Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Kotsafti, Olympia (2016) La tomografia a coerenza ottica nella diagnosi di glioma delle vie ottiche in pazienti pediatrici con neurofibromatosi di tipo 1. [Tesi di dottorato]

Full text disponibile come:

[img]Documento PDF
Tesi non accessible fino a 28 Gennaio 2019 per motivi correlati alla proprietà intellettuale.
Visibile a: nessuno

2181Kb

Abstract (inglese)

Background: Neurofibromatosis type 1 (NF1) is one of the most frequent human genetic diseases, with a worldwide birth incidence of 1/2500 and is classified as a tumour predisposition syndrome. Optic pathway glioma (OPG), histologically defined as low-grade glioma (grade I WHO), affects 15% to 20% of all NF1 patients. Ophthalmologic screening is essential in the selection of patients needing magnetic resonance imaging (MRI) of the orbital/brain, which represents the gold standard for the diagnosis of optic pathway glioma. It's still controversial which is the best ophthalmologic technique to select a subgroup pediatric patients suspected of OPG needing brain MRI.
Aim: Evaluate prospectively the value of the retinal nerve fiber layer (RNFL) analysis by optical coherence tomography (OCT) as screening technique for the detection of OPGs in NF1 pediatric patients and to compare the results with the current gold-standard diagnostic techniques: visual function assessment (VFA) and optic disc evaluation (ODE).
Material and Methods: One-hundred and forty-two consecutive pediatric patients affected by NF1 (1-16 years old) were enrolled. Patients underwent VFA (Hyvarinen symbols chart and/or Snellen charts), ODE and RNFL analysis by Spectral Domain OCT (SD-OCT). On the results in each test, patients were divided in two groups: suspected and not suspected to be affected by OPG. Patient with the alteration of at least one single test underwent orbital/brain MRI.
Results: Thirty-seven (26.1%) of 142 enrolled patients, showed an alteration of at least one single test and underwent orbital/brain MRI. Thirty-three patients showed decreased RNFL thickness by SD-OCT, 14 showed decreased visual acuity and 21 showed optic disc alterations. Thirty-two patients were finally affected by OPG by MRI: 96.7% of them showed decreased RNFL thickness by SD-OCT, compared to 41.9% that showed decreased visual acuity and 59.4% that showed optic disc alterations. Positive predictive value in detecting OPG were 87.9% for RNFL analysis by SD-OCT, 92.9% for VFA and 90.5% for ODE respectively. Eleven patients affected by OPG were suspected only by OCT (34.4%). RNFL analysis by OCT appears superior in the diagnosis of pre-chiasmatic tumors (92.3% versus 21.4% and 46.7% for VFA and ODE respectively).
Conclusions: Retinal nerve fiber layer analysis assessment using Spectral Domain OCT technique is superior to visual function assessment and optic disc evaluation as a clinical screening tool for optic pathway gliomas.

Abstract (italiano)

Presupposti dello studio: La neurofibromatosi di tipo 1 (NF1) è una delle malattie genetiche più frequenti nell’uomo, con un’incidenza di 1/2500 nati e viene considerata una sindrome predisponente all’insorgenza di tumori. Il glioma delle vie ottiche, istologicamente definito come astrocitoma pilocitico, un tumore di basso grado (I grado secondo WHO), colpisce il 15-20% dei pazienti affetti da NF1. Lo screening oftalmologico è cruciale nella selezione dei pazienti che necessitano dell’esecuzione della risonanza magnetica (MRI) encefalica e orbitaria di conferma, la quale rappresenta l’attuale gold-standard diagnostico. La valutazione oftalmologica dei pazienti affetti da NF1 è tuttora controversa per quanto riguarda il miglior metodo di screening per selezionare i pazienti con sospetto glioma delle vie ottiche meritevoli di conferma neuroradiologica.
Scopo dello studio: valutare prospetticamente il contributo dell'analisi dello strato delle fibre nervose retiniche peripapillari (RNFL) mediante tomografia a coerenza ottica (OCT) come strumento di screening per la diagnosi di glioma delle vie ottiche in pazienti affetti da NF1 in età pediatrica e di compararlo con quello ottenuto dagli attuali gold-standard diagnostici (misurazione dell'acuità visiva e la valutazione della papilla ottica).
Materiali e metodi: Nello studio sono stati consecutivamente inclusi centoquarantadue pazienti pediatrici affetti da NF1 (1-16 anni d’età). Tutti i pazienti sono stati sottoposti a misurazione dell’acuità visiva con metodiche adeguate all’età (Test di Lea Hyvärinen e/o Ottotipo di Snellen), alla valutazione del disco ottico mediante oftalmoscopia indiretta e alla misurazione dello spessore dello strato delle fibre nervose retiniche peripapillari mediante analisi Spectral Domain OCT (SD-OCT). Sulla base del risultato ottenuto in ogni singolo test i pazienti sono stati suddivisi in pazienti non sospetti e sospetti per la presenza di glioma delle vie ottiche. Ogni paziente risultato sospetto in almeno uno dei test eseguiti è stato sottoposto a MRI encefalo-orbite.
Risultati: Dei centoquarantadue pazienti arruolati, 37 (26.1%) pazienti sono risultati sospetti in almeno in uno dei test eseguiti e sono stati sottoposti a MRI encefalo-orbite. Trentatre pazienti sono risultati sospetti sulla base dei dati OCT, 14 sulla base dell'acuità visiva e 21 sulla base della valutazione della papilla. Trentadue pazienti sono risultati effettivamente affetti da glioma delle vie ottiche con conferma MRI. Il 96.7% dei pazienti affetti da glioma aveva uno spessore delle fibre nervose retiniche patologico, rispetto al 41.9% dell'acuità visiva e il 59.4% dell'aspetto papillare. La valutazione dell'analisi di RNFL mediante SD-OCT, dell’acuità visiva e dell’esame della papilla ha ottenuto un valore predittivo positivo del 87.9%, 92,9% e 90,5% rispettivamente. Undici pazienti affetti da glioma sono risultati sospetti solo all'esame SD-OCT (34.4%). La superiorità dell’esame SD-OCT nell’identificazione dei gliomi delle vie ottiche appare maggiore in caso di tumori in sede pre-chiasmatica (92.3% versus 21.4% e 46.7% rispettivamente per l’acuità visiva e per la valutazione della papilla).
Conclusioni: L’analisi dello strato delle fibre nervose retiniche mediante tecnica SD-OCT è clinicamente superiore alle metodiche fino ad oggi utilizzate nello screening del glioma delle vie ottiche correlato alla NF1.

Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Pegoraro, Elena
Correlatore:Midena, Edoardo
Dottorato (corsi e scuole):Ciclo 28 > Scuole 28 > SCIENZE MEDICHE, CLINICHE E SPERIMENTALI > NEUROSCIENZE
Data di deposito della tesi:30 Gennaio 2016
Anno di Pubblicazione:30 Gennaio 2016
Parole chiave (italiano / inglese):neurofibromatosi di tipo 1/neurofibromatosis type 1 Tomografia a coerenza ottica/optical coherence tomography glioma delle vie ottiche/optic pathway glioma
Settori scientifico-disciplinari MIUR:Area 06 - Scienze mediche > MED/30 Malattie apparato visivo
Struttura di riferimento:Dipartimenti > Dipartimento di Scienze Cardiologiche, Toraciche e Vascolari
Codice ID:9410
Depositato il:07 Ott 2016 12:54
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] Neri G, Genuardi M. Genetica umana e medica. II Ed Elsevier Masson, Milano, 2010. Cerca con Google

[2] Ruggieri M, Tenconi R. Le neurofibromatosi. Associazione Linfa, Lottiamo insieme per la Neurofibromatosi. I Ed, Padova, 2001. Cerca con Google

[3] Ruggieri M, Pavone P, Polizzi A, Di Pietro M, Scuderi A, Gabriele A, Spalice A, Iannetti P. Opthalmological manifestations in segmental neurofibromatosis type 1. Br J Ophthalmol 2004;88:1429-33. Cerca con Google

[4] National Institute of Health Consensus Development Conference Statement. Neurofibromatosis. Arch Neurol 1988;45;575-578. Cerca con Google

[5] Williams, VC, Lucas J, Babcock MA, Gutmann DH, Korf B, Maria BL. Neurofibromatosis type 1 revisited. Pediatrics 2009;123:124-33 Cerca con Google

[6] Pasmant E, Vidaud M, Vidaud D, Wolkenstein P. Neurofibromatosis type 1: from genotype to phenotype. J Med Genet 2012;49:483-9. Cerca con Google

[7] Ruggieri M, Huson SM. The Neurofibromatosis. An overview. Ital J Neurol Cerca con Google

Sci 1999;20;89-108. Cerca con Google

[8] Riccardi VM. Neurofibromatosis: Phenotype, natural history, and pathogenesis. 2nd ed, Johns Hopkins University Press, Baltimore, 1992. Cerca con Google

[9] Gutmann DH, Collins FS. Neurofibromatosis 1. In: The metabolic and molecular bases of inherited disease, Scriver CR, Beaudet AL, Sly WS, Valle D. Eds McGraw-Hill, New York 2001. Cerca con Google

[10] Carey JC, Baty BJ, Johnson JP, Morrison T, Skolnick M, Kivlin J. The genetic aspects of Neurofibromatosis. Ann N y Acad Sci 1986;486;45-56. Cerca con Google

[11] Elefteriou F, Kolanczyk M, Schindeler A, Viskochil DH, Hock JM, Schorry EK, Crawford AH, Friedman JM, Little D, Peltonen J, Carey JC, Feldman D, Yu X, Armstrong L, Birch P, Kendler DL, Mundlos S, Yang FC, Agiostratidou G, Hunter-Schaedle K, Stevenson DA. Skeletal abnormalities in neurofibromatosis type 1: approaches to therapeutic options. Am J Med Genet A. 2009;149:2327-38. Cerca con Google

[12] Morcaldi G, Clementi M, Lama G, Gabrielli O, Vanelli S, Virdis R, Vivarelli R, Boero S, Bonioli E. Evaluation of tibial osteopathy occurrence in neurofibromatosis type 1 Italian patients: Am J Med Genet A 2013;161:927-34. Cerca con Google

[13] Seizinger BR, Rouleau GA, Ozelius LJ, Lane AH, Faryniarz AG, Chao MV, Huson S, Korf BR, Parry DM, Pericak-Vance MA et al. Genetic linkage of von Recklinghausen neurofibromatosis to the nerve growth factor receptor gene. Cell 1987;49:589-94. Cerca con Google

[14] Gregory PE, Gutmann DH, Mitchell A, Park S, Boguski M, Jacks T, Wood DL, Jove R, Collins FS. Neurofibromatosis type 1 gene product (neurofibromin) associates with microtubules.Somat Cell Mol Genet. 1993;19:265-74. Cerca con Google

[15] Li C, Cheng Y, Gutmann DA, Mangoura D. Differential localization of the neurofibromatosis 1 (NF1) gene product, neurofibromin, with the F-actin or microtubule cytoskeleton during differentiation of telencephalic neurons. Brain Res Dev Brain Res 2001;130:231-48. Cerca con Google

[16] Hsueh YP, Roberts AM, Volta M, Sheng M, Roberts RG. Bipartite interaction between neurofibromatosis type I protein (neurofibromin) and syndecan transmembrane heparan sulfate proteoglycans. J Neurosci 2001;21:3764-70. Cerca con Google

[17] Tong J, Hannan F, Zhu Y, Bernards A, Zhong Y. Neurofibromin regulates G Cerca con Google

protein-stimulated adenylyl cyclase activity. Nat Neurosci. 2002;5:95-6. Cerca con Google

[18] Listernick R, Ferner RE, Liu GT, Gutmann DH. Optic pathway gliomas in neurofibromatosis-1. controversies and recommendations. Ann Neurol. 2007;61:189-98. Cerca con Google

[19] Diwakar G, Zhang D, Jiang S, Hornyak TJ. Neurofibromin as a regulator of Cerca con Google

melanocyte development and differentiation. J Cell Sci 2008;121:167-77. Cerca con Google

[20] Martin GA, Viskochil D, Bollag G, McCabe PC, Crosier WJ, Haubruck H, Conroy L, Clark R, O'Connell P, Cawthon RM, et al. The GAP-related domain of the neurofibromatosis type 1 gene product interacts with ras p21. Cell 1990;63:843-9. Cerca con Google

[21] Weiss B, Bollag G, Shannon K. Hyperactive Ras as a therapeutic target in neurofibromatosis type 1. Am J Med Genet 1999;89:14-22. Cerca con Google

[22] Rubin JB, Gutmann DH. Neurofibromatosis type 1-a model for nervous system tumour formation? Nat Rev Cancer 2005;5:557-64. Cerca con Google

[23] Cainelli T, Giannetti A, Rebora A. Manuale di Dermatologia Medica e Chirurgica. IV ed., McGraw-Hill, 2008. Cerca con Google

[24] Lewis RA, Riccardi VM. Von Recklinghausen neurofibromatosis. Incidence Cerca con Google

of iris hamartomata. Ophthalmology 1981; 88:348-54. Cerca con Google

[25] Boyd KP, Korf BR, Theos A. Neurofibromatosis type 1. J Am Acad Dermatol 2009;61:1-14. Cerca con Google

[26] North KN, Riccardi V, Samango-Sprouse, Ferner R: Cognitive function and Cerca con Google

academic performance in neurofibromatosis. 1: Consensus statement from the Nf1 Cognitive Disorders Task Force. Neurology 1997; 48:1121-7. Cerca con Google

[27] Pride N Payne J North K. The impact of ADHD on the cognitive and academic functioning of children with NF1.Dev Neuropsychol. 2012;37:590-600. Cerca con Google

[28] Diggs-Andrews KA, Gutmann DH. Modeling cognitive dysfunction in neurofibromatosis-1.Trends Neurosci. 2013;36:237-47. Cerca con Google

[29] Kuorilehto T, Pöyhönen M, Bloigu R, Heikkinen J, Väänänen K, Peltonen J. Cerca con Google

Decreased bone mineral density and content in neurofibromatosis type 1:Lowest local values are located in the load-carrying parts of the body.Osteoporosis Int 2005;16:928-36. Cerca con Google

[30] Brunetti-Pierri N, Doty SB, Hicks J, Phan K, Mendoza-Londono R, Blazo M, Cerca con Google

Lee B. Generalized metabolic bone disease in Neurofibromatosis type I. Mol Genet Metab 2008;94:105-11. Cerca con Google

[31] Delucia TA, Yohay K, Widmann RF. Orthopaedic aspects of neurofibromatosis: update. Curr Opin Pediatr 2011;23:46-52. Cerca con Google

[32] Hagel C, Zils U, Peiper M, Kluwe L, Gothhard S, Friedrich RE, Zarakowski Cerca con Google

D, von DA, Mautner VF. Histopatology and clinical outcome of NF1 associated vs. Sporadic malignant peripheral nerve sheath tumors. J Neurooncol 2007;82: 187-92. Cerca con Google

[33] Bognanno JR, Edwards MK, Lee TA, Dunn DW, Roos KL, Klatte EC. Cranial MR imaging in neurofibromatosis. Am J Radiol 1988;151:381-8. Cerca con Google

[34] Rasmussen SA, Yang Q, Friedman JM. Mortality in neurofibromatosis 1. An analysis using US death certificates. Am J Hum Genet 2001;68:1110-8. Cerca con Google

[35] Friedman JM, Arbiser J, Epstein JA, Gutmann DH, Huot SJ, Lin AE, Korf BR. Cardiovascular disease in neurofibromatosis. 1. A report of the Nf1 Cardiovascular Task Force. Genet Med 2003;4:105-11. Cerca con Google

[36] Kanski JJ. Oftalmologia clinica. Eds Elsevier Masson, Milano, 2008. Cerca con Google

[37] DeBella K, Szudek J, Friedman JM. Use of the national institutes of health criteria for diagnosis of neurofibromatosis 1 in children. Pediatrics 2000;105:608-14. Cerca con Google

[38] Obringer AC, Meadows AT, Zackai EH. The diagnosis of Neurofibromatosis 1 in the child under the age of 6 years. Am J Dis Child 1989;143:717-9. Cerca con Google

[39] Angelini C, Battistin L. Neurologia Clinica. I Ed. Società Editrice Esculapio, 2010. Cerca con Google

[40] Manzoni GC, Torelli P. Neurologia. I Ed. Società Editrice Esculapio, 2012. Cerca con Google

[41] Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Kleihues P. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 2007;114:97-109. Cerca con Google

[42] Minturn JE, Fisher MJ: Gliomas in children. Curr Treat Options Neurol. 2013 Jun; 15:316-27. Cerca con Google

[43] Ricci PE, Dungan DH. Imaging of low-and intermediate-grade gliomas. Semin Radiat Oncol 2001; 11:103-12 Cerca con Google

[44] Shaw EG, Berkey B, Coons SW, Bullard D, Brachman D, Buckner JC, Mehta M. Recurrence following neurosurgeon-determined gross-total resection of adult supratentorial low-grade glioma: results of a prospective clinical trial. J Neurosurg 2008; 109:835-41. Cerca con Google

[45] Shaw EG, Wang M, Coons SW, et al: Randomized trial of radiation therapy plus procarbazine, lomustine, and vincristine chemotherapy for supratentorial adult low-grade glioma: initial results of RTOG 9802. J Clin Oncol 2012; 30:3065-70. Cerca con Google

[46] Wen PY, Kesari S: Malignant gliomas in adults. N Engl J Med 2008;359:492-507. Cerca con Google

[47] Chang SM, Parney IF, Huang W, Anderson FA Jr, Asher AL, Bernstein M, Lillehei KO, Brem H, Berger MS,Laws ER. Patterns of care for adults with newly diagnosed malignant glioma. JAMA 2005; 293:557-64. Cerca con Google

[48] Seminog OO, Goldacre MJ. Risk of benign tumours of nervous system, and of malignant neoplasms, in people with neurofibromatosis: population based record-linkage study. Br J Cancer 2013; 108:193-8. Cerca con Google

[49] Avery RA, Fisher MJ, Liu GT. Optic pathway gliomas. J Neuroophthalmol 2011;31:269-78. Cerca con Google

[50] Listernick R, Charrow J. Intracranial gliomas in neurofibromatosis type 1. Am J of Medical Genetics 1999: 89; 38-44. Cerca con Google

[51] Gutmann DH, Rasmussen SA, Wolkenstein P, MacCollin MM, Guha A, Inskip PD, North KN, Poyhonen M, Birch PH, Friedman JM.. Gliomas presenting after age 10 in individuals with neurofibromatosis type 1 (NF1). Neurology 2002; 59:759-61. Cerca con Google

[52] Thiagalingam S, Flaherty M, Bilson F, North K. Neurofibromatosis type 1 and optic pathway gliomas: follow-up of 54 patients. Ophthalmology 2004;111:568-77. Cerca con Google

[53] Listernick R, Charrow J, Greenwald M & Mets M. Natural history of optic pathway tumors in children with neurofibromatosis type 1: a longitudinal study. The Journal of pediatrics 1994;125:63-6. Cerca con Google

[54] Cavicchiolo ME, Opocher E, Daverio M, Bendini M, Viscardi E, Bisogno G, Perilongo G, Da Dalt L. Diencephalic syndrome as sign of tumor progression in a child with neurofibromatosis type 1 and optic pathway glioma: a case report. Child's Nervous System 2013;29:1941-5. Cerca con Google

[55] Rao AA, Naheedy JH, Chen JY, Robbins SL, Ramkumar HL. A clinical update and radiologic review of pediatric orbital and ocular tumors. J Oncol 2013;2013:975908. Cerca con Google

[56] Balcer LJ, Liu GT, Heller G, Bilaniuk L, Volpe NJ, Galetta SL, Molloy PT, Phillips PC, Janss AJ, Vaughn S, Maguire MG. Visual loss in children with neurofibromatosis type 1 and optic pathway gliomas: relation to tumor location by magnetic resonance imaging. American journal of ophthalmology 2001;131:442-5. Cerca con Google

[57] Stiebel-Kalish H, Lusky M, Yassur Y, Kalish Y, Shuper A, Erlich R, Lubman S, Snir M. Swedish interactive thresholding algorithm fast for following visual fields in prepubertal idiopathic intracranial hypertension. Ophthalmology 2004;111:1673-5. Cerca con Google

[58] Chang L, El Dairi MA, Frempong TA, Burner EL, Bhatti MT, Young TL, Leigh F. Optical coherence tomography in the evaluation of neurofibromatosis type-1 subjects with optic pathway gliomas. J AAPOS 2010;14:511-7. Cerca con Google

[59] Imes RK, Hoyt WF. Magnetic resonance imaging signs of optic nerve gliomas in neurofibromatosis 1. Am J Ophthalmol 1991;111:729-34. Cerca con Google

[60] Borit A, Richardson EP Jr. The biological and clinical behaviour of pilocytic astrocytomas of the optic pathways. Brain 1982; 105:161-87. Cerca con Google

[61] King A, Listernick R, Charrow J, Piersall L, Gutmann DH. Optic pathway gliomas in neurofibromatosis type 1: the effect of presenting symptoms on outcome. American Journal of Medical Genetics Part A 2003;122;95-9. Cerca con Google

[62] Shuper A, Horev G, Kornreich L, Michowiz S, Weitz R, Zaizov R, Cohen IJ. Visual pathway glioma: an erratic tumour with therapeutic dilemmas. Arch Dis Child 1997;76:259-63. Cerca con Google

[63] Binning MJ, Liu JK, Kestle JR, Brockmeyer DL, Walker ML.Optic pathway gliomas: a review. Neurosurg Focus 2007;23:E2. Review. Cerca con Google

[64] Packer RJ, Sutton LN, Bilaniuk LT, Radcliffe J, Rosenstock JG, Siegel KR, Bunin GR, Savino PJ, Bruce DA, Schut L. Treatment of chiasmatic/hypothalamic gliomas of childhood with chemotherapy: an update. Ann Neurol 1988;23:79-85. Cerca con Google

[65] Petronio J, Edwards MS, Prados M, Freyberger S, Rabbitt J, Silver P, Levin Cerca con Google

VA. Management of chiasmal and hypothalamic gliomas of infancy and childhood with chemotherapy. J Neurosurg 1991;74:701-8. Cerca con Google

[66] Massimino M, Spreafico F, Cefalo G, Riccardi R, Tesoro-Tess JD, Gandola L, Riva D, Ruggiero A, Valentini L, Mazza E, Genitori L, Di Rocco C, Navarria P, Casanova M, Ferrari A, Luksch R, Terenziani M, Balestrini MR, Colosimo C, Fossati-Bellani F. High response rate to cisplatin/etoposide regimen in childhood low-grade glioma. J Clin Oncol 2002;20:4209-16. Cerca con Google

[67] Packer RJ, Ater J, Allen J, Phillips P, Geyer R, Nicholson HS, Jakacki R, Kurczynski E, Needle M, Finlay J, Reaman G, Boyett JM. Carboplatin and vincristine chemotherapy for children with newly diagnosed progressive low-grade gliomas. J Neurosurg 1997;86:747-54. Cerca con Google

[68] Jeon S, Lee NY, Park CK. Neovascular glaucoma following stereotactic radiosurgery for an optic nerve glioma:: a case report. Korean J Ophthalmol 2010;24:252-5. Cerca con Google

[69] Zamber RW, Kinyoun JL. Radiation retinopathy. West J Med1992;157:530-3. Cerca con Google

[70] Opocher E, Kremer L, Da Dalt L, van de Wetering MD, Viscardi E, Caron HN, Perilongo G. Prognostic factors for progression of childhood optic pathway glioma: a systematic review. European journal of cancer 2006;42:1807-16. Cerca con Google

[71] Perilongo G, Moras P, Carollo C, Battistella A, Clementi M, Laverda A, Murgia A. Spontaneous partial regression of low-grade glioma in children with neurofibromatosis-1: a real possibility. Journal of child neurology 1999;14:352-6. Cerca con Google

[72] Bruggers CS, Friedman HS, Phillips PC, Wiener MD, Hockenberger B, Oakes WJ, Buckley EG. Leptomeningeal dissemination of optic pathway gliomas in three children. American journal of ophthalmology 1991,111:719-23. Cerca con Google

[73] Galetta KM, Calabresi PA, Frohman EM, Balcer LJ. Optical coherence tomography (OCT): imaging the visual pathway as a model for neurodegeneration. Neurotherapeutics 2011;8:117-32. Cerca con Google

[74] Sakata LM, DeLeon-Ortega J, Sakata V, Girkin CA. Optical coherence tomography of the retina and optic nerve–a review. Clinical Experiment Ophthalmol 2009;37:90-9. Cerca con Google

[75] Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA et al. Optical coherence tomography. Science 1991;254:1178-81. Cerca con Google

[76] Fercher AF. Optical coherence tomography–development, principles, applications. Zeitschrift für Medizinische Physik 2010;20:251-276. Cerca con Google

[77] Hee MR, Izatt JA, Swanson EA, Huang D, Schuman JS, Lin CP, Puliafito CA, Fujimoto JG. Optical coherence tomography of the human retina. Arch Ophthalmol 1995;113:325-32. Cerca con Google

[78] Lumbroso L, Rispol M. Guida all'interpretazione di un OCT Spectral Domain. Ed I.N.C., Innovation-News-Comunication®, Roma, 2009. Cerca con Google

[79] Hrynchak P, Simpson T. Optical coherence tomography: an introduction to the technique and its use. Optom Vis Sci 2000;77:347-56. Cerca con Google

[80] Standring S. Anatomia del Gray. Le basi anatomiche per la pratica clinica. Pula G and Letterio T eds Elsevier-Masson Publ, Milano. 2009. Cerca con Google

[81] Spectralis HRA+OCT User Guide Software Version 5.3. Heidelberg Engineering GmbH, Heidelberg, Germany;2010. Cerca con Google

[82] Han IC, Jaffe GJ. Comparison of spectral-and time-domain optical coherence tomography for retinal thickness measurements in healthy and diseased eyes. Am J Ophthalmol 2009;147: 847-58. Cerca con Google

[83] Drexler W, Fujimoto JG. State-of-the-art retinal optical coherence tomography. Prog Retin Eye Res 2008;27:45-88. Cerca con Google

[84] Patel NB, Wheat JL, Rodriguez A, Tran V, Harwerth RS. Agreement between retinal nerve fiber layer measures from Spectralis and Cirrus spectral domain OCT. Optom Vis Sci 2012;89:E652-66. Cerca con Google

[85] Kim JS, Ishikawa H, Sung KR, Xu J, Wollstein G, Bilonick RA, Gabriele ML, Kagemann L, Duker JS, Fujimoto JG, Schuman JS. Retinal nerve fibre layer thickness measurement reproducibility improved with spectral domain optical coherence tomography. Br J Ophthalmol 2009;93:1057-63. Cerca con Google

[86] Serbecic N, Beutelspacher SC, Aboul-Enein FC, Kircher K, Reitner A, Schmidt-Erfurth U. Reproducibility of high-resolution optical coherence tomography measurements of the nerve fibre layer with the new Heidelberg Spectralis optical coherence tomography. Br J Ophthalmol 2011;95:804-10. Cerca con Google

[87] Yanni SE, Wang J, Cheng CS, Locke KI, Wen Y, Birch DG, Birch EE. Normative reference ranges for the retinal nerve fiber layer, macula, and retinal layer thicknesses in children. Am J Ophthalmol 2013;155:354-360. Cerca con Google

[88] Bendschneider D, Tornow RP, Horn FK, Laemmer R, Roessler CW, Juenemann AG, kruse FE, Mardin CY. Retinal nerve fiber layer thickness in normals measured by spectral domain OCT. J Glaucoma 2010;19:475-82. Cerca con Google

[89] Frohman EM, Fujimoto JG, Frohman TC, Calabresi PA, Cutter G, Balcer LJ. Optical coherence tomography: a window into the mechanisms of multiple sclerosis. Nat Clin Pract Neurol 2008;4:664–75. Cerca con Google

[90] Fisher JB, Jacobs DA, Markowitz CE, Galetta SL, Volpe NJ, Nano-Schiavi ML, Baier ML, Frohman EM, Winslow H, Frohman TC, Calabresi PA, Maguire MG, Cutter GR, Balcer LJ. Relation of visual function to retinal nerve fiber layer thickness in multiple sclerosis. Ophthalmology 2006;113:324-32. Cerca con Google

[91] Pulicken M, Gordon-Lipkin E, Balcer LJ, Frohman E, Cutter G, Calabresi PA. Optical coherence tomography and disease subtype in multiple sclerosis. Neurology 2007;69:2085-92. Cerca con Google

[92] Jindahra P, Hedges TR, Mendoza-Santiesteban CE, Plant GT. Optical coherence tomography of the retina: applications in neurology. Curr Opin Neurol 2010;23:16-23. Cerca con Google

[93] Kallenbach K, Frederiksen J. Optical coherence tomography in optic neuritis and multiple sclerosis: a review. Eur J Neurol 2007;14:841-9. Cerca con Google

[94] Khanifar AA, Parlitsis GJ, Ehrlich JR, Aaker GD, D’Amico DJ, Gauthier SA, Kiss S. Retinal nerve fiber layer evaluation in multiple sclerosis with spectral domain optical coherence tomography. Clin Ophthalmol 2010;4:1007-13. Cerca con Google

[95] Lange AP, Zhu F, Sayao AL, Sadjadi R, Alkabie S, Traboulsee AL,. & Tremlett H. Retinal nerve fiber layer thickness in benign multiple sclerosis. Mult Scl Journal 2013;19:1275-81. Cerca con Google

[96] Miglior S, Riva I, Guareschi M, Di Matteo F, Romanazzi F, Buffagni L, Rulli E. Retinal sensitivity and retinal nerve fiber layer thickness measured by optical coherence tomography in glaucoma. Am J Ophthalmol 2007;144: 733-40. Cerca con Google

[97] Iseri PK, Atlinaş O, Tokay T, Yüksel N. Relationship between cognitive impairment and retinal morphological and visual functional abnormalities in Alzheimer disease. J Neuro Ophthalmol 2006;26:18-24. Cerca con Google

[98] Hajee ME, March WF, Lazzaro DR, Wolintz AH, Shrier EM, Glazman S, Bodis-Wollner IG. Inner retinal layer thinning in Parkinson disease. Arch Ophthalmol 2009;127:737-41. Cerca con Google

[99] Fortuna F, Barboni P, Liguori R, Valentino ML, Savini G, Gellera C, Mariotti C, Rizzo G, Tonon C, Manners D, Lodi R, Sadun AA, Carelli V. Visual system involvement in patients with Friedreich’s ataxia. Brain 2009;132:116-23. Cerca con Google

[100] Viola F,Villani E, Natacci F, Selicorni A, Melloni G, Vezzola D, Barteselli G, Mapelli C, Pirondini C, Ratiglia R. Choroidal abnormalities detected by near infrared reflectance imaging as a new diagnostica criterion for Neurofibromatosis 1. Ophthalmology 2012;119:369-75. Cerca con Google

[101] Parrozzani R, Clementi M, Frizziero L, Miglionico G, Perrini P, Cavarzeran F, Kotsafti O, Comacchio F, Trevisson E, Convento E, Fusetti S, Midena E. In Vivo Detection of Choroidal Abnormalities Related to NF1. Feasibility and Comparison With Standard NIH Diagnostic Criteria in Pediatric Patients. Invest Ophthalmol Vis Sci 2015;56:6036-42 . Cerca con Google

[102] Mentzel HJ, Seidel J, Fitzek C, Eichhorn A, Vogt S, Reichenbach JR, Zintl F, Kaiser WA. Pediatric brain MRI in neurofibromatosis type I. Eur Radiol 2005;15:814-22. Cerca con Google

[103] Chou R, Dana T, Bougatsos C. Screening for Visual Impairment in Children Ages 1-5 Years: Systematic Review to Update the 2004 U.S. Preventive Services Task Force Recommendation. Available at: http://www.ncbi.nlm.nih.gov/books/NBK52708/. Accessed May 5, 2013. Vai! Cerca con Google

[104] American Academy of Pediatrics Committee on Practice and Ambulatory Medicine, Section on Ophthalmology. Eye examination and vision screening in infants, children, and young adults. Pediatrics 1996;98:153-7. Cerca con Google

[105] Cyert L, Schmidt P, Maguire M, Moore B, Dobson V, Quinn G. Vision in Preschoolers (VIP) Study Group. Threshold visual acuity testing of preschool children using the crowded HOTV and Lea Symbols acuity tests. J AAPOS 2003;7:396-9. Cerca con Google

[106] Vision in Preschoolers Study Group. Preschool visual acuity screening with Cerca con Google

HOTV and Lea symbols: testability and between-test agreement. Optom Vis Sci 2004;81:678-83. Cerca con Google

[107] Pan Y, Tarczy-Hornoch K, Cotter SA, Wen G, Borchert MS, Azen SP, Varma R. Multi-Ethnic Pediatric Eye Disease Study Group. Visual acuity norms in pre-school children: the Multi-Ethnic Pediatric Eye Disease Study Optom Vis Sci 2009;86:607-12. Cerca con Google

[108] Serbecic N, Aboul-Enein F, Beutelspacher SC, Graf M, Kircher K, Geitzenauer W, Schmidt-Erfurth U. Heterogeneous pattern of retinal nerve fiber layer in multiple sclerosis. High resolution optical coherence tomography: potential and limitations. PLoS One 2010;5:e13877. Cerca con Google

[109] Rebolleda G, González-López JJ, Muñoz-Negrete FJ, Oblanca N, Costa-Frossard L, Álvarez-Cermeño JC. Color-Code Agreement Among Stratus, Cirrus, and Spectralis Optical Coherence Tomography in RelapsingRemitting Multiple Sclerosis With and Without Prior Optic Neuritis. Ame J Ophthalmol 2013;155:890-7. Cerca con Google

[110] Girkin CA, McGwin G Jr, Sinai MJ, Sekhar GC, Fingeret M, Wollstein G, Varma R, Greenfield D, Liebmann J, Araie M, Tomita G, Maeda N, Garway-Heath DF. Variation in optic nerve and macular structure with age and race with spectral-domain optical coherence tomography Ophthalmology 2011;118:2403-8 Cerca con Google

[111] Parrozzani R, Clementi M, Kotsafti O, Miglionico G, Trevisson E, Orlando G, Pilotto E, Midena E. Optical coherence tomography in the diagnosis of optic pathway gliomas. Invest Ophthalmol Vis Sci.2013;54:8112-8. Cerca con Google

[112] Miller NR: Primary tumours of the optic nerve and its sheath. Eye (Lond) 2004;18:1026-37. Cerca con Google

[113] Kornreich L, Blaser S, Schwarz M, Shuper A, Vishne TH, Cohen IJ, Faingold R, Michovitz S, Koplewitz B, Horev G. Optic pathway glioma: Correlation of imaging findings with the presence of neurofibromatosis. AJNR Am J Neuroradiol 2001;22:1963-9. Cerca con Google

[114] Ferner RE, Huson SM, Thomas N, Moss C, Willshaw H, Evans DG, Upadhyaya M, Towers R, Gleeson M, Steiger C, Kirby A. Guidelines for the diagnosis and management of individuals with neurofibromatosis 1. J Med Genet 2007;44:81-8. Cerca con Google

[115] Appleton RE, Jan JE. Delayed diagnosis of optic nerve glioma: a preventable cause of vision loss. Pediatr Neurol 1989;5:226-8. Cerca con Google

[116] Listernick R, Ferner RE, Piersall L, Sharif S, Gutmann DH, Charrow J. Late-onset optic pathway tumors in children with neurofibromatosis 1. Neurology 2004; 63:1944. Cerca con Google

[117] Avery RA, Bouffet E, Packer RJ, Reginald A. Feasibility and comparison of visual acuity testing methods in children with neurofibromatosis type 1 and/or optic pathway gliomas. Invest Ophthalmol Vis Sci. 2013;54:1034-8. Cerca con Google

[118] Mash C, Dobson V. Long-term reliability and predictive validity of the TellerAcuity Card procedure. Vision Res 1998;38:619-26. Cerca con Google

[119] Caen S, Cassiman C, Legius E, Casteels I. Comparative study of the ophthalmological examinations in neurofibromatosis type 1. Proposal for a new screening algorithm.Eur J Paediatr Neurol. 2015;19:415-22. Cerca con Google

[120] Amy Shih-I Pai, Kathryn A. Rose, Chameen Samarawickrama, Reena Fotedar, George Burlutsky, Rohit Varma, and Paul Mitchell. Testability of refraction, stereopsis, and other ocularmeasures in preschool children: The Sydney Paediatric Eye Disease Study. Journal of AAPOS 2012; 16:185-92. Cerca con Google

[121] Brown SM, Bradley JC, Monhart MJ, Baker DK. Normal values for Octopus tendency oriented perimetry in children 7 through 13 years old. Graefes Arch Clin Exp Ophthalmol 2005;243:886-93. Cerca con Google

[122] North K, Cochineas C, Tang E, Fagan E. Optic gliomas in neurofibromatosis type 1: role of visual evoked potentials. Pediatr Neurol. 1994;10:117-23. Cerca con Google

[123] Wolsey DH, Larson SA, Creel D, Hoffman R. Can screening for optic nerve Cerca con Google

gliomas in patients with neurofibromatosis type I be performed with visual evoked potential testing? J AAPOS. 2006;10:307-11. Cerca con Google

[124] Chang BC, Mirabella G, Yagev R, Banh M, Mezer E, Parkin PC, Westall CA, Buncic JR. Screening and diagnosis of optic pathway gliomas in children with neurofibromatosis type 1 by using sweep visual evoked potentials. Invest Ophthalmol Vis Sci. 2007; 48:2895-902. Cerca con Google

[125] Avery RA, Liu GT, Fisher MJ, Quinn GE, Belasco JB, Phillips PC, Maguire MG, Balcer LJ. Retinal nerve fiber layer thickness in children with optic pathway gliomas. Am J Ophthalmol 2011; 151:542-9. Cerca con Google

[126] Topcu-Yilmaz P, Kasim B, Kiratli H. Investigation of retinal nerve fiber layer thickness in patients with neurofibromatosis-1. Jpn J Ophthalmol. 2014;58:172-6. Cerca con Google

[127] Gu S, Glaug N, Cnaan A, Packer RJ, Avery RA. Ganglion cell layer-inner plexiform layer thickness and vision loss in young children with optic pathway gliomas. Invest Ophthalmol Vis Sci 2014;55:1402-8. Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record