Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Moscon, Giorgia (2016) Variability of late-quaternary transgressive sedimentation in the northern adriatic sea. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF (Tesi di Dottorato) - Altro
16Mb

Abstract (inglese)

The Adriatic Sea is an epicontinental semi-enclosed basin characterized by a low axial gradient shelf in the northern and central part. In particular, during the post-LGM transgression, the northern Adriatic shelf was affected by huge drowning due to slight sea-level rise. In this context, different generation of barrier-lagoon systems were developed and preserved. Thus, these transgressive bodies, on the Adriatic seafloor, record different phases of the relative sea-level rise. In the last few decades, several authors focused their study on the last transgressive cycle to reconstruct the evolution of the last relative sea-level rise in order to identify and predict its impact on the present coastal and terrestrial environments. The aim of this PhD thesis was a detailed characterization of transgressive deposits sedimented and preserved during distinct phases of the last relative sea-level rise in the northern Adriatic shelf. These sedimentary bodies, indeed, are one of the more appropriate direct sea-level indicators and their study could be the key to better constrain the paleo sea-level and predict possible scenarios of environmental changes. Moreover, these transgressive deposits are identified as an economical resource because their sand portion, indicative of fossil shorelines, can be exploited for beaches nourishment. The characterization of different deposits was carried out with a multidisciplinary approach through the analyses of very high resolution seismic profiles, cores, bathymetric maps, petrographic samples, and XRF core scanner analysis.
To improve the sea-level Mediterranean curve with new data, a preserved transgressive deposit south of the Po River delta was studied in detail. This sedimentary body, formed in a portion of the shelf affected by strong sediment supply, recorded different environments. The high quality of the acquired data and the considerable preservation of this deposit allowed to recognize and date different peat and organic-rich layers that testify brackish lagoon facies representative of distinct paleo sea-level position. The new radiocarbon data permitted to calculate the rate of sedimentation and the rate of the relative sea-level rise during the deposition of the investigated body. In particular, these high resolution data could be used to detect centennial fluctuations and calibrate sea-level models.
Furthermore, to obtain new data on the paleogeography of the Adriatic shelf, eight starved and reworked transgressive deposits, northern of the present Po River delta, were investigated with petrographic and preliminary XRF core scanner analyses. The compositional results highlighted three sedimentary petrofacies (petrofaciesI, II, III) connected to different relative sea-level phases. In particular, the petrofacies I, indicative of the ancient sea-level phase, allowed to hypothesize a northward shifting of an ancient branch of the Po River; the Petrofacies II, highlighted a drowned shoreline characterized by different fluvial supply, and the petrofacies III, indicative of the more recent sea-level phase, and belonging to a transgressive deposit that have been already studied by other authors, confirmed a Tagliamento River supply. Furthermore, the XRF analysis, in support of the petrographic analysis, allowed to individuate geochemical proxies in order to distinguish marine sand portion from sorted sand portion. Moreover, through the XRF analysis was possible to identify geochemical variation related to different environments of sedimentation connected also to glacial-interglacial cycle.
The applied approach to the characterization of the northern Adriatic transgressive deposits allowed to obtain satisfactory results in order to improve the Adriatic relative sea-level curve and to recognize environmental changes in relation to the sea-level rise. At least, the results can provide a significant contribution in order to identify appropriate sand suitable deposits for beaches nourishment.

Abstract (italiano)

Il Mare Adriatico è un bacino epicontinentale semi-chiuso caratterizzato da un basso gradiente della piattaforma nella zona centro settentrionale. In particolare, l’ultima risalita del mare, successiva all’ultimo massimo glaciale, provocò l’annegamento della piattaforma nord adriatica e conseguente sedimentazione e preservazione di diverse generazioni di sistemi costieri, che hanno quindi registrato diverse fasi di risalita del livello del mare. Negli ultimi decenni, più autori hanno focalizzato i loro studi sull’ultimo episodio trasgressivo per ricostruire in dettaglio i diversi momenti dell’ultima risalita relativa del livello del mare, per prevedere l’impatto che un innalzamento del livello del mare potrebbe avere nelle aree costiere attuali. Lo scopo di questa tesi di dottorato è stato quello di caratterizzare con estremo dettaglio i depositi trasgressivi sedimentati e preservati durante ultime fasi di risalita del mare nella piattaforma adriatica settentrionale. Questi corpi sedimentari sono infatti ottimi indicatori diretti del livello del mare e il loro studio potrebbe essere la chiave per delineare scenari futuri. Inoltre la porzione sabbiosa di questi depositi può costituire una risorsa economica sfruttabile per il ripascimento delle spiagge. Questi corpi sedimentari sono stati studiati con un approccio multidisciplinare che ha previsto l’analisi di profili sismici ad alta risoluzione, di carote, di mappe batimetriche, analisi compositive petrografiche su campioni di sabbia e analisi non distruttiva tramite spettrofotometria XRF in continuo su carote.
Un deposito a sud del Delta del Po meglio comprendere gli effetti del sollevamento del livello del mare in un ambiente di transizione e con questo fornire dati di maggior dettaglio alla curva di risalita del mare Adriatico. Questo corpo sedimentario, formatosi in un’area caratterizzata da apporti sedimentari consistenti, ha registrato lo sviluppo di diversi ambienti sedimentari. La qualità dei dati analizzati e la considerevole preservazione del deposito hanno permesso di riconoscere e datare livelli ricchi in materia organica che testimoniano facies lagunari e quindi sono ottimi indicatori di paleo livelli del mare. Inoltre, le nuove datazioni al radiocarbonio hanno permesso di calcolare sia il tasso di sedimentazione sia il tasso relativo di risalita del livello del mare durante la formazione del deposito stesso. Questo estremo dettaglio nella ricostruzione delle fasi trasgressive potrebbe essere utilizzata in futuro per individuare fluttuazioni centenarie e calibrare i modelli di risalita del livello del mare.
Inoltre, sono stati analizzati otto depositi starvati e rimaneggiati, presenti a nord del Delta del Po, per ottenere nuovi dati sulla paleo geografia del nord Adriatico. Questi depositi sono stati studiati con analisi petrografiche e di spettrofotometria XRF. I risultati compositivi, hanno messo in evidenza tre petrofacies sedimentarie in relazione a diverse fasi della risalita del livello del mare. In particolare, la petrofacies I, indicativa della fase di risalita più antica, ha permesso di ipotizzare uno spostamento verso nord di un ramo fluviale del paleo Po; la petrofacies II ha messo in evidenza una paleo linea di costa caratterizzata da diversi apporti fluviali; mentre la petrofacies III, indicativa di un deposito trasgressivo studiato in precedenza da altri autori, ha confermato una provenienza legata al fiume Tagliamento. Inoltre, l’analisi XRF ha consentito di individuare proxies geochimici che hanno permesso di distinguere porzioni di sabbie marine da porzioni di sabbie ben cernite, con variazioni geochimiche che riflettono i diversi ambienti di sedimentazione.
I risultati ottenuti con lo studio di questi depositi hanno permesso di migliorare la curva dl livello relativo del mare Adriatico e di riconoscere cambiamenti ambientali legati alla risalita del livello del mare. Infine, questi risultati possono contribuire in modo cospicuo all’identificazione di corpi sabbiosi utilizzabili per il ripascimento delle spiagge.


Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Stefani, Cristina
Correlatore:Correggiari, Annamaria - Fontana, Alessandro
Dottorato (corsi e scuole):Ciclo 28 > Scuole 28 > SCIENZE DELLA TERRA
Data di deposito della tesi:30 Gennaio 2016
Anno di Pubblicazione:30 Gennaio 2016
Parole chiave (italiano / inglese):Depositi trasgressivi, livello relativo del mare, Mare Adriatico Settentrionale, Transgressive deposits, relative sea-level, northern Adriatic Sea
Settori scientifico-disciplinari MIUR:Area 04 - Scienze della terra > GEO/02 Geologia stratigrafica e sedimentologica
Struttura di riferimento:Dipartimenti > Dipartimento di Geoscienze
Codice ID:9422
Depositato il:20 Ott 2016 11:05
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Allen, J.R.M., Brandt, U., Brauer, A., Hubberten, H.W., Huntley, B., Keller, J., Kraml, M., Mackensen, A., Mingram, J., Negendank, J.F.W., Nowaczyk, N.R., Oberhänsli, H., Watts, W.A., Wulf, S., and Zolitschka, B., 1999, Rapid environmental changes in southern Europe during the last glacial period: Nature, v. 400, p. 740–743. Cerca con Google

Amorosi, A., Fontana, A., Antonioli, F., Primon, S., and Bondesan, A., 2008, Post-LGM sedimentation and Holocene shoreline evolution in the NW Adriatic coastal area: GeoActa, v. 7, p. 41-67. Cerca con Google

Amorosi, A., Maselli, V., and Trincardi, F., 2015, Onshore to offshore anatomy of a late Quaternary source-to-sink system (Po Plain–Adriatic Sea, Italy): Earth Science Reviews, in press, doi:10.1016/j.earscirev.2015.10.010 Cerca con Google

Antonioli, F., Amorosi, A., Fontana, A., Bondesan, A., Braitenberg, C., Dutton, A., Ferranti, L., Fontolan, G., Furlani, S., Lambeck, K., Mastronuzzi, G., Monaco, C., Orrù, P., 2009, A review of the Holocene sealevel changes and tectonic movements along the Italian coastline: Quaternary International, v. 206, p. 102-133. Cerca con Google

Argnani, A., and Frugoni, F., 1997, Foreland deformation in the Central Adriatic and its bearing on the evolution of the Northern Apennines: Ann. Geof., v. 40, p. 771-780. Cerca con Google

Argnani, A., and Gamberi, F., 1996, Stili strutturali al fronte della catena appenninica nell’Adriatico centro-settentrionale: Studi Geologici Camerti Volume Speciale, 1995/1, p. 19–27. Cerca con Google

Argnani, A., and Ricci Lucchi, F., 2001, Tertiary Siliciclastic Turbidite Systems. In: Vai, G.B., and I.P. Martini (Eds.), Anatomy of an Orogen: the Apennines and adjacent Mediterranean basins, Kluwer Academic Pubblication, p. 327-350, Dordrecht, Netherlands. Cerca con Google

Ariztegui, D., Asioli, A., Lowe, J.J., Trincardi, F., Vigliotti, L., Tamburini, F., Chondrogianni, C., Accorsi, C.A., Bandini Mazzanti, M., Mercuri, A.M., Van der Kaars, S., McKenzie, J.A., and Oldfield, F., 2000,Palaeoclimate and the formation of sapropel S1: inferences from Late Quaternary lacustrine and marine sequences in the central Mediterranean region: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 158, p. 215–240. Cerca con Google

Artegiani, A., Bregant, D., Paschini, E., Pinardi, N., Raicich, F., and Russo, A., 1997a, The Adriatic Sea general circulation. Part I Air-sea interactions and water mass structure: J. Phys. Oceanogr., v. 27, p. 1492–1514. Cerca con Google

Artegiani, A., Bregant, D., Paschini, E., Pinardi, N., Raicich, F., and Russo, A., 1997b, The Adriatic Sea general circulation. Part II Baroclinic circulation structure: J. Phys. Oceanogr., v. 27, p. 1515–1532. Cerca con Google

Arz, H.W., Pätzold, J., Müller, P.J., and Moammar, M.O., 2003, Influence of Northern Hemisphere climate and global sea level rise on the restricted Red Sea marine environment during termination: Paleoceanography, v. 18, p. 1053. doi:10.1029/2002PA000864 Cerca con Google

Asioli, A., Trincardi, F., Lowe, J.J., Ariztegui, D., Langone, L., and Oldfield, F., 2001, Sub-millennial climatic oscillations in the Central Adriatic during the last deglaciation: paleoceanographic implications: Quaternary Science Reviews, v. 20, p. 33–53. Cerca con Google

Bahr A, Lamy F, Arz H, Kuhlmann H, Wefer G (2005) Late glacial to Holocene climate and sedimentation history in the NW Black Sea: Mar Geol 214:309–322. doi:10.1016/j.margeo. 2004.11.013 Cerca con Google

Bahr, A., Lamy, F., Arz, H.W., Major, C., Kwiecien, O., and Wefer, G., 2008, Abrupt changes of temperature and water chemistry in the late Pleistocene and early Holocene Black Sea: Geochem Geophys Geosyst, v. 9, Q01004. Cerca con Google

Bally, A., Burbi, L., Cooper, C., and Ghelardoni, R., 1986, Balanced sections and seismic reflection profiles across the Central Apennines: Mem. Soc. Geol. Ital., v. 35, p. 257–310. Cerca con Google

Bard, E., Hamelin, B., and Fairbanks, R.G., 1990, U-Th ages obtained by mass spectrometry in corals from Barbados: sea level during the past 130000 years: Nature, v. 346, p. 456-458. Cerca con Google

Bard, E., Hamelin, B., Arnold, M., Montaggioni, L., Cabioch, G., Faure, G., and Rougerie, F., 1996: Deglacial sea-level record from Tahiti corals and the timing of global meltwater discharge, Nature, v. 382, p. 241-244. Cerca con Google

Bard, E., 2003, Tahiti Deglacial Relative Sea Level Reconstruction, IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series 2003-028. NOAA/NGCD Paleoclimatology Program, Boulder CO, USA. Cerca con Google

Belknap, D.F., and Kraft, J.C., 1981, Preservation potential of transgressive coastal lithosomes on the U.S. Atlantic shelf: Marine Geology, v. 42, p. 429–442. Cerca con Google

Belknap, D.F., and Kraft, J.C., 1985. Influence of antecedent geology on stratigraphic preservation potential and evolution of Delaware’s barrier systems: Marine Geology, v. 63, p. 235– 262. Cerca con Google

Bertotti, G., Casolari, and E., Picotti, 1999, The Gargano promontory: A Neogene contractional belt within the Adriatic plate: Terra Nova, v. 11, p. 168–173. Cerca con Google

Blanchet, C.L., Thouveny, N., Vidal, L., Leduc, G., Tachikawa, K., Bard, E., and Beaufort, L., 2007, Terrigenous input response to glacial/interglacial climatic variations over southern Baja California: a rock magnetic approach: Quat Sci Rev, v. 26, p. 3118–3133. Cerca con Google

Blott, S.J., Pye, K., 2001, Gradistat: A grain size distribution and statistics package for the analysis of unconsolidated sediments: Earth Surf. Proces. Landf., v. 26, p. 1237–1248. Cerca con Google

Bondesan, M., Castiglioni, G.B., Elmi, C., Gabbianelli, G., Marocco, R., Pirazzoli, P.A., and Tomasin, A., 1995, Coastal areas at risk from storm surges and sea-level rise in northeastern Italy: Journal of Coast. Res., v. 11, p. 1354-1379. Cerca con Google

Caley, T., Malaizé, B., Zaragosi, S., Rossignol, L., Bourget, J., Eynaud, F., Martinez, P., Giraudeau, J., Charlier, K., and Ellouz-Zimmerman, N., 2011, New Arabian Sea records help decipher orbital timing of Indo-Asian monsoon: Earth Planet Sci. Lett., v. 30, p. 433–444. Cerca con Google

Calvert, S.E., and Pedersen, T.F. 2007, Elemental proxies for palaeoclimatic and palaeoceanographic variability in marine sediments: interpretation and application, In: Hillaire-Marcel C, De Vernal A (eds) Proxies in Late Cenozoic Paleoceanography: Dev Mar Geol, Elsevier, p. 567–644. Cerca con Google

Cardinal, D., Savoye, N., Trull, T.W., Andre, L., Kopczynska, E.E., and Dehairs, F., 2005, Variations of carbon remineralisation in the Southern Ocean illustrated by the Baxs proxy: Deep Sea Res., v. 52, p. 355–370. Cerca con Google

Carminati, E., Doglioni, C. and Scrocca, D. 2003, Apennines subduction-related subsidence of Venice: Geophysical Research Letters, v. 30 (13): 1717, doi: 10.1029/2003GL017001. Cerca con Google

Castiglioni, G.B., 1978, Il ramo più settentrionale del Po nell'antichità: Atti e Memorie Accademia Patavina Scienze, Lett. Arti, v. 90, p. 157–164. Cerca con Google

Castiglioni, G.B., 2004, Quaternary glaciations in the eastern sector of the Italian Alps, in Elhers, J., and Gibbard, P.l., eds., Quaternary Glaciations–Extent and Chronology–Part I: Europe, p. 209–215. Elsevier, Amsterdam. Cerca con Google

Cattaneo, A., and Trincardi, F., 1999, The late-Quaternary transgressive record in the Adriatic epicontinental sea: Basin widening and facies partitioning, In: Bergman, K. and J. Snedden (Eds.), Isolated Shallow Marine Sand Bodies: Sequence Stratigraphic Analysis and Sedimentologic Interpretation: SEPM Spec. Publ. Soc. Sediment. Geol., v. 64, p. 127-146, Tulsa, Oklahoma. Cerca con Google

Cattaneo, A., Correggiari, A., Langone L., and Trincardi, F., 2003, The late-Holocene Gargano subacqueous delta, Adriatic shelf: Sediment pathways and supply fluctuations: Marine Geology, v. 193, p. 61-91. Cerca con Google

Cattaneo, A., Steel, R.J., 2003, Transgressive deposits: a review of their variability: Earth-Science Reviews, v. 62, p. 187–228. Cerca con Google

Cattaneo, A., Trincardi, F., Asioli A., and Correggiari, A., 2007, The Western Adriatic shelf clinoform: energy-limited bottomset: Continental Shelf Research, v. 27, p. 506-525. Cerca con Google

Catuneanu, O., 2006, Principles of Sequence Stratigraphy: Elsevier, Amsterdam, p. 375. Cerca con Google

Catuneanu, O., Galloway, W.E., Kendall, C.G.St.C., Miall, A.D., Posamentier, H.W., Strasser, A., and Tucker, M.E., Sequence stratigraphy: methodology and nomenclature: Newsletters on Stratigraphy, v. 44, p. 173–245. Cerca con Google

Cazzini, F., Dal Zotto, O., Fantoni, R., Ghielmi, M., Ronchi, P., and Scotti, P., 2015, Oil and gas in the Adriatic foreland, Italy: Jornal of Petroleum Geology, v. 38, p. 255-279. Cerca con Google

Channell, J.E.T., D’Argenio, B., and Horvath, F., 1979, Adria, the African Promontory, in Mesozoic Mediterranean paleo- geography, Earth Science Rev., v. 15, p. 213-292. Cerca con Google

Chiocci, F.L, Ercilla, G., and Torres, J., 1997, Stratal architecture of Western Mediterranean Margins as the result of the stacking of Quaternary lowstand deposits below glacio-eustatic fluctuation base-level: Sediment. Geol., v. 112, p. 195-217. Cerca con Google

Ciabatti M., Curzi P.V., and Ricci Lucchi F., 1987, Quaternary sedimentation in the central Adriatic Sea: Giornale di Geologia, v. 3, p. 113-125. Cerca con Google

Clark, P.U., Marshall McCabe, A., Mix A.C., and Weaver, A.J., 2004, Rapid rise of sea level 19000 years ago and its Global implications: Science, v. 304, p. 1141-1144. Cerca con Google

Clark, P.U., Dyke, A.S., and Shakun, J.D., 2009, The last glacial maximum: Science, v. 325, p.710-714. Cerca con Google

Correggiari, A., M. Roveri, and F. Trincardi, 1992, Regressioni forzate, regressioni deposizionali e fenomeni di instabilità in unità progradazionali tardo-quaternarie (Adriatico centrale): G. Geol., v. 54, p. 19–36. Cerca con Google

Correggiari, A., Roveri, M., and Trincardi, F., 1996a, Late Pleistocene and Holocene evolution of the North Adriatic Sea: Il Quaternario, v. 9, p. 697-704. Cerca con Google

Correggiari, A., Field, M. and Trincardi, F., 1996b, Late Quaternary transgressive large sand dunes on the sediment starved Adriatic shelf, In: De Baptist, M., and P. Jacobs (Eds.), Geology of Siliciclastic Shelf Seas: Geological Society Special Publications, v. 117, p. 155-169. Cerca con Google

Correggiari, A., Trincardi, F., Langone, L., and Roveri, M., 2001, Styles of failure in heavilysedimented high-stand prodelta wedges on the Adriatic shelf: Journal of Sedimentary Research, v. 71, p. 218-236. Cerca con Google

Correggiari, A., Cattaneo, A., and Trincardi, F., 2005, The modern Po delta system: lobe switching and asymmetric prodelta growth: Marine Geology, v. 222–223, p. 49–74. Cerca con Google

Correggiari A., Aguzzi M., Remia A., and Preti, M. 2011, Caratteristiche sedimentologiche e stratigrafiche dei giacimenti sabbiosi in Mare Adriatico Settentrionale utilizzabili per il ripascimento costiero: Studi Costieri, v. 19, p. 11-31. Cerca con Google

Correggiari, A., Remia, A., Foglini, F., Perini, L., Luciani, P., Piazza, P., and Pinato, T. 2015, Ricerca di depositi sabbiosi offshore come risorsa per le strategie di ripascimento costiero: nuove prospettive e architettura del geodatabase in_Sand utilizzato in nord Adriatico: Workshop, La risosrsa sabbia offshore per Il ripascimento costiero, 28/04/2015 Bologna (Italy). Cerca con Google

Croudace, I.W, Rindby, A., and Rothwell, R.G., 2006, ITRAX: description and evaluation of a new multifunction X-ray core scanner. In: Rothwell RG (ed) New techniques in sediment core analysis: Geological Society Special Publication, v. 267, p. 51–63. Cerca con Google

Curray, J.R., 1964, Transgressions and regressions. In: Miller, R.L. (Ed.), Papers in Marine Geology. Macmillan, New York, p. 175– 203. Cerca con Google

Dal Piaz, G.V., Bistacchi, A., Massironi, M., 2003: Geological outline of the Alps, v. 26, p. 175–180. Cerca con Google

D’Argenio, B., and Horvath, F., 1984, Someremarksonthedefor- mation history of Adria, from the Mesozoic to the Tertiary: Ann. Geophys., v. 2, p. 143-146. Cerca con Google

Dehairs, F., Chesselet, R., and Jedwab, J., 1980, Discrete suspended particles of barite and the barium cycle in the open ocean: Earth Planet. Sci. Lett., v. 49, p. 528–550. Cerca con Google

Dehairs, F., Baeyens, W., and Goeyens, L., 1992, Accumulation of suspended baite at mesopelagic depths and export production in the Southern Ocean: Science, v. 254, p.1332–1335. Cerca con Google

De Marchi L., 1922, Variazioni di livello dell'Adriatico in corrispondenza delle espansioni glaciali: Atti della Accademia Scientifica Veneta-Trentino-Istriana, v.12-13, p. 3-15. Cerca con Google

Dickinson, W.R., 1970, Interpreting detrital modes of greywacke and arkose: Journal of Sedimentary Petrology, v. 40, p. 695-707. Cerca con Google

Diekmann, B., Hofmann, J., Henrich, R., Fütterer, D.K., Röhl, U., and Wei, K.Y., 2008, Detrital sediment supply in the southern Okinawa Trough and its relation to sea level and Kurishio dynamics during the late Quaternary: Mar. Geol., v. 255, p. 83–95. Cerca con Google

Di Stefano, R., Kissling, E., Chiarabba, C., Amato, A., and Giardini, D., 2009, Shallow subduction beneath Italy, Three-dimensional images of the Adriatic-European-Tyrrhenian lithosphere system based on high quality P wave arrival times: Journal Geophysical Research, 114, doi: 10.1029/2008JB005641. Cerca con Google

Doglioni, C., 1993, Geological evidence for a global tectonic polarity: Journal of the Geological Society of London, v. 150, p. 991-1002. Cerca con Google

Doglioni, C., Mongelli, F., and Pieri, P., 1994, The Puglia uplift (SE Italy): An anomaly in the foreland of the Apenninic subduction due to buckling of a thick continental lithosphere: Tectonics, v. 13, p. 1309-1321. Cerca con Google

Doglioni, C., and Carminati, E., 2002, The effects of four subductions in NE Italy. Transalp conference, Mem. Soc. Geol., v. 54, p. 1-4. Cerca con Google

Fabbri A., Argnani A., Bortoluzzi G., Correggiari A., Gamberi F., Ligi M., Penitenti D., Roveri M., and Trincardi, F., 2001, Note Illustrative della Cartografia Geologica dei mari italiani scala 1:250.000: Foglio NL 33-10 Ravenna. Cerca con Google

Fabbri, A., Argnani, A., Bortoluzzi, G., Correggiari, A., Gamberi, F., Ligi, M., Marani, M., Penitenti, D., Roveri, M., and Trincardi, F., 2002, Carta geologica dei mari italiani alla scala 1:250.000. Guida al rilevamento. Presidenza del Consiglio dei Ministri, Dipartimento per i Servizi Tecnici Nazionali, Servizio Geologico: Quaderni serie III, 8, p. 1–93. Cerca con Google

Fabris, M., Achilli, V., Menin, A., 2014, Estimation of Subsidence in Po Delta Area (Northern Italy) by Integration of GPS Data, High-Precision Leveling and Archival Orthometric Elevations:International Journal of Geosciences, v. 5, p. 571-585. Cerca con Google

Fairbanks, R.G., 1989, A 17.000-yr glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation: Nature, v. 342, p. 637-642. Cerca con Google

Fairbanks, R.G., 1992, Barbados Sea Level and Th/U 14C Calibration. IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series 92-020. NOAA/NGDC Paleoclimatology Program, Boulder CO, USA. Cerca con Google

Fantoni, R., and Franciosi, R., 2010, Mesozoic extension and Cenozoic compression in Po Plain and Adriatic foreland. In: Sassi FP (ed) Nature and Geodynamics of the Lithostere in Northern Adriatic, Rendiconti Lincei - Scienze Fisiche e Naturali. Cerca con Google

Ferranti, L., Antonioli, F., Mauz, B., Amorosi, A., Dai Pra, G., Mastronuzzi, G., Monaco, C., Orrù, P., Pappalardo, M., Radtke, U., Renda, P., Romano, P., Sansò, P., and Verrubbi, V., 2006, Markers of the last interglacial sea level high-stand along the coast of Italy: tectonic implications: Quaternary International, v. 145–146, p. 30–54. Cerca con Google

Fleming, K.P., Dan Zwartz, J., Yokoyama, Y., Lambeck, J., and Chappell, J., 1998, Refining the eustatic sea-level curve since the Last Glacial Maximum using far- and intermediate-field sites: Earth and Planetary Science Letters, v. 163, p. 327-342. Cerca con Google

Fontana, A., Mozza, P., and Bondesan, A., 2004, L’evoluzione geomorfologica della Pianura Veneto-Friulana, In: Geomorfologia della provincia di Vicenza, Bondesan, A., Meneghel, M., ed. Esedra, Padova, p. 113-138. Cerca con Google

Fontana, A., 2006, Evoluzione geomorfologica della bassa pianura friulana e sue relazioni con le dinamiche insediative antiche (with enclosed the Geomorphological map of the Friulian low plain, scale 1:50,000): Monografie Museo Friulano Storia Naturale 47, Udine, p. 288. Cerca con Google

Fontana, A., Mozzi, P., and Bondesan, A., 2008, Alluvial megafans in the Venetian–Friulian Plain (north-eastern Italy): evidence of sedimentary and erosive phases during Late Pleistocene and Holocene: Quaternary International, v.189, p. 71-90. Cerca con Google

Fontana, A., Mozzi, P., and Bondesan, A., 2010, Late Pleistocene evolution of the Venetian–Friulian Plain: Rendiconti Lincei, v. 21, p. 181-196. Cerca con Google

Fontana, A., Mozzi, P., and Marchetti, M., 2014, Alluvial fans and megafans along the southern side of the Alps: Sedimentary Geology, v. 301, p. 150-171. Cerca con Google

Francus, P., Lamb, H., Nakagawa, T., Marshall, M., Brown, E., and Suigetsu Project Members, 2009, The potential of high-resolution X-ray fluorescence core scanning: Pages News, v. 17, p. 93-96. Cerca con Google

Gacic, M., Civitarese, G., Ursella, L., 1999, Spatial and seasonal variability of water and biogeochemical fluxes in the Adriatic sea, In: Malanotte-Rizzoli, P., Eremeev, V.N. (Eds.), The eastern Mediterranean as a laboratory basin for the assessment of contrasting ecosystems, Kluwer Academic Publishers, p. 335–357. Cerca con Google

Gambolati, G., Teatini, P., and Ferronato, M., 2006, Anthropogenic Land Subsidence: In. Encyclopedia of Hydrological Sciences, Chapter 158,v. IV, M.G. Anderson (ed), J. Wiley, 2444-2459, 2005. Cerca con Google

Garzanti, E., Vezzoli, G. Andò, S., Paparella, P., and Clift, P.D., 2005, Petrology of Indus River sands: a key to interpret erosion history of the Western Himalayan Syntaxis: Earth and Planetary Science Letters, v. 229, p. 287-302. Cerca con Google

Garzanti, E., Doglioni, C., Vezzoli, G., and Andò, S., 2007, Orogenic belts and orogenic sediment provenances: Journal of Geology, v. 115, p. 315-334. Cerca con Google

Gasperini L., Stanghellini, G., 2009, SEISPRHO: An interactive computer program for processing and interpretation of high-resolution seismic reflection profiles: Computers & Geosciences, v. 35, p. 1497-1507. Cerca con Google

Gatto, P., and Previatello, P., 1974, Significato stratigrafico, comportamento meccanico e distribuzione della laguna di Venezia di un’argilla sovraconsolidata nota come “caranto”: CNR-ISDMG, V. 70. Cerca con Google

Gazzi, P., 1966, Le arenarie del flysch sopracretaceo dell’Appennino modenese: correlazioni con il Flysch di Monghidoro: Mineralogy Petrography Acta, v. 12, p. 69-97. Cerca con Google

Gazzi, P., Zuffa, G.G., Gandolfi, G., and Paganelli, L., 1973, Provenienza e dispersione litoranea delle sabbie delle spiagge adriatiche fra le foci dell’Isonzo e del Foglia: inquadramento regionale: Memorie della Società Geologica Italiana, v. 12, p. 1-37. Cerca con Google

Gebhardt, H., Sarnthein, M., Grootes, P.M., Kiefer, T., Kühn, H., Schmieder, F. and, Röhl, U., 2008, Paleonutrient and productivity records from the subarctic North Pacific for Pleistocene glacial terminations I to V: Paleoceanography, v. 23, PA4212. doi:10.1029/2007PA001513. Cerca con Google

Gordini, E., Marocco, R., and Vio, E., 2002, Stratigrafia del sottosuolo della Terrazza Grande (Adriatico-Settentrionale): Gortania, v., 24, p. 31-63. Cerca con Google

Grande, V., Proietti, R., Foglini, F., Remia, A., Correggiari, A., Paganelli, D., Targusi, M., Franceschini, G., La Valle, P., Berducci, M.T, La Porta, B., Lattanzi, L., Lisi, I, Maggi, C., Loia, M., Pazzini, A., Gabellini, M ., and Nicoletti, L., 2015, Sistema Informativo per il monitoraggio ambientale della risorsa sabbiosa offshore nei progetti di protezione costiera: geodatabase env_Sand, ISPRA: Manuali e Linee guida, 127/2015. Cerca con Google

Grützner, J., Hillenbrand, C.D., and Rebesco, M.A., 2005, Terrigenous flux and biogenic silica deposition at the Antarctic continental rise during the late Miocene to early Pliocene: implications for ice sheet stability and sea ice coverage, Glob Planet Change, v. 45, p. 131–149. Cerca con Google

Harff, J., Endler, R., Emelyanov, E., Kotov, S., Leipe, T., Moros, M., Olea, R., Tomczak, M., and Witkowski, A., 2011, Late Quaternary climate variations reflected in Baltic Sea sediments, In: Harff J, Björck S, Hoth P (eds) The Baltic Sea Basin, v. 3, p. 99–132. Cerca con Google

Hays, J.D., Imbrie, J., and Shackleton, N.J., 1976, Variations in the Earth’s orbit: pacemaker of the ice ages: Science, v. 194, p. 1121–1132. Cerca con Google

Helland-Hansen, W., Gjelberg, J.G., Conceptual basis and variability in sequence stratigraphy: a different perspective: Sedimentary Geology, v. 92, p. 31–52. Cerca con Google

Hoang van, L., Clift, P.D., Schwab, A.M., Huuse, M., Nguyen, D.A., Zhen, S., 2010, Large-scale erosional response of SE Asia to monsoon evolution reconstructed from sedimentary records of the Song Hong-Yinggehai and Qiongdongnan basins, South China Sea: Geol Soc Spec Publ, v. 342, p. 219–244. Cerca con Google

Hodell, D.A., Channell, J.E.T., Curtis, J.H., Romero, O.E., and Röhl, U., 2008, Onset of ‘Hudson Strait’ Heinrich events in the Eastern North Atlantic at the end of the Middle Pleistocene transition (~ 640 ka)?: Paleoceanography, v. 23, PA4218. Cerca con Google

Ingersoll, R.V., Bullard, T.F., Ford, R.L., Grimm, J.P., Pickle, J.D., and Sares, S.W., 1984, The effect of grain size on detrital models: a test of Gazzi-Dickinson point-counting method: Journal of Sedimentary Petrology, v.54. p. 103-116. Cerca con Google

Instruments, L.-C.S., 2000, Multibeam sonar theory of operation, available at: www.mbari.org/data/mbsystem/sonarfunction/SeaBeamMultibeamTheoryOperation.pdf  Vai! Cerca con Google

Ivanov, M.V., 1981, The global biogeochemical sulphur Cycle. In: Likens GE (ed) Some perspectives of the major biogeochemical cycles SCOPE, p. 61–78. Cerca con Google

Jaccard, S.L., Haug, G.H., Sigman, D.M., Pedersen, T.F., Thierstein, H.R., and Röhl, U., 2005, Glacial/interglacial changes in Subarctic North Pacific stratification: Science, v. 308, p. 1003–1006. Cerca con Google

Kleiven, H.F., Kissel, C., Laj, C., Ninnemann, U.S., Richter, T.O., and Cortijo, E., 2007, Reduced North Atlantic Deep Water coeval with the Glacial Lake Agassiz fresh water outburst: Science, v. 319, p. 60–64. Cerca con Google

Kummerow, J., Kind, R., Oncken, O., Giese, P., Ryberg, T., Wylegalla, K., and Scherbaum, F., 2004, A natural and controller source seismic profile through the Eastern Alps: TRANSALP: Earth and Planetary Science Letters, v. 225, p. 115–129. Cerca con Google

Lambeck, K., Yokoyama, Y., and Purcell, T., 2002, Into and out of the Last Glacial Maximum: sea level changes during Oxygen Isotope Stage 3 and 2: Quaternary Science Reviews, v. 21, p. 343-360. Cerca con Google

Lambeck, K., Antonioli, F., Purcell, A., and Silenzi, S., 2004, Sea-level change along the Italian coast for the past 10,000 yr: Quaternary Science Reviews, v. 23, p. 1567-1598. Cerca con Google

Lambeck, K., and Purcell, A, 2005, Sea-level change in the Mediterranean Sea since the LGM: model predictions for tectonically stable areas: Quaternary Science Reviews, v. 24, p. 1969-1988. Cerca con Google

Lambeck, K., Purcell, A., Funder, S., Kjær, K.H., Larsen, E., and Möller, P., 2006, Constraints on the Late Saalian to early Middle Weichselian ice sheet of Eurasia from field data and rebound modelling: Boreas, v. 35, p. 539–575. Cerca con Google

Lambeck, K., Rouby, H., Purcell, A., Sun, Y., and Sambridge, M., 2014, Sea level and global ice volumes from the Last Glacial Maximum to the Holocene: Pnas, v. 111, p. 15296-15303. Cerca con Google

Lambeck, K., Antonioli, F., Anzidei, M., Ferranti, L., Leoni, G., Scicchitano, G. and Silenzi, S., 2011, Sea Level Change along the Italian Coast during the Holocene and Projections for the Future: Quaternary International, v. 232, p. 250-257. Cerca con Google

Lebreiro, S.M., Voelker, A.H.L., Vizcaino, A., Abrantes, F.G., Alt-Epping, U., Jung, S., Thouveny, N., and Gràcia, E., 2009, Sediment instability on the Portuguese continental margin under abrupt glacial climate changes (last 60 kyr): Quat Sci Rev, v. 28, p. 3211–3223. doi:10.1016/j.quascirev.2009.08.007. Cerca con Google

Lee, H. J. and Clausner, J. E., 1979, Seafloor Soil Sampling and Geotechnical Parameter Determination: Handbook, Technical Report, Civil Engineering Laboratory, Port Hueneme, California, TR-873, p. 128. Cerca con Google

Malanotte-Rizzoli, P., and Bergamasco, A., 1983, The dynamics of the coastal region of the northern Adriatic Sea: J. Phys. Oceanogr., v. 13, p. 1105-1130. Cerca con Google

Manca, B.B., Kova?evi?, V., Ga?i?, M., and Viezzoli, D., 2002, Dense water formation in the southern Adriatic Sea and spreading into the Ionian Sea in the period 1997–1999: J. Mar. Syst., v. 33–34, p. 133–154. Cerca con Google

Marchesini, L., Amorosi, A., Cibin, U., Spadafora, E., Zuffa, G.G. and Preti, D., 2000, Detrital supply versus facies architecture in the Late Quaternary deposits of the south-eastern Po plain (Italy): Journal of Sedimentary Research, v. 70, p. 829-838. Cerca con Google

Martinson, D.G., Pisias, N.G., Hays, J.D., Imbrie, J., Moore, T.C., and Shackleton, N.J., 1987, Age dating and the Orbital theory of Ice Ages: Development of a high-resolution 0 to 300,000 year chronostratigraphy: Quaternary Research, v. 27, p. 1-29. Cerca con Google

Maselli, V., Trincardi, F., Cattaneo, A., Ridente, and D., Asioli, A., 2010, Subsidence pattern in the central Adriatic and its influence on sediment architecture during the last 400 kyr: Journal of Geophysical Researc, v. 115, B12106. doi:10.1029/2010JB007687 Cerca con Google

Maselli, V., Hutton, E.W., Kettner, A.J., Syvitski, J.P.M., and Trincardi, F., 2011, High-frequency sea level and sediment supply fluctuations during Termination I: An integrated sequence-stratigraphy and modelling approach from the Adriatic Sea (Central Mediterranean): Marine Geology, v. 287, p. 54-70. Cerca con Google

Massari, F., Rio, D., Serandrei Barbero, R., Asioli, A., Capraro, L., Fornaciari, E., and Vergerio, P., 2004, The environment of Venice area in the past two million years: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 202, p. 273–308. Cerca con Google

Miller, E.L., Kuznetsov, N., Soboleva, A., Udoratina, O., Grove, M.J., and Gehrels, G., 2011, Baltica in the Cordillera?: Geology, v. 39, p. 791–794. Cerca con Google

Miola, A., Bondesan, A., Corain, L., Favaretto, S., Mozzi, P., Piovan, S., and Sostizzo, I., 2006, Wetlands in the Venetian Po Plain (north-eastern Italy) during the Last Glacial Maximum: vegetation, hydrology, sedimentary environments: Paleobotany and Palynology, v. 141, p. 53–81. Cerca con Google

Monegato, G., Stefani, C., Zattin, M., 2010, From present rivers to old terrigenous sediments: the evolution of the drainage system in the eastern Southern Alps: Terra Nova, v. 22, p. 218-226. Cerca con Google

Moreno, A., Nave, S., Kuhlmann, H., Canals, M., Targarona, J., Freudenthal, T., and Abrantes, F., 2002,Productivity response in the North Canary Basin to climate changes during the last 250000 years: a multi-proxy approach: Earth Planet Sci Lett, v. 196, p. 147–159. Cerca con Google

Moscon, G., Correggiari, A., Stefani, C., Fontana, A., Remia, A., 2015, Very-high resolution analysis of a transgressive deposit in the Northern Adriatic Sea (Italy): Alpine and Mediterranean Quaternary, v. 28, p. 121-129. Cerca con Google

Mozzi, P., Bini, C., Zilocchi, L., Becattini, R., and Mariotti Lippi, M., 2003, Stratigraphy, palaeopedology and palinology of Late Pleistocene and Holocene deposits in the landward sector of the lagoon of Venice (Italy), in relation to the ‘caranto’ level: Il Quaternario – Italian Journal of Quaternary Sciences, v. 16, p. 193–210. Cerca con Google

Muttoni, G., Carcano, C., Garzanti, E., Ghielmi, M., Piccin, A., Pini, R., Rogledi, S., and Sciunnach, D., 2003, Onset of major Pleistocene glaciations in the Alps: Geology, v. 31, p. 989-992. Cerca con Google

Nummedal, D., Swift, D.J.P, 1987, Transgressive stratigraphy at sequence-bounding unconformities: some principles derived from Holocene and Cretaceous example ,In: D Nummedal, O.H Pilkey, S.D Howard (Eds.), Sea level Fluctuation and Coastal Evolution, SEPM Special Publication, vol. 41, p. 241–260. Cerca con Google

Ori, G.G., and Friend, P.F., 1984, Sedimentary basins formed and carried piggyback on active thrust sheets: Geology, v. 12, p. 475-478. Cerca con Google

Ori, G.G., Roveri, M., and Vannoni, F., 1986, Plio-Pleistocene sedimentation in the Apenninic- Adriatic foredeep (central Adriatic Sea, Italy), In: Allen, P., and P. Homewood (Eds.), Foreland Basins, Int. Ass. Sediment., Spec. Pub., v. 8, p. 183-198, Blackwell Sci., Oxford, United Kingdom. Cerca con Google

Pellegrini, C., Maselli, V., Cattaneo, A., Piva, A., Ceregato, A., and Trincardi, F., 2015, Anatomy of a compound delta from the post-glacial transgressive record in the Adriatic Sea: Mar. Geol., v. 362, p, 43–59. Cerca con Google

Penland, P., Boyd, R., and Suter, J.R., 1988, Transgressive depositional systems of the Mississippi delta plain: a model for barrier shoreline and shelf sand development: Journal of Sedimentary Petrology, v. 58, p. 932-949. Cerca con Google

Pieri, M., and Groppi, G., 1981, Subsurface geological structure of the Po Plain, Italy: Progetto Finalizzato Geodinamica, CNR Publ., v. 414, pp. 23, Roma, Italy. Cerca con Google

Piper, D.J.W., and Aksu, A.E., 1992, Architecture of stacked Quaternary deltas correlated with global oxygen isotopic curve: Geology, v. 20, p. 415–418. Cerca con Google

Piovan, S., Mozzi, P., and Stefani, C., 2010, Bronze Age Palaeohydrography of the Southern Venetian Plain: Geoarcheology, v. 25, p. 6-35. Cerca con Google

Ren, J., Jiang, H., Seidenkrantz, M.S., and Kuijpers, A., 2009, A diatom-based reconstruction of Early Holocene hydrographic and climatic change in a southwest Greenland fjord, Mar Micropaleontol, v. 70, p. 166–176. Cerca con Google

Remier, P.J.,Baillie, M.G.L.,Bard, E., Bayliss, A., Beck, J.W., Bertrand, C.J.H., Blackwell, P.G., Buck, C.E., Burr, G.S., Cutler, K.B., Damon, P.E., Edwards, R.L., Fairbanks, R.G., Friedrich, M., Guilderson, T.P., Hogg, A.G., Hughen, K.A., Kromer, B., McCormac, F.G., Manning, S.W., Ramsey, C.B., Reimer, R.W., Remmele, S., Southon, J.R., Stuiver, M., Talamo, S., Taylor, F.W., van der Plicht, J., and Weyhnmeyer, C.E., 2004, IntCal04 terrestrial radiocarbon age calibration, 26-0 cal kyr BP: Radiocarbon, v. 46, p. 1087-1092 Cerca con Google

Ricci Lucchi, F, 1986, The Oligocene to recent foreland basins of the Northern Apennines, In: Allen, P.A., and P. Homewood (Eds.), Foreland Basins, Int. Ass. Sediment., Spec. Pub., v. 8, p. 105-139, Blackwell Sci., Oxford, United Kingdom. Cerca con Google

Richter, T.O., Van der Gaast, S., Koster, B., Vaars, A., Gieles, R., de Stigter, H.C., de Haas, H., and van Weering, T.C.E., 2006, The Avaatech XRF core scanner: technical description and applications to NE Atlantic sediments. In: Rothwell RG (ed) New techniques in sediment core analysis: Geol Soc Spec Publ, v. 267, p. 39–50. Cerca con Google

Ridente, D., and Trincardi, F., 2002, Eustatic and tectonic control on deposition and lateral variability of Quaternary regressive sequences in the Adriatic basin (Italy): Marine Geology, v. 184, p. 273-293. Cerca con Google

Ridente, D., and Trincardi, F., 2005, Pleistocene “muddy” forced-regression deposits on the Adriatic shelf: A comparison with prodelta deposits of the late Holocene high-stand mud wedge: Marine Geology, v. 222-223, 213-233. Cerca con Google

Ridente, D., and Trincardi, F., 2006, Active foreland deformation evidenced by shallow folds and faults affecting Late Quaternary shelf-slope deposits (Adriatic Sea, Italy): Basin Research, v. 18, p. 171-188. Cerca con Google

Ridente, D., Trincardi, F., Piva, A., Asioli, A., and Cattaneo, A., 2008, edimentary response to climate and sea level changes during the past ?400 ka from borehole PRAD1–2 (Adriatic margin): Geochemistry, Geophysics, Geosystems, v. 9, p. Q09R04. Cerca con Google

Rooij van, D., Blamart, D., Richter, T., Wheeler, A., Kozachenko, M., and Henriet, J.P., 2007, Quaternary sediment dynamics in the Belgica mound province, Porcupine Seabight: ice-rafting events and contour current processes: Int. J. Earth Sci., v. 96, p. 121–140. Cerca con Google

Rothwell, R.G, Hoogakker, B, Thomson, J, and Croudace, I.W., 2006, Turbidite emplacement on the southern Balearic Abyssal Plain (W. Mediterranean Sea) during marine isotope stages 1–3; an application of XRF scanning of sediment cores in lithostratigraphic analysis. In: Rothwell RG (ed) New techniques in sediment core analysis, v. 267, Geological Society Special Publication, London, p. 51–63. Cerca con Google

Rothwell, R.G., and Croudace, I.W., 2015, Micro-XRF studies of sediment cores: a perspective on capability and application in the environmental sciences, In: Croudace IW, Rothwell RG (eds) Micro-XRF studies of sediment cores, Springer, Dordecht. Cerca con Google

Ruddiman, W.F., 2006, Orbital changes and climate: Quaternary Science Reviews, v. 25, p. 3092-3112. Cerca con Google

Sanders, J.E., Kumar, N., 1975, Evidence of shoreface retreat and in-place “drowning” during Holocene submergence of barriers, shelf off Fire Island, New York: Geological Society of America Bulletin, v. 86, p. 65–76. Cerca con Google

Scrocca, D., E. Carminati, C. Doglioni and D. Marcantoni, 2007, Slab retreat and active shortening along the Central-Northern Apennines, in Lacombe, O., J. Lavu, F. Roure and J. Verges, Eds., Thrust belts and Foreland Basins: from fold kinematics to hydrocarbon systems: Frontier in Earth Science, p. 471-487. Cerca con Google

Shackleton, N., 2000, The 100,000-years ice-age cycle identified and found to lag temperature, carbon dioxide, and orbital eccentricity: Science, v. 289, p. 1897-1902 Cerca con Google

Sidall, M., Stocker, T.F., Spahni, R., Blunier, T., McManus, J., and Bard, E., 2006, Using a maximum simplicity paleoclimate model to simulate millennial variability during the last four glacial cycles: Quaternary Science Review, v. 25, p. 3185-3197. Cerca con Google

Skene, K.I., Piper, D.J.W., Aksu, A.E., and Syvitski, J.P.M., 1998, Evaluation of the global oxygen isotope curve as a proxy for Quaternary Sea level by modeling of delta progradation: J. Sediment. Res., v. 68, p. 1077–1092. Cerca con Google

Solignac, S., Seidenkrantz, M.S., Jessen, C., Kuijpers, A., Gunvald, A.K., and Olsen, J., 2011, Late-Holocene sea-surface conditions offshore Newfoundland based on dinoflagellate cysts: Holocene, v. 2, p. 539–552. doi:10.1177/0959683610385720 Cerca con Google

Spofforth, D.J.A., Pälike, H., and Green, D., 2008, Paleogene record of elemental concentrations in sediments from the Arctic Ocean obtained by XRF analyses: Paleoceanography, v. 23,PA1S09. Cerca con Google

Stoker, M.S., Pheasant, J.B., and Josenhans, H., 1997, Seismic methods and interpretation, In Davies, T.A., Bell, T., and Cooper, A.K., (Eds.), Glaciated Continental Margins, An Atlas of Acoustic Images, Chapman and Hall, London, p. 9–26. Cerca con Google

Storms, J.E.A., G.J. Weltje, G.J. Tierra, A. Cattaneo and F. Trincardi, 2008, Coastal dynamics under conditions of rapid sea-level rise: Late Pleistocene to Early Holocene evolution of barrier-lagoon systems on the northern Adriatic shelf (Italy): Quaternary Science Reviews, v. 27, p. 1107-1123. Cerca con Google

Stuiver M., Reimer, P. J., 1993, Extended 14C database and revised CALIB radiocarbon calibration program: Radiocarbon, v. 35, p. 215-230. Cerca con Google

Suri?, M., Jura?i?, M., Horvatin?i?, N., Krajcar Broni?, I., 2005, Late Pleistocene–Holocene sea-level rise and the pattern of coastal karst inundation: records from submerged speleothems along the Eastern Adriatic Coast (Croatia): Marine Geology, v. 214, p. 163-175. Cerca con Google

Swift, D.J.P, 1968, Coastal erosion and transgressive stratigraphy: Journal of Geology, v. 76, p. 444–456. Cerca con Google

Tesson, M., Gensous, B., Allen, G.P., and Ravenne, Ch., 1990, Late Quaternary deltaic lowstand wedges on the Rhône continental shelf, France: Mar. Geol., v. 91, p. 325–332. Cerca con Google

Teatini, P., Tosi, L., and Strozzi, T., 2011, Quantitative evidence that compaction of Holocene sediments drives the present land subsidence of the Po Delta, Italy: J. Geophys. Res.,116, B08407, doi:10.1029/2010JB008122. Cerca con Google

Tjallingii, R., Stattegger, K., Wetzel, A., Van Phach, P., 2010, Infilling and flooding of the Mekong River incised valley during deglacial sea-level rise: Quat Sci Rev, v. 29. P. 1432–1444. Cerca con Google

Tortora P., and Cowell P.J., 2005, Principi geometrici nei sistemi costieri trasgressivi. Parte 1a: processi di migrazione del litorale: Geologica Romana, v. 38, p. 63-77. Cerca con Google

Tosi, L., 1994, L'evoluzione paleoambientale tardoquaternaria del litorale veneziano nelle attuali conoscenze: Il Quaternario, v. 7, p. 589-596. Cerca con Google

Trincardi, F., and Field, M.E., 1991, Geometry, lateral variability, and preservation of downlapped regressive shelf deposits: eastern Tyrrhenian margin, Italy: Journal of Sedimentary Petrology, v. 61, p. 75–90. Cerca con Google

Trincardi, F., Correggiari, A., and Roveri, M., 1994, Late Quaternary transgressive erosion and deposition in a modern epicontinental shelf: the Adriatic Semi-enclosed Basin: Geo-Marine Letters, v. 14, p. 41-51. Cerca con Google

Trincardi, F., Asioli, A., Cattaneo, A., Correggiari, A., and Langone, L., 1996, Stratigraphy of the late-Quaternary deposits in the Central Adriatic basin and the record of short-term climatic events: Mem. Ist. Ital. Idrobiol., v. 55, p. 39–70. Cerca con Google

Trincardi, F., and Correggiari, A., 2000, Quaternary forced regression deposits in the Adriatic basin and the record of composite sea-level cycles. In: Hunt, D., Gawthorpe, R. (Eds.), Depositional Response to Forced Regression: Geological Society Special Publication, v. 172, p. 245-269. Cerca con Google

Trincardi, F., Cattaneo, A., Correggiari, A., and Sultan, N., 2004, Evidence of soft-sediment deformation, fluid escape, sediment failure and regional weak layers within the late-Quaternary mud deposits of the Adriatic Sea: Marine Geology, v. 213, p. 91–119. Cerca con Google

Trincardi, F., Foglini, F., Verdicchio, G., Asioli, A., Correggiari, A., Minisini, D., Piva A, Remia, A., Ridente D., and Taviani, M., 2007, The impact of cascading currents on the Bari Canyion System SW-Adriatic Margin (Central Mediterranean): Marine Geology, v. 246, p. 208-230. Cerca con Google

Trincardi, F., Argnani, A., and Correggiari, A., 2011a, Note illustrative della Carta Geologica dei Mari Italiani alla scala 1:250.000 - Foglio NL 33-7 Venezia. S.EL.CA., Firenze, IT, p. 151. Cerca con Google

Trincardi, F., Argnani, A., and Correggiari, A., 2011b, Note illustrative della carta geologica dei mari italiani alla scala 1:250.000, S.EL.CA, fogli Ancona NK 33 - 1/2, Bari NK 33-6 e Vieste NK 33- 8/9. Cerca con Google

Trincardi, F., Argnani, A., and Correggiari, A., 2011c, Carta Geologica dei Mari Italiani per il bacino adriatico a scala 1:250000 CARTA SUPERFICIALE - CARTA DEL SOTTOFONDO - NOTE ILLUSTRATIVE di 6 fogli, ISPRA Istituto Superiore per la Protezione e la Ricerca Ambientale-Servizio Geologico d'Italia. Ente realizzatore: Istituto di Scienze Marine-Consiglio Nazionale delle Ricerche. Cerca con Google

Trincardi, F., Campiani, E., Correggiari, A., Foglini ,F., Maselli, V., Remia, A., 2013, Bathymetry of the Adriatic Sea: The legacy of the last eustatic cycle and the impact of modern sediment dispersal: Journal of Maps, v. 10, p. 151-158. Cerca con Google

Van Wagoner, J.C., Mitchum, M.R., Campion, K.M., and Rahmanian, V.D., 1990, Siliciclastic sequence stratigraphy in well logs, cores, and outcrops: American Association of Petroleum Geologists Methods in Exploration Series, v. 7, p. 55. Cerca con Google

Vezzoli, G and Garzanti, E., 2009, Tracking paleodrainage in pleistocene foreland basin: Journal of Geology, v. 117, p. 445-454. Cerca con Google

Vidal, L., Bickert, T., Wefer, G., and Röhl, U., 2002, Late Miocene stable isotope stratigraphy of SE Atlantic ODP Site 1085: relation to Messinian events: Mar Geol, v. 180, p. 71–85. doi:10.1016/S0025-3227(01)00206-7. Cerca con Google

Waelbroek, C., Labeyrie, L., Michel, E., Duplessy, J.C., McManus, J.F., Lambeck, K., Balbon, E., and Labracherie, M., 2002, Sea level and deep water temperature changes derived from benthic foraminifera isotopic records: Quaternary Science Reviews, v. 21, p. 295-305. Cerca con Google

Weltje, G.J., and Prins, M.A., 2003, Muddled or mixed? Inferring palaeoclimate from size distributions of deep-sea clastics: Sedimentary Geology, v. 162, p. 39-62. Cerca con Google

Weltje, G.J., and Tjallingii, R., 2008, Calibration of XRF core scanners for quantitative geochemical logging of sediment cores: theory and application: Earth Planet Sci. Lett., v. 274, p. 423–438. Cerca con Google

Wilhelms-Dick, D., Westerhold, T., and Röhl, U., 2012, A comparison of mm scale resolution techniques for element analysis in sediment cores: J Anal Atom Spectrom, v. 27, p. 1574–1584. Cerca con Google

Yarincik, K.M., Murray, R.W., and Peterson, L.C., 2000, Climatically sensitive eolian and hemipelagic deposition in the Cariaco Basin, Venezuela, over the past 578,000 years: results from Al/Ti and K/Al: Paleoceanography, v. 15, p. 210–228. Cerca con Google

Zecchin, M., Gordini, E., and Ramella, R., 2015, Recognition of a drowned delta in the northern Adriatic Sea, Italy: stratigraphic characteristics and its significance in the frame of the early Holocene sea-level rise: The Holocene, v. 25, p. 1027–1038. Cerca con Google

Ziegler, M., Jilbert, T., De Lange, G.J., Lourens, L.J., Reichart, G.J., 2008, Bromine counts from XRF scanning as an estimate of the marine organic carbon content of sediment cores: Geochem. Geophys. Geosyst., v. 9, Q05009. Cerca con Google

Ziegler, M., Lourens, L.J., Tuenter, E., and Reichart, G.J. 2009, Anomalously high Arabian Sea productivity conditions during MIS 13: Clim. Past. Discuss., v. 5, p. 1989–2018. Cerca con Google

Zuffa, G.G., 1980, Hybrid arenites: Their composition and classification: Journal of Sedimentary Petrology, v. 50, p. 21–29. Cerca con Google

Zuffa, G.G., 1987, Unravelling hinterland and offshore palaeogeography from deep-water arenites, In Leggett, J.K. and Zuffa, G.G., eds, Marine Clastic Sedimentology: Models and Case Studies, p. 39–61. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record