2000). Colorado Rockfall Simulation Program Version 4.0. Colorado Department of Transportation. Cerca con Google

Jones, L.D. (2006). Monitoring landslides in hazardous terrain using terrestrial LiDAR: an example from Montserrat. Quarterly Journal of Engineering Geology and Hydrogeology, 39(4), 371-373. Doi:10.1144/1470-9236/06-009 Cerca con Google

Jonsson, M.J., Volkwein, A., and Ammann, W.J. (2007). Quantification of energy absorption capacity of trees against rockfall using finite element analysis. In: Proceedings of the 1st Canada-US Rock Mechanics Symposium. American Rock Mechanics Association. Doi:10.1201/NOE0415444019-c44. Cerca con Google

Jutzi, B., Neulist, J. and Stilla, U., (2005). Sub-pixel edge localization based on laser waveform analysis. International Archives of Photogrammetry and Remote Sensing, 36(Part3/W19), 109-114. Cerca con Google

Kaufmann, P.R. (1987). Channel morphology and hydraulic characteristics of torrent-impacted forest streams in the Oregon Coast Range USA. PhD dissertation, Oregon State University, Corvallis, Oregon. Cerca con Google

Kaufmann, P.R., Faustini, J.M., Larsen, D.P. and Shirazi, M.A. (2008). A roughness-corrected index of relative bed stability for regional stream surveys. Geomorphology, 99(1), 150-170. Doi:10.1016/j.geomorph.2007.10.007. Cerca con Google

Ketcheson, G., and Froehlich, H.A. (1978). Hydrologic factors and environmental impacts of mass soil movements in the Oregon Coast Range. Water Resources Research Institute, Oregon State University. Report, WRRI-56, pp. 94. Cerca con Google

King, L., Hassan, M.A., Wei, X., Burge, L., and Chen, X. (2013). Wood dynamics in upland streams under different disturbance regimes. Earth Surface Processes and Landforms, 38(11), 1197–1209. Doi:10.1002/esp.3356 Cerca con Google

Kirkby, M.J., and Statham, I. (1975). Surface Stone Movement and Scree Formation. Journal of Geology, 83(3), 349-362. Doi:10.1086/628097 Cerca con Google

Klaassen, G.J., and van Der Zwaard, J.J. (1974). Roughness coefficients of vegetated flood plains. Journal of Hydraulic Research, 12(1), 43-63. Doi:10.1080/00221687409499757 Cerca con Google

Kondo, K., Hayashi, S., Nonoda, T., Numamoto, S., and Shirakawa, Y., (2004). Role of tree roots system for slope failure obtained from two dimensional analysis. In: Proceedings of the International Symposium Interpraevent VII, Riva, Trient, IV/197-IV-207, 2004. Cerca con Google

Kouwen, N., and Unny, T.E. (1973). Flexible roughness in open channels. Journal of the Hydraulics Division, 99(5), 713-728. Cerca con Google

Kräuchi, N., Brang, P., and Schönenberger, W. (2000). Forests of mountainous regions: gaps in knowledge and research needs. Forest Ecology and Management, 132(1), 73-82. Doi:10.1016/s0378-1127(00)00382-0 Cerca con Google

Lambert, S., Bourrier, F., and Toe, D. (2013). Improving three-dimensional rockfall trajectory simulation codes for assessing the efficiency of protective embankments. International Journal of Rock Mechanics and Mining Sciences, 60, 26-36. Doi:10.1016/j.ijrmms.2012.12.029 Cerca con Google

Lancaster, S.T., Hayes, S.K., and Grant, G.E. (2003). Effects of wood on debris flow runout in small mountain watersheds. Water Resources Research, 39(6), 1168. Doi:10.1029/2001WR001227 Cerca con Google

Landy, J.C., Isleifson, D., Komarov, A.S., and Barber, D.G. (2015). Parameterization of centimeter-scale sea ice surface roughness using terrestrial LiDAR. IEEE Transactions on Geoscience and Remote Sensing, 53(3), 1271-1286. Doi:10.1109/tgrs.2014.2336833 Cerca con Google

Lato, M., Hutchinson, J., Diederichs, M., Ball, D., and Harrap, R. (2009). Engineering monitoring of rockfall hazards along transportation corridors: using mobile terrestrial LiDAR. Natural Hazards and Earth System Science, 9(3), 935-946. Doi:10.5194/nhess-9-935-2009 Cerca con Google

Lee, A. J., and R.I. Ferguson (2002). Velocity and flow resistance in step-pool streams. Geomorphology, 46(1), 59-71. Cerca con Google

Legros, F. (2002). The mobility of long- runout landslides. Engineering Geology, 63(3-4), 301-331. Doi:10.1016/s0013-7952(01)00090-4 Cerca con Google

Lehning, M., Grünewald, T., and Schirmer, M. (2011). Mountain snow distribution governed by an altitudinal gradient and terrain roughness. Geophysical Research Letters, 38(19). Doi:10.1029/2011gl048927 Cerca con Google

Leitinger, G., Höller, P., Tasser E., Walde, J., and Tappeiner, U. (2008). Development and validation of a spatial snow-glide model. Ecological Modelling, 211(3-4), 363-374. Doi:10.1016/j.ecolmodel.2007.09.015 Cerca con Google

Lenzi, M.A., D’Agostino, V. and Sonda, D. (2000). Ricostruzione morfologica e recupero ambientale dei torrenti. Criteri metodologici ed esecutivi, BIOS, 208 pp., Cosenza, Italy Cerca con Google

Leonardi, P. (1967). Le Dolomiti: geologia dei monti tra Isarco e Piave. Ed. Manfrini, 2, pp. 925-935. Cerca con Google

Lim, M., Petley, D.N., Rosser, N.J., Allison, R.J., Long, A.J., and Pybus, D. (2005). Combined digital photogrammetry and time-of-flight Laser Scanning for monitoring cliff evolution. Photogrammetric Record, 20(110), 109-129. Doi:10.1111/j.1477-9730.2005.00315.x Cerca con Google

Limerinos, J.T. (1970). Determination of the Manning Coefficient from Measured Bed Roughness in Natural Channels. Water Supply Paper 1898-B, United State Geological Survey, 47 pp., Washington, D. C. Cerca con Google

Liu, X. (1996). Size of a debris flow deposition: model experiment approach. Environmental Geology, 28(2), 70-77. Doi:10.1007/s002540050079 Cerca con Google

Lowe, D.R. (1976). Grain Flow and Grain Flow Deposits. SEPM JSR, Vol. 46. Doi:10.1306/212f6ef1-2b24-11d7-8648000102c1865d Cerca con Google

Lundström, T., Jonas, T., Stockli, V., and Ammann, W. (2007). Anchorage of mature conifers: resistive turning moment, root-soil plate geometry and root growth orientation. Tree Physiology, 27(9), 1217-1227. Doi:10.1093/treephys/27.9.1217 Cerca con Google

Lundström, T., Jonsson, M. J., Volkwein, A., and Stoffel, M. (2009). Reactions and energy absorption of trees subject to rockfall: a detailed assessment using a new experimental method. Tree Physiology, 29(3), 345-359. Doi:10.1093/treephys/tpn030 Cerca con Google

MacFarlane, W. A., and Wohl E.E. (2003). Influence of step composition on step geometry and flow resistance in step‐pool streams of the Washington Cascades. Water Resources Research, 39(2). Cerca con Google

Mahoney, D.P. (2006). The effects of moisture content and relative density on granular debris flow behaviour: and experimental investigation. Project Report, University of Canterbury, Christchurch. Cerca con Google

Major, J.J. (2000). Gravity-driven consolidation of granular slurries: implications for debris-flow deposition and deposit characteristics. Journal of Sedimentary Research, 70(1), 64-83. Doi:10.1306/2dc408ff-0e47-11d7-8643000102c1865d Cerca con Google

Major, J.J., and Iverson, R.M. (1999). Debris-flow deposition: effects of pore-fluid pressure and friction concentrated at flow margins. Geological Society of America Bulletin, 111(10), 1424-1434. Doi:10.1130/0016-7606(1999)111<1424:dfdeop>2.3.co;2 Cerca con Google

Marchi, L., Cavalli, M., & D’Agostino, V. (2010). Hydrogeomorphic processes and torrent control works on a large alluvial fan in the eastern Italian Alps. Natural Hazards and Earth System Science, 10(3), 547–558. Doi:10.5194/nhess-10-547-2010 Cerca con Google

Marcus, W. A., K. Roberts, L. Harvey, and G. Tackman (1992). An evaluation of methods for estimating Manning's n in small mountain streams. Mountain Research and Development, 227-239. Cerca con Google

Margreth, S. (2004). Die Wirkung des Waldes bei Lawinen. Forum für Wissen 2004, 21-26. Cerca con Google

Margreth, S. (2007). Snow pressure on cableway masts: Analysis of damages and design approach. Cold Regions Science and Technology, 47(1-2), 4-15. Doi:10.1016/j.coldregions.2006.08.020 Cerca con Google

Marks, K., and Bates, P. (2000). Integration of high-resolution topographic data with floodplain flow models. Hydrological Processes, 14(11-12), 2109-2122. Doi:1 0.1002/1099-1085(20000815/30)14:11/12<2109::aid-hyp58>3.0.co;2-1 Cerca con Google

Mason, D.C., Cobby, D.M., Horritt, M.S., and Bates, P.D. (2003). Floodplain friction parameterization in two-dimensional river flood models using vegetation heights derived from airborne scanning laser altimetry. Hydrological Processes, 17(9), 1711-1732. Doi:10.1002/hyp.1270 Cerca con Google

Matyja, M. (2007). The significance of trees and coarse woody debris in shaping the debris flow accumulation zone (North slope of the Babia Góra Massif, Poland), Geographia Polonica, 80(1), 83. Cerca con Google

May, C.L. (2002). Debris flows through different forest age classes in the central Oregon coast range. Journal of the American Water Resources Association, 38(4), 1097-1113. Doi:10.1111/j.1752-1688.2002.tb05549.x Cerca con Google

May, C.L., and Gresswell, R.E. (2003). Large wood recruitment and redistribution in headwater streams in the southern Oregon Coast Range, U.S.A. Can. Journal of Forest Research, 33(8), 1352-1362. Doi:10.1139/x03-023 Cerca con Google

Mazzoccola, D. and Sciesa E. (2000). Implementation and comparison of different methods for rockfall hazard assessment in the Italian Alps. In: Proceedings of the 8th International Symposium on Landslides, 2, 1035-1040, Balkema, Rotterdam, Cardiff, UK. Cerca con Google

McClung, D.M. (2001). Extreme avalanche runout: a comparison of empirical models. Canadian Geotechnical Journal, 38(6), 1254-1265. Doi:10.1139/t01-041 Cerca con Google

McKean, J., and Roering, J. (2004). Objective landslide detection and surface morphology mapping using high-resolution airborne laser altimetry. Geomorphology, 57(3-4), 331-351. Doi:10.1016/s0169-555x(03)00164-8 Cerca con Google

Meissl, G. (2001). Modelling the runout distances of rockfalls using a geographic information system. Zeitschrift fur geomorphologie supplementband, 129-137. Cerca con Google

Metternicht, G., Hurni, L., and Gogu, R. (2005). Remote Sensing of landslides: An analysis of the potential contribution to geo-spatial systems for hazard assessment in mountainous environments. Remote Sensing of Environment, 98(2-3), 284-303. Doi:10.1016/j.rse.2005.08.004 Cerca con Google

Meyer-Peter E., and Müller, R. (1948,). Formulas for bed-load transport. In: Proceedings of the 2nd Meeting of the International Association for Hydraulic Structures Research (pp. 39-64). Delft: International Association of Hydraulic Research. Cerca con Google

Milan, D. J., Heritage, G. L., and Hetherington, D. (2007). Application of a 3D laser scanner in the assessment of erosion and deposition volumes and channel change in a proglacial river. Earth Surface Processes and Landforms, 32(11), 1657-1674. Doi:10.1002/esp.1592 Cerca con Google

Millar, R.G. (1999). Grain and form resistance in gravel-bed rivers. Journal of Hydraulic Research, 37(3), 303-312. Doi:10.1080/00221686.1999.9628249 Cerca con Google

Miller, D.J., and Burnett, K.M. (2008). A probabilistic model of debris-flow delivery to stream channels, demonstrated for the Coast Range of Oregon, USA. Geomorphology, 94(1-2), 184-205. Doi:10.1016/j.geomorph.2007.05.009 Cerca con Google

Mizunaga, H., Nagaike, T., Yoshida, T., and Valkonen, S. (2010). Feasibility of silviculture for complex stand structures: designing stand structures for sustainability and multiple objectives. Journal of Forest Research, 15(1), 1-2. Doi:10.1007/s10310-009-0177-x Cerca con Google

Mizuyama, T. and Narita, H. (1988). Debris flow control by woods and their impact energy absorptivity. In: Proceedings of the International Symposium Interpraevent, Graz, Austria, Volume 2, 173-181. Cerca con Google

Mizuyama, T., Amada, T., Kurihara, J., and Kobayashi, M. (1989). Resistance and sedimentation by trees (in Japanese with English summary). Japan Society of Erosion Control Engineering, 42(4), 18-22. Cerca con Google

Mizuyama, T., Kobashi, S., and Ou, G. (1992). Prediction of debris flow peak discharge. In: Proceedings of the International Symposium Interpraevent, Bern, Switzerland, Bd. 4, pp. 99-108. Cerca con Google

Modrick, T.M., and Georgakakos, K.P. (2014). Regional bankfull geometry relationships for southern California mountain streams and hydrologic applications. Geomorphology, 221, 242-260. Doi:10.1016/j.geomorph.2014.06.004 Cerca con Google

Montgomery, D.R., and Buffington, J.M. (1997). Channel-reach morphology in mountain drainage basins. Geological Society of America Bulletin, 109(5), 596-611. Doi:10.1130/0016-7606(1997)109<0596:CRMIMD>2.3.CO;2 Cerca con Google

Montgomery, D.R., Massong, T.M., and Hawley, S.C. (2003). Influence of debris flows and log jams on the location of pools and alluvial channel reaches, Oregon Coast Range. Geological Society of America Bulletin, 115(1), 78–88. Doi:10.1130/0016–7606(2003)115<0078:iodfal>2.0.co;2 Cerca con Google

Morlotti, E. (2010). Funzione del bosco nella fase di arresto dei debris flow, PhD thesis, Università degli studi di Milano. Cerca con Google

Motta, R., and Haudemand, J.C. (2000). Protective forests and silvicultural stability-an example of planning in the Aosta Valley. Mountain Research and Development, 20(2), 180-187. Doi:10.1659/0276-4741(2000)020[0180:pfass]2.0.co;2 Cerca con Google

Murphy, M.L., and Koski, K.V. (1989). Input and depletion of woody debris in Alaska streams and implications for streamside management. North American Journal of Fisheries Management, 9(4), 427–436. Doi:10.1577/1548–8675(1989)009<0427:iadowd>2.3.co;2 Cerca con Google

Newesely, C., Tasser E., Spadinger, P., and Cernusca, A. (2000). Effects of land-use changes on snow gliding processes in alpine ecosystems. Basic and Applied Ecology, 1(1), 61-67. Doi:10.1078/1439-1791-00009 Cerca con Google

Nicholas, A.P., and McLelland, S.J. (2004). Computational fluid dynamics modelling of three-dimensional processes on natural river floodplains. Journal of Hydraulic Research, 42(2), 131-143. Doi:10.1080/00221686.2004.9728377 Cerca con Google

Nikora, V. I., and D.G. Goring (1998). ADV measurements of turbulence: Can we improve their interpretation?. Journal of Hydraulic Engineering, 124(6), 630-634. Cerca con Google

Noguchi, S., Tsuboyama, Y., Sidle, R.C., and Hosoda, I. (2001). Subsurface runoff characteristics from a forest hillslope soil profile including macropores, Hitachi Ohta, Japan. Hydrological Processes, 15(11), 2131-2149. Doi:10.1002/hyp.278 Cerca con Google

O’Brien, J.S. and Julien, P.Y. (1985). Physical process of hyperconcentrated sediment flows. In: Proceedings of the ASCE Specialty Conference on the Delineation of Landslides, Floods, and Debris Flow, 260-279. Cerca con Google

O’Brien, J.S., and Julien, P.Y. (1986). Rheology of non-Newtonian fine sediment mixtures. In: Advancements in Aerodynamics, Fluid Mechanics and Hydraulics, ASCE, 989-996. Cerca con Google

O’Brien, J.S., and Julien, P.Y. (1988). Laboratory analysis of mudflow properties. Journal of Hydraulic Engineering, 114(8), 877-887. Doi:10.1061/(asce)0733-9429(1988)114:8(877) Cerca con Google

O’Hara, K.L. (2006). Multiaged forest stands for protection forests: concepts and applications. Forest, Snow, and Landscape Research, 80(1), 45-55. Cerca con Google

Oh, Y. and Kay, Y.C. (1998). Condition for precise measurement of soil surface roughness. IEEE Transactions on Geoscience and Remote Sensing, 36(2), 691-695. Doi:10.1109/36.662751 Cerca con Google

Ott E., Frehner, M., Frey, H.U., and Lüscher, P. (1997). Gebirgsnadelwälder: praxisorientierter Leitfadenfür eine standortgerechte Waldbehandlung. Verlag PaulHaupt, Bern, Stuttgart, Wien, pp. 287. Cerca con Google

Pagliara, S., and Chiavaccini, P. (2006). Energy Dissipation on Block Ramps. Journal of Hydraulic Engineering, 132(1), 41-48. Doi:10.1061/(asce)0733-9429(2006)132:1(41) Cerca con Google

Panizza, M., Bollettinari, G., Bonomi, T., Cavallin, A., Corsini, A., De Amicis, M., and Verro, R. (1998). Valutazione della pericolosità da frana nell’area di Corvara in Badia (Dolomiti). In: Il rischio idrogeologico e la difesa del suolo, Accademia nazionale dei lincei, pp. 55-56. Cerca con Google

Parker, G., and Peterson, A.W. (1980). Bar resistance of gravel-bed streams. Journal of the Hydraulics Division, 106, 1559-1575. Cerca con Google

Parsons, J.D., Whipple, K.X., and Simoni, A. (2001). Experimental Study of the Grain‐Flow, Fluid‐Mud Transition in Debris Flows. Journal of Geology, 109(4), 427-447. Doi:10.1086/320798 Cerca con Google

Pasternack, G.B, Ellis, C.R., Leier, K.A., Vallé, B.L., and Marr, J.D. (2006). Convergent hydraulics at horseshoe steps in bedrock rivers. Geomorphology, 82(1-2), 126-145. Doi:10.1016/j.geomorph.2005.08.022 Cerca con Google

Perla, R.I. (1980). Avalanche release, motion, and impact. Dynamics of Snow and Ice Masses, 397-462. Doi:10.1016/b978-0-12-179450-7.50012-7 Cerca con Google

Perret, S., Dolf, F., and Kienholz, H. (2004). Rockfalls into forests: Analysis and simulation of rockfall trajectories ? considerations with respect to mountainous forests in Switzerland. Landslides, 1(2). Doi:10.1007/s10346-004-0014-4 Cerca con Google

Perret, S., Stoffel, M., & Kienholz, H. (2006). Spatial and temporal rockfall activity in a forest stand in the Swiss Prealps—A dendrogeomorphological case study. Geomorphology, 74(1-4), 219–231. Doi:10.1016/j.geomorph.2005.08.009 Cerca con Google

Pfeiffer, T.J., and Bowen, T. (1989). Computer Simulation of Rockfalls. Bulletin of Engineering Geology and the Environment, 26(1), 135-146. Cerca con Google

Philip, G.M., and Watson, D.F. (1982). A Precise Method for Determining Contoured Surfaces. Australian Petroleum Exploration Association Journal, 22, 205–212. Cerca con Google

Pickett, S.T.A., Kolasa, J., Armesto, J.J., and Collins, S.L. (1989). The Ecological Concept of Disturbance and Its Expression at Various Hierarchical Levels. Oikos, 54(2), 129. Doi:10.2307/3565258 Cerca con Google

Pollyea, R.M., and Fairley, J.P. (2012). Experimental evaluation of terrestrial LiDAR-based surface roughness estimates. Geosphere, 8(1), 222-228. Doi:10.1130/ges00733.1 Cerca con Google

Ponce, V.M., and Theurer, F.D. (1982). Accuracy criteria in diffusion routing. Journal of the Hydraulics Division (ASCE), 108(6), 747-757. Cerca con Google

Procter, E., Stoffel, M., Schneuwly-Bollschweiler, M., and Neumann, M. (2012). Exploring debris–flow history and process dynamics using an integrative approach on a dolomitic cone in western Austria. Earth Surface Processes and Landforms, 37(9), 913–922. Doi:10.1002/esp.3207 Cerca con Google

Radtke, A., Toe, D., Berger, F., Zerbe, S., and Bourrier, F. (2013). Managing coppice forests for rockfall protection: lessons from modeling. Annals of Forest Science, 71(4), 485-494. Doi:10.1007/s13595-013-0339-z Cerca con Google

Rajaratnam, N., and MacDougall, R.K. (1983). Erosion by plane wall jets with minimum tailwater. Journal of Hydraulic Engineering, 109(7), 1061-1064. Doi:10.1061/(asce)0733-9429(1983)109:7(1061) Cerca con Google

Rajaratnam, N., and Chamani, M.R. (1995). Energy loss at drops. Journal of Hydraulic Research, 33(3), 373-384. Doi:10.1080/00221689509498578Rammer, W., Brauner, M., Dorren, L.K.A., Berger, F., and Lexer, M.J. (2010). Evaluation of a 3-D rockfall module within a forest patch model. Natural Hazards and Earth System Science, 10(4), 699-711. Doi:10.5194/nhess-10-699-2010 Cerca con Google

Raška, P., and Oršulák, T. (2009). Biogeomorphic effects of trees on rock-mantled slopes: searching for dynamic equilibrium. Geografický časopis, 61, 19-28. Cerca con Google

Rawat, A. (2012). Evaluating protective function of forest against rock fall hazard: a case study of Himalayan temperate forest Uttarkashi, India. Enschede, University of Twente Faculty of Geo-Information and Earth Observation (ITC), 2012. Cerca con Google

Reid, D.E., and Hickin E.J. (2008). Flow resistance in steep mountain streams. Earth Surface Processes Landforms, 33(14), 2211-2240. Doi:10.1002/esp.1682 Cerca con Google

Remaître, A., Malet, J.-P., Maquaire, O., Ancey, C., and Locat, J. (2005). Flow behaviour and runout modelling of a complex debris flow in a clay-shale basin. Earth Surface Processes and Landforms, 30(4), 479-488. Doi:10.1002/esp.1162 Cerca con Google

Rickenmann, D. (1991), Hyperconcentrated flow and sediment transport at steep slopes. Journal of Hydraulic Engineering, 117(11), 1419–1439. Cerca con Google

Rickenmann, D. (1994). An alternative equation for the mean velocity in gravel-bed rivers and mountain torrents. In: Proceedings of the ASCE 1994 National Conference on Hydraulic Engineering, Buffalo, N. Y., USA edited by G. V. Cotroneo and R. R. Rumer, vol. 1, pp. 672-676, Reston, Va. Cerca con Google

Rickenmann, D., and Koch, T. (1997). Comparison of debris flow modelling approaches. In: Chen C-L (ed) Debris-flow hazards mitigation: mechanics, prediction, and assessment. In: Proceedings of the first international conference. ASCE, New York, 576-585. Cerca con Google

Rickenmann, D. (1999). Empirical relationships for debris flows. Natural Hazards, 19(1), 47-77. Cerca con Google

Rickenmann, D., and Weber, D. (2000). Flow resistance of natural and experimental debris-flows in torrent channels. Debris-Flows Hazard Mitigation: Mechanics, Prediction, and Assessment, edited by: Wieczorek, GF and Naeser, ND, Balkema, Rotterdam, 245-254. Cerca con Google

Rickenmann, D. (2005). Runout prediction methods. In: Jakob, M., Hungr, O. (Eds.), Debris-flow Hazards and Related Phenomena. Springer, Berlin, pp. 305-324. Cerca con Google

Rickenmann, D., Laigle, D., McArdell, B. W., and Hübl, J. (2006). Comparison of 2D debris-flow simulation models with field events. Computational Geosciences, 10(2), 241-264. Doi:10.1007/s10596-005-9021-3 Cerca con Google

Rickenmann, D., and Recking, A. (2011) evaluation of flow resistance in gravel-bed rivers through a large field data set. Water Resources Research, 47, W07538. Doi:10.1029/2010WR009793. Cerca con Google

Ritchie, A. (1963). Evaluation of rockfall and its control. Highway research record, 17, 13-28. Cerca con Google

Rixen, C., Haag, S., Kulakowski, D., and Bebi, P. (2007). Natural avalanche disturbance shapes plant diversity and species composition in subalpine forest belt. Journal of Vegetation Science, 18(5), 735-742. Doi:10.1111/j.1654-1103.2007.tb02588.x Cerca con Google

Roberson, J.A., and Crowe, C.T. (1997). Engineering Fluid Mechanics. 6th ed., John Wiley, New York. Cerca con Google

Robinson E.G., Mills, K., Paul, J., Dent, L., and Skaugset, A. (1999). Oregon Department of Forestry Storm Impacts and landslides in 1996. Final Report: Forest Product technical report, (4). Cerca con Google

Roering, J.J., Kirchner, J.W., and Dietrich, W. (1999). Evidence for nonlinear, diffusive sediment transport on hillslopes and implications for landscape morphology. Water Resources Research, 35(3), 853–870. Doi:10.1029/1998wr900090 Cerca con Google

Römkens, M.J., Helming, K., and Prasad, S. (2002). Soil erosion under different rainfall intensities, surface roughness, and soil water regimes. CATENA, 46(2-3), 103-123. Doi:10.1016/s0341-8162(01)00161-8 Cerca con Google

Rouiller, J.D., and Marro, C., (1997). Application de la méthodologie “MATTEROCK” à l’évaluation du danger lié aux falaises. Eclogae Geologicae Helvetiae, 90, 393-399. Cerca con Google

Sakals, M.E., Innes, J.L., Wilford, D.J., Sidle, R.C., and Grant, G.E. (2006). The role of forests in reducing hydrogeomorphic hazards. Forest, Snow, and Landscape Research, 80(1), 11-22. Cerca con Google

Saleh, A. (1993). Soil surface roughness measurement: chain method. Journal of Soil Water Conservation, 48, 527-529. Cerca con Google

Salm, B. (1982). Mechanical properties of snow. Reviews of Geophysics, 20(1), 1. Doi:10.1029/rg020i001p00001 Cerca con Google

Sankey, J.B., Glenn, N.F., Germino, M.J., Gironella, A.I.N., and Thackray, G.D. (2010). Relationships of aeolian erosion and deposition with LiDAR-derived landscape surface roughness following wildfire. Geomorphology, 119(1-2), 135-145. Doi:10.1016/j.geomorph.2010.03.013 Cerca con Google

Savage, S.B., and Jeffrey, D.J. (1981). The stress tensor in a granular flow at high shear rates. Journal of Fluid Mechanics, 110(1), 255. Doi:10.1017/s0022112081000736 Cerca con Google

Scheidl, C., and Rickenmann, D. (2009). Empirical prediction of debris-flow mobility and deposition on fans. Earth Surface Processes and Landforms, 35(2), 157-173. Doi:10.1002/esp.1897 Cerca con Google

Scheidl, C., Chiari, M., Kaitna, R., Müllegger, M., Krawtschuk, A., Zimmermann, T., and Proske, D., (2012). Analysing Debris-Flow Impact Models, Based on a Small Scale Modelling Approach. Surveys in Geophysics, 34(1), 121-140. Doi:10.1007/s10712-012-9199-6 Cerca con Google

Scheidl, C., Rickenmann, D., and McArdell, B.W. (2013), Landslide Science and Practice, chap. Runout Prediction of Debris Flows and Similar Mass Movements, pp. 221–229, Springer, Berlin. Cerca con Google

Schmidt, K.M., Roering, J.J., Stock, J.D., Dietrich, W.E., Montgomery, D.R. and Schaub, T. (2001). Root cohesion variability and shallow landslide susceptibility in the Oregon Coast Range. Canadian Geotechnical Journal, 38 (1), 995-1024. Cerca con Google

Schnorbus, M., and Alila, Y, (2004). Generation of an hourly meteorological time series for an alpine basin in British Columbia for use in numerical hydrologic modelling. Journal of Hydrometeorology, 5(5), 862-882. Doi:10.1175/1525-7541(2004)005<0862:GOAHMT>2.0.CO;2 Cerca con Google

Schoklitsch, K. (1962). Untersuchungen an Schwermineralspektren und Kornverteilungen von quartären und jungtertiären Sedimenten des Oberpullendorfer Beckens (Landseer Bucht) im mittleren Burgenland. Springer in Komm. Cerca con Google

Schönenberger, W., and Brang, P. (2001). Structure of mountain forests. Forest Ecology and Management, 145(1-2), 1-2. Doi:10.1016/s0378-1127(00)00569-7 Cerca con Google

Schwitter, R. (1998). Zusammenfassung und Schlussfolgerungen, In: R. Schwitter (Editor), Dokumentation der 14. Arbeitstagung der Schweizerischen Gebirgswaldpflegegruppe mit der FAN 1998, Grafenort/Engelberg, 1-5. Cerca con Google

Shannon, C.E., and Weaver, W. (1949). The Mathematical Theory of Communication. University of Illinois Press, Urbana. Cerca con Google

Sidle, R. C., Tsuboyama, Y., Noguchi, S., Hosoda, I., Fujieda, M., and Shimizu, T. (2000). Stormflow generation in steep forested headwaters: a linked hydrogeomorphic paradigm. Hydrological Processes, 14(3), 369-385. Doi:10.1002/(sici)1099-1085(20000228)14:3<369::aid-hyp943>3.3.co;2-g Cerca con Google

Sidle, R.C., Ziegler, A.D., Negishi, J.N., Nik, A.R., Siew, R., and Turkelboom, F. (2006). Erosion processes in steep terrain -Truths, myths, and uncertainties related to forest management in Southeast Asia. Forest Ecology and Management, 224(1-2), 199-225. Doi:10.1016/j.foreco.2005.12.019 Cerca con Google

Smart, G.M. (1999). Turbulent velocity profiles and boundary shear in gravel bed rivers. Journal of Hydraulic Engineering, 125, 106-116, Doi:10.1061/(ASCE)0733-9429(1999)125:2(106) Cerca con Google

Smart, G.M., Duncan, M.J., and Walsh, J.M. (2002). Relatively Rough Flow Resistance Equations. Journal of Hydraulic Engineering, 128(6), 568-578. Doi:10.1061/(asce)0733-9429(2002)128:6(568) Cerca con Google

Smart, G.M., Aberle, J., Duncan, M.J., and Walsh, J.M. (2004). Measurement and analysis of alluvial bed roughness. Journal of Hydraulic Research, 42(3), 227-237. Doi:10.1080/00221686.2004.9728388 Cerca con Google

Smith, M.W., Cox, N.J., and Bracken, L.J. (2010). Terrestrial laser scanning soil surfaces: a field methodology to examine soil surface roughness and overland flow hydraulics. Hydrological Processes, 25(6), 842-860. Doi:10.1002/hyp.7871 Cerca con Google

Sodnik, J., Petje, U., and Mikoš, M. (2009). Terrain topography and debris- flow modelling, Geodetski vestnik, 53, 305-318. Cerca con Google

Sodnik, J., and Mikoš, M. (2010). Modeling of a debris flow from the Hrenovec torrential watershed above the village of Kropa. Acta geographica Slovenica, 50(1), 59-84. Cerca con Google

Sosio, R., Crosta, G.B., and Frattini, P. (2007). Field observations, rheological testing and numerical modelling of a debris-flow event. Earth Surface Processes and Landforms, 32(2), 290-306. Doi:10.1002/esp.1391 Cerca con Google

Spang, R.M., and Krauter E. (2001). Rock fall simulation-A state of the art tool for risk assessment and dimensioning of rockfall barriers. In: International Conference of Landslides, 607-615. Cerca con Google

Statham, I., and Francis, S.C. (1986). Influence of scree accumulation and weathering on the development of steep mountain slopes. In: Abrahams, A.D. editor, Hillslope processes. Winchester: Allen and Unwin Inc., 245-267. Cerca con Google

Stoesser, T., Wilson, C.A.M.E., Bates, C., and Dittrich, P. (2003). Application of a 3D numerical model to a river with vegetated floodplains. Journal of Hydroinformatics, 5, 99-112. Cerca con Google

Stoffel, M., Wehrli, A., Kühne, R., Dorren, L.K.A., Perret, S., and Kienholz, H. (2006). Assessing the protective effect of mountain forests against rockfall using a 3D simulation model. Forest Ecology and Management, 225(1-3), 113-122. Doi:10.1016/j.foreco.2005.12.030 Cerca con Google

Stoffel, M., Bollschweiler, M., Vázquez-Selem, L., Franco-Ramos, O., and Palacios, D. (2011). Dendrogeomorphic dating of rockfalls on low-latitude, high-elevation slopes: Rodadero, Iztaccíhuatl volcano, Mexico. Earth Surface Processes and Landforms, 36(9), 1209–1217. Doi:10.1002/esp.2146 Cerca con Google

Stow, D. A., and Johansson, M. (2000). Deep-water massive sands: nature, origin and hydrocarbon implications. Marine and Petroleum Geology, 17(2), 145-174. Doi:10.1016/s0264-8172(99)00051-3 Cerca con Google

Straatsma, M.W., and Baptist, M.J. (2008). Floodplain roughness parameterization using airborne laser scanning and spectral Remote Sensing. Remote Sensing of Environment, 112(3), 1062-1080. Doi:10.1016/j.rse.2007.07.012 Cerca con Google

Strahler, A.N. (1952). Dynamic basis of Geomorphology. Geological Society of America Bulletin, 63(9), 923-938. Cerca con Google

Sturzenegger, M., and Stead, D. (2009). Quantifying discontinuity orientation and persistence on high mountain rock slopes and large landslides using terrestrial Remote Sensing techniques. Natural Hazards and Earth System Science, 9(2), 267-287. Doi:10.5194/nhess-9-267-2009 Cerca con Google

Swanson, F.J., Fredriksen, R.L., and McCorison, F.M. (1982). Material transfer in a western Oregon forested watershed. In: Edmonds, R.L. (ed.), Analysis of coniferous forest ecosystems in the western United States. US/IBP Synthesis Series, 14. Hutchinson Ross Publishing Company, Stroudsburg, PA, pp. 233-266. Cerca con Google

Takahashi, T. (1978). Mechanical characteristics of debris flow. Journal of the Hydraulics Division, 104(8), 1153-1169. Cerca con Google

Takahashi, T. (1980). Debris flow in prismatic open channel. Journal of Hydraulic Engineering (ASCE): article non commercial use only, 381,396-106. Cerca con Google

Takahashi, T. (1991). Debris flow: Mechanics, Prediction and Countermeasures. Taylor and Francis, Hoboken. Cerca con Google

Takahashi, T. (2000). Initiation and flow of various types of debris-flow. In: Proceedings of the 2nd International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, Taipei, Taiwan edited by: Wieczorek, G.F. and Naeser, N.D., Balkema, Rotterdam, 15-25. Cerca con Google

Takeuchi, Y., Torita, H., Nishimura, K., and Hirashima, H. (2011). Study of a large-scale dry slab avalanche and the extent of damage to a cedar forest in the Makunosawa valley, Myoko, Japan. Annals of Glaciology, 52(58), 119-128. Doi:10.3189/172756411797252059 Cerca con Google

Teich, M., Fischer, J.T., Feistl, T., Bebi, P., Christen, M., and Grêt-Regamey, A. (2014). Computational snow avalanche simulation in forested terrain. Natural Hazards and Earth System Sciences, 14(8), 2233-2248. Doi:10.5194/nhess-14-2233-2014 Cerca con Google

Terzaghi, K. (1956). Varieties of submarine slope failures. In: Proceedings of the 8th Texas Conference on Soil Mechanics and Foundation Engineering, Special Publication 29, Bureau of Engineering Research, University of Texas, Austin, September 14-15, p. 3.1-3.41. Cerca con Google

Tiberghien D., Laigle, D., Naaim, M., Thibert E., and Ousset, F., (2007). Experimental investigations on interactions between mudflow and an obstacle. In: Debris flow hazards mitigation: Mechanics, Prediction, and Assessment. In: Proceedings of the 4th international conference on Debris-flow hazard mitigation, September 2007, O’Briengdu, China. C.-L. Chen & J. J. Major (eds), Millpress Science Publishers, Rotterdam, Netherlands, pp. 281-292. Cerca con Google

Trunk, F.J., Dent, J.D., and Lang, T.E. (1986). Computer modeling of large rock slides. Journal of Geotechnical Engineering, 112(3), 348-360. Doi:10.1061/(asce)0733-9410(1986)112:3(348) Cerca con Google

Tsai, Y.-F. (2006). Three-Dimensional Topography of Debris-Flow Fan. Journal of Hydraulic Engineering, 132(3), 307-318. Doi:10.1061/(asce)0733-9429(2006)132:3(307) Cerca con Google

Van Rijn, L.C. (1984). Sediment transport, part iii: bed forms and alluvial roughness. Journal of Hydraulic Engineering, 110(12), 1733-1754. Doi:10.1061/(asce)0733-9429(1984)110:12(1733) Cerca con Google

Van Steijn, H., Coutard, J.-P., Filippo, H., and Mandersloot, C. (1988). Simulation expérimentale de laves de ruissellement mouvement et sédimentation(Experimental Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record