Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Romoli, Ottavia (2016) Antimicrobial peptide-mediated immune response in four Bombyx mori strains infected with Gram-positive and -negative pathogens. [Tesi di dottorato]

Full text disponibile come:

[img]Documento PDF - Versione sottomessa
Tesi non accessible fino a 31 Dicembre 2018 per motivi correlati alla proprietà intellettuale.
Visibile a: nessuno

32Mb

Abstract (inglese)

The domesticated silkworm Bombyx mori is an important organism for its intrinsic economic and biotechnological value, but also for representing a model organism for Lepidoptera genetics.
Silkworm strains can be grouped into four geographical types (Japanese, Chinese, European and Tropical) characterized by a different resistance to infections, which is inversely correlated to the silk productivity. The aim of this project was to characterize which are the main elements of the immune response protecting Bombyx mori against pathogen infections, with the final purpose to obtain silkworms enhanced in their pathogen-resistance, but still maintaining good production capabilities. To achieve this objective, two main approaches have been used: 1) the characterization of the humoral immune response to oral infection of four B. mori strains originating from Japan, China, Europe and India, focusing on antimicrobial peptides (AMPs), important effectors of the innate immunity; 2) the production and characterization of transgenic silkworms over-expressing specific AMPs.
We first characterized the four strain under germ-free conditions for the structure of their peritrophic membranes and intestinal epithelia, which represent the first barriers for oral infection. Moreover, we evaluated the genetic variability of the four strains at the level of the 21 B. mori AMP genes, identifying several amino acid substitutions in the active portion of peptides.
To determine the possible differential sensitivity to microbial attack, we performed infection experiments in which each B. mori line was exposed to two silkworm pathogens, the Gram-positive Enterococcus mundtii or the Gram-negative Serratia marcescens. After a 24h oral infection, the differential response to pathogens of the four strains was determined by comparing 1) the survival profiles, 2) the presence of living pathogen cells in the hemolymph circulation, 3) the expression induction of 9 representative AMP genes in the tissues involved in the immune response (fat bodies and midgut), 4) the in vitro antimicrobial activity of the silkworm hemolymph, 5) the Lysozyme concentration in larvae plasma and 6) the rate of the melanization reaction.
Regarding the E. mundtii infection, the European line was found to be the most resistant, followed by the Chinese, the Indian and the Japanese strains. Our data suggest that the key resistance factor might consist in the AMP classes and/or isoforms produced in the European strain at both local and systemic levels.
Regarding the S. marcescens infection, the Indian strain was completely resistant, while none of the other three strains survived to the microbial exposure. We found a general correlation between the survival profile and the systemic AMP transcription activation. In fact, the Indian line was the only one which showed a systemic induction of most AMPs and in which no viable bacteria were found in the hemolymph. Further analyses are required to explore whether this strain-specific resistance is due to more efficient mechanisms in the Gram-negative recognition process or in the signal transduction pathway activation.
In order to obtain transgenic silkworm strains with enhanced pathogen resistance, we generated three different piggyBac-based constructs to achieve the over-expression of moricin, gloverin2 or cecropinB at the level of fat bodies. Currently, 2 independent lines over-expressing moricin have been obtained and are under evaluation for their resistance to infections.

Abstract (italiano)

Il baco da seta, Bombyx mori, oltre a possedere un’importanza economica intrinseca, è ampiamente utilizzato sia come sistema modello per i Lepidotteri, che nel campo delle biotecnologie.
In seguito alla domesticazione si sono originati numerosi ceppi, che possono essere classificati sulla base della loro origine geografica in giapponesi, cinesi, europei e tropicali. In genere, i ceppi che provengono dalle aree temperate mostrano una maggiore produttività, ma anche una più alta suscettibilità alle infezioni, mentre i ceppi di origine tropicale risultano essere più resistenti alle infezioni.
Lo scopo di questo progetto consisteva nell’identificare quali potessero essere gli elementi chiave della resistenza del B. mori alle infezioni. Il fine ultimo era di creare dei ceppi di baco da seta che fossero più tolleranti ai patogeni, ma che mantenessero comunque buone capacità produttive. Per raggiungere questi obiettivi, sono stati utilizzate due principali strategie: 1) la caratterizzazione della risposta immunitaria indotta da infezioni orali di quattro ceppi di baco da seta originatisi rispettivamente in Giappone, Cina, Europa ed India, ponendo particolare attenzione sui peptidi antimicrobici (AMP), i principali effettori dell’immunità innata; 2) la produzione e la caratterizzazione di linee transgeniche over-esprimenti i geni codificanti gli AMP.
In primo luogo abbiamo caratterizzato la morfologia delle membrane peritrofiche e degli epiteli intestinali dei quattro ceppi allevati in condizioni sterili. Queste strutture rappresentano la prima barriera fisica durante le infezioni orali. Successivamente, abbiamo valutato la variabilità genetica dei quattro ceppi a livello dei 21 geni codificanti per gli AMP di B. mori, identificando numerose sostituzioni amminoacidiche nella porzione attiva dei peptidi.
Abbiamo quindi sottoposto i quattro ceppi ad infezione orale con due batteri, specifici patogeni del baco da seta: Enterococcus mundtii, Gram-positivo, e Serratia marcescens, Gram-negativo. In seguito ad un’infezione di 24 ore abbiamo valutato la risposta differenziale dei quattro ceppi confrontando: 1) i profili di sopravvivenza, 2) la presenza di cellule batteriche vive nell’emolinfa, 3) l’induzione dell’espressione dei geni codificanti 9 AMP rappresentativi, 4) l’attività antimicrobica dell’emolinfa, 5) la concentrazione del Lisozima nel plasma, 6) la velocità di melanizzazione dell’emolinfa.
Per quanto riguarda l’infezione con E. mundtii, il ceppo europeo è risultato essere il più resistente, seguito dal cinese, dall’indiano e dal giapponese. I dati ottenuti indicano che le classi e i tipi di AMP prodotti dal ceppo europeo, sia a livello locale che a quello sistemico, possano essere l’effettiva causa della maggiore resistenza di questo ceppo.
A seguito dell’infezione con S. marcescens, il ceppo Indiano si è rivelato essere totalmente resistente a questo patogeno, mentre nessuno degli altri tre ceppi è sopravvissuto all’infezione. Abbiamo trovato una generale correlazione tra il profilo di sopravvivenza e l’attivazione sistemica degli AMP. Infatti nell’emolinfa dei bachi da seta indiani non sono state isolate cellule batteriche di S. marcescens e solamente questo ceppo ha mostrato un’induzione della trascrizione della maggior parte degli AMP. Sono necessarie ulteriori analisi per verificare se il ceppo indiano possieda meccanismi di riconoscimento o vie di trasduzione del segnale più efficaci per questo tipo di infezione.
Infine sono stati generati tre differenti costrutti basati sull’elemento trasponibile piggyBac per ottenere ceppi di baco da seta transgenici con una maggiore resistenza alle infezioni. Sono state ottenute due linee indipendenti over-esprimenti il gene per la Moricina. Al momento si stanno caratterizzando queste linee per verificare la loro resistenza alle infezioni.

Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Sandrelli, Federica
Dottorato (corsi e scuole):Ciclo 28 > Scuole 28 > BIOSCIENZE E BIOTECNOLOGIE > GENETICA E BIOLOGIA MOLECOLARE DELLO SVILUPPO
Data di deposito della tesi:30 Gennaio 2016
Anno di Pubblicazione:30 Gennaio 2016
Parole chiave (italiano / inglese):Bombyx mori antimicrobial peptides insect innate immunity
Settori scientifico-disciplinari MIUR:Area 05 - Scienze biologiche > BIO/18 Genetica
Struttura di riferimento:Dipartimenti > Dipartimento di Biologia
Codice ID:9426
Depositato il:21 Ott 2016 16:45
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Axen A, Carlsson A, Engström A, Bennich H (1997) Gloverin, an Antibacterial Protein from the Immune Hemolymph of Hyalophora Pupae, European Journal of Biochemistry 247: 614-619. Cerca con Google

Ayoade F, Oyejide NE, Fayemi SO (2014) Isolation, Identification, Antibiogram and Characterization of Bacterial Pathogens of the Silkworm, Bombyx mori in South-West Nigeria, Journal of Biological Sciences, doi: 10.3923/jbs.2014 Cerca con Google

Bassi A (1835) Del mal del segno, calcinaccio o moscardino. Cerca con Google

Bellucci E, Bitocchi E, Ferrarini A, Benazzo A, Biagetti E, Klie S, Minio A, Rau D, Rodriguez M, Panziera A et al (2014) Decreased Nucleotide and Expression Diversity and Modified Coexpression Patterns Characterize Domestication in the Common Bean, The Plant Cell 26: 1901-1912. Cerca con Google

Binggeli O, Neyen C, Poidevin M, lemaitre B (2014) Prophenoloxidase Activation Is Required for Survival to Microbial Infections in Drosophila, PLoS Pathogens 10(5): e1004067. Cerca con Google

Broderick NA, Welchman DP, Lamaitre B (2009) Recognition and Response to Microbial Infection in Drosophila, Insect Infection and Immunity. Evolution, Ecology, and Mechanisms, Oxford (NY): Oxford University Press. Cerca con Google

Buchon N, Silverman N, Cherry S (2014) Immunity in Drosophila melanogaster - from Microbial Recognition to Whole-Organism Physiology, Nature Reviews Immunology, 14: 796-810. Cerca con Google

Bulet P, Hetru C, Dimarcq J-L, Hoffmann D (1999) Antimicrobial Peptides in Insects; Structure and Function, Developmental and Comparative Immunology 23: 329-344. Cerca con Google

Callaway JE, Lai J, Haselbeck B, Baltain M, Bonnesen SP, Weickmann J, Wilcox G, Lei SP (1993) Modification of the C Terminus of Cecropin Is Essential for Broad-Spectrum Antimicrobial Activity, Antimicrobial Agents and Chemotherapy, 37(8): 1614-1619. Cerca con Google

Cappellozza L, Cappellozza S, Saviane A, Sbrenna G (2005) Artificial Diet Rearing System for the Silkworm Bombyx mori (Lepidoptera: Bombycidae): Effect of Vitamin C Deprivation on Larval Growth and Cocoon Production, Applied Entomology and Zoology 40: 405-412. Cerca con Google

Cappellozza S, Saviane A, Tettamanti G, Squadrin M, Vendramin E, Paolucci P, Franzetti E, Squartini A (2011) Identification of Enterococcus mundtii as a pathogenic agent involved in the ‘‘flacherie’’ disease in Bombyx mori L. larvae reared on artificial diet, Journal of Invertebrate Pathology 106: 386-393. Cerca con Google

Carlsson A, Engström P, Palva ET, Bennich H (1991) Attacin, an Antibacterial Protein from Hyalophora cecropia, Inhibits Synthesis of Outer Membrane Proteins in Escherichia coli by Interfering with omp GeneTranscription, Infection and Immunity 59(9): 3040-3045. Cerca con Google

Cerenius L, Söderhäll K (2004) The Prophenoloxidase-Activating System in Invertebrates, Immunological Reviews 198: 116-126. Cerca con Google

Chowdhury S, Taniai K, Hara S, Kadono-Okuda K, Kato Y, Yamamoto M, Xu J, Choi SK, Debnath NC, Choi HK, Miyanoshita A, Sugiyama M, Asaoka A, Yamakawa M, cDNA Cloning and Gene Expression of Lebocin, a Novel Member of Antimicrobial Peptides from the Silkworm, Bombyx mori, Biochemical and Biophysical Research Communicarions 214(1): 271-278. Cerca con Google

Christensen B, Fink J, Merrifield RB, Mauzerall D (1988) Channel-Forming Properties of Cecropins and Related Model Compounds Incorporated into Planar Lipid Membranes, Proceedings of the National Academy of Science 85: 5072-5076. Cerca con Google

Clark KD, Strand MR (2013) Hemolymph Melanization in the Silkmoth Bombyx mori Involves Formation of a High Molecular Mass Complex that Metabolizes Tyrosine, Journal of Biological Chemistry 288, doi: 10.1074/jbc.M113.459222. Cerca con Google

Deng DJ, Xu HF, Wang F, Duan X, Ma SY, Xiang ZH, Xia Q (2013) The Promoter of BmLp3 Gene can Direct Fat Body-Specific Expression in the Transgenic Silkworm, Bombyx mori, Transgenic Research 22: 1055-1063. Cerca con Google

Diaz Sanchez AA, Corzo Lopez M, Baez Arias M, Espinosa Castaño I, Prieto Abreu M, Fiallo Madruga RC (2014) del Carmen Perez Hernandez M, Martinez Zubiaur Y, Pathogenic bacteria of Bombyx mori L. larvae in breeding areas of Cuba, Revista de protección vegetal 29(3): 216-219. Cerca con Google

Dudzic JP, Kondo S, Ueda R, Bergman CM, Lemaitre B (2015) Drosophila Innate Immunity: Regional and Functional Specialization of Prophenoloxidases, BMC Biology 13: 81, DOI 10.1186. Cerca con Google

Eleftherianos I, More K, Spivack S, Paulin E, Khojandi A, Shukla S (2014) Nitric Oxide Levels Regulate the Immune Response of Drosophila melanogaster Reference Laboratory Strains to Bacterial Infections, Infection and Immunity 82(10): 4169-4181. Cerca con Google

Elrod-Erickson M, Mishra S, Schneider D (2000) Interactions Between the Cellular and Humoral Immune Responses in Drosophila, Current Biology 10: 781-784. Cerca con Google

FAO (2003) Conservation status of sericulture germplasm resources in the world. I. Conservation status of silkworm genetic resources in the world, compiled by Sohn KW, Rural Infrastructure and Agro-Industries Division. FAO, Rome. http://www.fao.org/3/a-ad108e/ad108e0a.htm#bm10 Vai! Cerca con Google

Ferrandon D, ImLer JL, Hetru C, Hoffmann JA (2007) The Drosophila Systemic Immune Response: Sensing and Signaling During Bacterial and Fungal Infections, Nature Reviews Immunology 7: 862–874. Cerca con Google

Fine DH, Toruner GA, Velliyagounder K, Sampathkumar V, Godboley D, Furgang D (2013) A Lactotransferrin Single Nucleotide Polymorphism Demonstrates Biological Activity That Can Reduce Susceptibility to Caries, Infection and Immunity 81(5): 1596-1605. Cerca con Google

Fine DH, Toruner GA, Velliyagounder K, Sampathkumar V, Godboley D, Furgang D (2013) A Lactotransferrin Single Nucleotide Polymorphism Demonstrates Biological Activity That Can Reduce Susceptibility to Caries, Infection and Immunity 81(5): 1596-1605. Cerca con Google

Foley E, O’Farrell PH (2003) Nitric Oxide Contributes to Induction of Innate Immune Responses to Gram-Negative Bacteria in Drosophila, Genes and Development 17: 115-125. Cerca con Google

Fraser MJ (2012) Insect Transgenesis: Current Applications and Future Prospects, Annual Review of Entomology 57: 267-289. Cerca con Google

Gandhe A, Janardhan G, Nagaraju J (2007) Immune Upregulation of Novel Antibacterial Proteins from Silkmoths (Lepidoptera) that Resemble Lysozymes but Lack Muramidase Activity, Insect Biochemistry and Molecular Biology 37(7): 655-666. Cerca con Google

Goldsmith MR, Shimada T, Abe H (2005) The Genetics and Genomics of the Silkworm, Bombyx mori, Annual Review of Entomologies 50: 71-100. Cerca con Google

Gottar M, Gobert V, Michel T, Belvin M, Duyk G, Hoffmann JA, Ferrandon D, Royet J (2002) The Drosophila Immune Response Against Gram-negative Bacteria is Mediated by a Peptidoglycan Recognition Protein, Nature 416, 640-644. Cerca con Google

Handler AM (2002) Use of the piggyBac Transposon for Germ-line Transformation of Insects, Insect Biochemistry and Molecular Biology 32: 1211-1220. Cerca con Google

Hara S, Yamakawa M (1995) A Novel Antimicrobial Peptide Family Isolated form the Silkworm, Bombyx mori, Biochemistry Journal 310: 651-656. Cerca con Google

Hara S, Yamakawa M (1995) Moricin, a Novel Type of Antibacterial Peptide Isolated from the Silkworm, Bombyx mori, Journal of Biological Chemistry 270(50): 29923–29927. Cerca con Google

Hemmi H, Ishibashi J, Hara S, Yamakawa M (2002) Solution Structure of Moricin, an Antibacterial Peptide, Isolated from the Silkworm Bombyx mori, FEBS Letters 518: 33-38. Cerca con Google

Himeno M, Matsubara F, Hayashiya K (1973) The Occult Virus of Nuclear Polyhedrosis of the Silkworm Larvae, Journal of Invertebrate Pathology 22(2): 292-295. Cerca con Google

Hou C, Qin G, Liu T, Geng T, Gao K, Pan Z, Qian H, Guo X (2014) Transcriptome Analysis of Silkworm, Bombyx mori, during Early Response to Beauveria bassiana Challenges, PLoS ONE 9(3): e911 Cerca con Google

Hoy MA (2003) Transgenic Insects for Pest Management Programs: Status and Prospects, Environmental Biosafety Research 2(1): 61-64. Cerca con Google

http://www.catalogueoflife.org/col/browse/tree?d3a2b84cd742df79b09306d72e46959e Vai! Cerca con Google

Hu H, Wang C, Guo X, Li W, Wang Y, He Q (2013) Broad Activity against Porcine Bacterial Pathogens Displayed by Two Insect Antimicrobial Peptides Moricin and Cecropin B, Molecules and Cells 35, 106-114. Cerca con Google

Hua XT, Ma XJ, Xue RJ, Cheng TC, Wang F and Xia QY (2015) Characterization of the Bombyx mori Cecropin A1 promoter regulated by IMD pathway, Insect Science 0: 1-8. Cerca con Google

Huang L, Cheng T, Xu P, Cheng D, Fang T, Xia Q (2009) A Genome-Wide Survey for Host Response of Silkworm, Bombyx mori during Pathogen Bacillus bombyseptieus Infection, PLoS ONE 4(12): e8098. Cerca con Google

Iijima N, Tanimoto N, Emoto Y, Morita Y, Uematsu K, Murakami T, Nakai T (2003) Purification and Characterization of Three Isoforms of Chrysophsin, a Novel Antimicrobial Peptide in the Gills of the Red Sea Bream, Chrysophrys major, European Journal of Biochemistry 270: 657-686. Cerca con Google

Imamura M, Yang J, Yamakawa M (2002) cDNA Cloning, Characterization and Gene Expression of Nitric Oxide Synthase from the Silkworm, Bombyx mori, Insect Molecular Biology 11(3): 257-265. Cerca con Google

Ishii K, Adachi T, Hara T, Hamamoto H, Sekimizu K (2014) Identification of a Serratia marcescens virulence factor that promotes hemolymph bleeding in the silkworm, Bombyx mori, Journal of Invertebrate Pathology 117: 61-67. Cerca con Google

Jiang H, Kanost MR (2000) The Clip-Domain Family of Serine Proteinases in Arthropods, Insect Biochemistry and Molecular Biology 30: 95–105. Cerca con Google

Kaufmann B, El-Far M, Plevka P, Bowman VD, Li Y, Tijssen P, Rossmann MG (2011) Structure of Bombyx mori Densovirus 1, a Silkworm Pathogen, Journal of Virology 85(10): 4691-4697. Cerca con Google

Kawaoka S, Katsuma S, Daimon T, Isono R, Omuro N, Mita K, Shimada T (2008) Functional Analysis of Four Gloverin-like Genes in the Silkworm, Bombyx mori, Archives of Insect Biochemistry and Physiology 67: 87-96. Cerca con Google

Kim SH, Park BS, Yun EY, Je YH, Woo SD, Kang SW, Kim KY, Kang SK (1998) Cloning and Expression of a Novel Gene Encoding a New Antibacterial Peptide from Silkworm, Bombyx mori, Biochemical and Biophysical Research Communications 246, 388-392. Cerca con Google

Kim SR, Lee KS, Kim I, Kang SW, Nho SK, Sohn HD, Jin BR (2003) cDNA Sequence of a Novel Immulectin Homologue from the Silkworm Bombyx mori, International Journal of Industrial Entomology 6(1): 99-102. Cerca con Google

Kirby AJ (1987) Mechanism and stereoelectronic effects in the lysozyme reaction, Critical Reviews in Biochemistry and Molecular Biology 22(4): 283-315. Cerca con Google

Koizumi N, Imamura M, Kadotani T, Yaoi K, Iwahana H, Sato R (1999) The lipopolysaccharide-binding protein participating in hemocyte nodule formation in the silkworm Bombyx mori is a novel member of the C-type lectin superfamily with two different tandem carbohydrate-recognition domains, Federation of European Biochemical Societies Letters 443: 139-143. Cerca con Google

Kounatidis I, Ligoxygakis P (2012) Drosophila as Model System to Unravel the Layers of Innate Immunity to Infection, Open Biology 2: 120075. Cerca con Google

Kuraishi T, Hori A, Kurata S (2013) Host-microbe Interactions in the Gut of Drosophila melanogaster, Frontiers in Physiology 4, doi: 10.3389. Cerca con Google

Kurata S (2014) Peptidoglycan Recognition Proteins in Drosophila immunity, Developmental and Comparative Immunology 42: 36-41. Cerca con Google

Kurz CL, Chauvet S, Andres E, Aurouze M, Vallet I, Michel GP, Uh M, Celli J, Filloux A, De Bentzmann S et al (2003) Virulence Factors of the Human Opportunistic Pathogen Serratia marcescens Identified by in Vivo Screening, EMBO Journal 22: 1451-1460. Cerca con Google

Ladendorff NE, Kanost MR (1990) Isolation and Characterization of Bacteria-Induced Protein P4 from Hemolymph of Manduca sexta, Archives of Insect Biochemistry and Physiology 15: 33-41. Cerca con Google

Lamaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA (1996) The Dorsoventral Regulatory Gene Cassette spätzle/Toll/cactus Controls the Potent Antifungal Response in Drosophila Adults, Cell 86: 973-983. Cerca con Google

Lamaitre B, Reichhart J, Hoffmann JA (1997) Drosophila Host Defense: Differential Induction of Antimicrobial Peptide Genes After Injection by Various Classes of Microorganisms, Proceedings of the National Academy of Science 94, 14614-14619. Cerca con Google

Lauth X, Shike H, Burns JC, Westerman ME, Ostland VE, Carlberg JM, Van Olst JC, Nizet V, Taylor SW, Shimizu C, Bulet P (2001) Discovery and Characterization of Two Isoforms of Moronecidin, a Novel Antimicrobial Peptide from Hybrid Striped Bass, Journal of Biological Chemistry, 277(7): 5030-5039. Cerca con Google

Lavine MD, Strand MR (2002) Insect Hemocytes and Their Role in Immunity, Insect Biochemistry and Molecular Biology 32: 1295-1309. Cerca con Google

Lazzaro BP, Clark G (2003) Molecular Population Genetics of Inducible Antibacterial Peptide Genes in Drosophila melanogaster, Molecular Biology Evolution 20(6): 914-923. Cerca con Google

Lazzaro BP, Sackton TB, Clark G (2006) Genetic Variation in Drosophila melanogaster Resistance to Infection: a Comparison Across Bacteria, Genetics 174: 1539-1554. Cerca con Google

Lazzaro BP, Sceurman BK, Clark AG (2004) Genetic Basis of Natural Variation in D. melanogaster Antibacterial Immunity, Science 303: 1873-1876. Cerca con Google

Lee WJ, Brey PT (1995) Isolation and Characterization of the Lysozyme-Encoding Gene from the Silkworm Bombyx mori, Gene 161: 199-203. Cerca con Google

Lee WJ, Lee JD, Kravchenko VV, Ulevitch RJ, Brey PT (1996) Purification and Molecular Cloning of an Inducible Gram-negative Bacteria-Binding Protein from the Silkworm, Bombyx mori, Proceedings of the National Academy of Science 93: 7888-7893. Cerca con Google

Lewies A, Frederik WJ, Garmi J, Du Plessis LH (2015) The Potential Use of Natural and Structural Analogues of Antimicrobial Peptides in the Fight against Neglected Tropical Diseases, Molecules 20: 15392-15433. Cerca con Google

Ma Z, Li C, Pan C, Li Z, Han B, Xu J, Lan X, Chen J, Yang D, Chen Q et al (2013) Genome-Wide Transcriptional Response of Silkworm (Bombyx mori) to Infection by the Microsporidian Nosema bombycis, PLoS ONE 8(12): e84137. Cerca con Google

Marassi FM, Opella SJ, Juvvadi P, Merrifield RB (1999) Orientation of Cecropin A Helices in Phospholipid Bilayers Determined by Solid-State NMR Spectroscopy, Biophysical Journal 77: 3152-3155. Cerca con Google

Marmaras VJ, Lampropoulou M (2009) Regulators and Signalling in Insect Hemocyte Immunity, Cellular Signalling 21: 186-195. Cerca con Google

Matzinger P (2002) The Danger Model: A Renewed Sense of Self, Science 296(5566): 301-305. Cerca con Google

Medzhitov R, Preston-Hurlburt P, Janeway CA (1997) A Human Homologue of the Drosophila Toll protein signals activation of adaptive immunity, Nature (388):394-397. Cerca con Google

Mellroth P, Karlsson J, Steiner H (2003) A Scavenger Function for a Drosophila Peptidoglycan Recognition Protein, Journal of Biological Chemistry, 278(9): 7059-7064. Cerca con Google

Michel T, Reichhart JM, Hoffmann JA , Royet J (2001) Drosophila Toll is Activated by Gram-Positive Bacteria Through a Circulating Peptidoglycan Recognition Protein, Nature 414, 756-759. Cerca con Google

Mikonranta L, Mappes J, Kaukoniitty M, Freitak D (2014) Insect Immunity: Oral Exposure to a Bacterial Pathogen Elicits Free Radical Response and Protects from a Recurring Infection, Frontiers in Zoology 11:23. Cerca con Google

Mishima Y, Quintin J, Aimanianda V, Kellenberger C, Coste F, Clavaud C, Hetru C, Hoffmann JA, Latgé JP, Ferrandon D, Roussel A (2009) The N-terminal Domain of Drosophila Gram-negative Binding Protein 3 (GNBP3) Defines a Novel Family of Fungal Pattern Recognition Receptors, Journal of Biological Chemistry 284(42): 28687-28697. Cerca con Google

Morishima I, Horiba T, Iketani M, Nishioka E, Yamano Y (1995) Parallel Induction of Cecropin and Lysozyme in Larvae of the Silkworm, Bombyx mori, Developmental and Comparative Immunology 19(5): 357-363. Cerca con Google

Morishima I, Horiba T, Yamano Y (1994) Lysozyme Activity in Immunized and Non-Immunized Hemolymph During the Development of the Silkworm, Bombyx mori, Comparative Biochemistry and Physiology 108A(2/3): 311-314. Cerca con Google

Müller H, Salzig D, Czermak P (2014) Considerations for the Process Development of Insect-Derived Antimicrobial Peptide Production, Biotechnology Progress 31: 1-11, doi: 10.1002/btpr.2002. Cerca con Google

Nakatsuji T, Gallo RL (2012) Antimicrobial Peptides: Old Molecules with New Ideas, Journal of Investigative Dermatology 132: 887-895. Cerca con Google

Nehme TN, Liégeois S, Kele B, Giammarinaro P, Pradel E, Hoffmann JA, Ewbank JJ, Ferrandon D (2007) A Model of Bacterial Intestinal Infections in Drosophila melanogaster, PLoS Pathogens 3(11): 1694-1709, e173. Cerca con Google

Nguyen LT, Haney AF, Vogel HJ (2011) The Expanding Scope of Antimicrobial Peptide Structures and Their Modes of Action, Trends in Biotechnology 29(9): 464-472. Cerca con Google

Nwibo DD, Hamamoto H, Matsumoto Y, Kaito C, Sekimizu K (2015) Current Use of Silkworm Larvae (Bombyx mori) as an Animal Model in Pharmaco-medical Research, Drug Discoveries and Therapeutics 9(2): 133-135. Cerca con Google

Nwibo DD, Matsumoto Y, Sekimizu K (2015) Identification and Methods for Prevention of Enterococcus mundtii Infection in Silkworm Larvae, Bombyx mori, Reared on Artificial Diet, Drug Discoveries & Therapeutics 9(3): 184-190. Cerca con Google

Ochiai M, Ashida M (1988) Purification of a β-1,3-Glucan Recognition Protein in the Prophenoloxidase Activating System from Hemolymph of the Silkworm, Bombyx mori, Journal of Biological Chemistry 263(24): 12056-12062. Cerca con Google

Ochiai M, Ashida M (2000) A Pattern-Recognition Protein for β-1,3-glucan. The Binding Domain and the cDNA Cloning of β-1,3-glucan Recognition Protein from the Silkworm, Bombyx mori, Journal of Biological Chemistry 275(7): 4995-5002. Cerca con Google

Ohta M, Watanabe A, Mikami T, Nakajima Y, Kitami M, Tabunoki H, Ueda K, Sato R (2006) Mechanism by which Bombyx mori Hemocytes Recognize Microorganisms: Direct and Indirect Recognition Systems for PAMPs, Developmental and Comparative Immunology 30: 867-877. Cerca con Google

Pasteur L (1870) Etudes sur la Maladie des Vers a Soie, Moyen Pratique Assure de la Combattre et d'en Prevenir le Retour: la Pébrine et la Flacherie, Gauthier-Villars. Paris, ed. Cerca con Google

Pelte N, Robertson AS, Zou Z, Belorgey D, Dafforn TR, Jiang H, Lomas D, Reichhart J-M, Gubb D (2006) Immune Challenge Induces N-terminal Cleavage of the Drosophila Serpin Necrotic, Insect Biochemistry and Molecular Biology 36: 37–46. Cerca con Google

Phoenix DA, Dennison SR, Harris F (2013) Antimicrobial Peptides, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (Germany). Cerca con Google

Ponnuvel KM, Subhasri N, Sirigineedi S, Murthy GN, Vijayaprakash NB (2010) Molecular Evolution of the Cecropin Multigene Family in Silkworm Bombyx mori, Bioinformation 5(3): 97-103. Cerca con Google

Radzeka A and Wolfenden R (1988) Comparing the Polarities of Amino Acids: Side-Chain Distribution Coefficients Between Vapor Phase, Cyclohexane, 1-Octanol and Neutral Aqueous Solution, Biochemistry 27, 1664-1670. Cerca con Google

Rämet M, Manfruelli P, Pearson A, Mathey-Prevot B, Ezekowitz RAB (2002) Functional Genomic Analysis of Phagocytosis and Identification of a Drosophila Receptor for E. coli, Nature 416: 644-648. Cerca con Google

Rao X-J, Shahzad T, Liu S, Wu P, He Y-T, Sun W-J, Fan X-Y, Yang Y-F, Shi Q, Yu X-Q (2015) Identification of C-type Lectin-Domain Proteins (CTLDPs) in Silkworm Bombyx mori, Developmental and Comparative Immunology 53: 328-338. Cerca con Google

Rasmuson T, Boman HG (1979) Insect Immunity V. Purification and some Properties of Immune Protein P4 from Haemolymph of Hyalophora cecropia Pupae, Insect Biochemistry 9: 259-270. Cerca con Google

Ravaglioli L, Bombacci A (1997) Meldola, il Baco e la Seta: Tradizione e Storia della Sericoltura nel Territorio, Forlì: Edizioni Litocartotecnica Citienne. Cerca con Google

Repizo GR, Espariz M, Blancato VS, Suàrez CA, Esteban L, Magni C (2014) Genomic Comparative Analysis of the Environmental Enterococcus mundtii Against Enterococcal Representative Species, BMC Genomics 15: 489. Cerca con Google

Riddiford LM (2008) Juvenile Hormone Action: a 2007 Perspective, Journal of Insect Physiology 54: 895-901. Cerca con Google

Santabárbara-Ruiz P, López-Santillán M, Martínez-Rodríguez I, Binagui-Casas A, Pérez L, Milán M, Corominas M, Serras F (2015) ROS-Induced JNK and p38 Signaling Is Required for Unpaired Cytokine Activation during Drosophila Regeneration, PLoS Genetics, doi: 10.1371/journal.pgen.1005595. Cerca con Google

Schleifer KH, Kandler O (1972) Peptidoglycan Types of Bacterial Cell Walls and Their Taxonomic Implications, Bacteriological Reviews 36(4): 407–477. Cerca con Google

Shao Q, Yang B, Xu Q, Li X, Lu Z, Wang C, Huang Y, Söderhäll K, Ling E (2012) Hindgut Innate Immunity and Regulation of Fecal Microbiota through Melanization in Insects, Journal of Biological Chemistry 28(17): 14270-14279. Cerca con Google

Shelby KS, Cui L, Webb BA (1998) Polydnavirus-Mediated Inhibition of Lysozyme Gene Expression and the Antibacterial Response, Insect Molecular Biology 7(3): 265-272. Cerca con Google

Stokes BA, Yadav S, Shokal U, Smith LC, Eleftherianos I (2015) Bacterial and Fungal Pattern Recognition Receptors in Homologous Innate Signaling Pathways of Insects and Mammals, Frontiers in Microbiology 6(19): 1-12. Cerca con Google

Strand MR (2008) The Insect Cellular Immune Response, Insect Science 15: 1-14, 10.1111 Cerca con Google

Sugiyama M, Kuniyoshi H, Kotani E, Taniai K, Kadono.Okuda K, Kato Y, Yamamoto M, Shimabukuro M, Chowdhury S, Xu J, Choi SK, Kataoka H, Suzuki A, Yamakawa M (1995) Characterization of a Bombyx mori cDNA Encoding a Novel Member of the Attacin Family of Insect Antibacterial Proteins, Insect Biochemistry and Molecular Biology 3: 385-392. Cerca con Google

Sun W, Yu HS, Shen YH, Banno Y, Xiang ZH, Zhand Z (2012) Phylogeny and Evolutionary History of the Silkworm, Life Sciences China 55(6): 483-496. Cerca con Google

Suttmann H, Retz M, Paulsen F, Harder J, Zwerge U, Kamradt J, Wullich B, Unteregger G, Stöckle M, Lehmann J (2008) Antimicrobial Peptides of the Cecropin-family Show Potent Antitumor Activity Against Bladder Cancer Cells, BMC Urology 8:5, doi:10.1186/1471-2490-8-5. Cerca con Google

Takahasi K, Ochiai M, Horiuchi M, Kumeta H, Ogura K, Ashida M, Inagaki F (2009) Solution Structure of the Silkworm GRP/GNBP3 N-terminal Domain Reveals the Mechanism for β-1,3-Glucan-Specific Recognition, Proceedings of the National Academy of Science 106(28): 11679-11684. Cerca con Google

Takase H, Watanabe A, Yoshizawa Y, Kitami M, Sato R (2009) Identification and Comparative Analysis of Three Novel C-type Lectins from the Silkworm with Functional Implications in Pathogen Recognition, Developmental and Comparative Immunology 33: 789-800. Cerca con Google

Tamura T, Thibert C, Royer C, Kanda T, Abraham E, Kamba M, Kômoto N, Thomas JL, Mauchamp B, Chavancy G, Shirk P, Fraser M, Prudhomme JC, Couble P (2000) GermLine Transformation of the Silkworm Bombyx mori L. Using a PiggyBac Transposon-derived Vector, Nature Biotechnology 18: 81-84. Cerca con Google

Tanaka H, Furukawa S, Nakazawa H, Sagisaka A, Yamakawa M (2005) Regulation of Gene Expression of Attacin, an Antibacterial Protein in the Silkworm, Bombyx mori, Journal of Insect Biotechnology and Sericology 74, 45-56. Cerca con Google

Tanaka H, Ishibashi J, Fujita K, Nakajima Y, Sagisaka A, Tomimoto K, Suzuki N, Yoshimaya M, Kaneko Y, Iwasaki T, Sunagawa T, Yamaji K, Ashoka A, Mita K, Yamakawa M (2008) A Genome-Wide Analysis of Genes and Gene Families Involved in Innate Immunity of Bombyx mori, Insect Biochemistry and Molecular Biology 38: 1087-1110. Cerca con Google

Tanaka H, Yamakawa M (2011) Regulation of the Immune Responses in the Silkworm Bombyx mori, Invertebrate Survival Journal 8: 59-69. Cerca con Google

Teixeira V, Feio MJ, Bastos M (2012) Role of Lipids in the Interaction of Antimicrobial Peptides with Membranes, Progress in Lipid Research 51: 149-177. Cerca con Google

Tennessen JA (2005) Molecular evolution of animal antimicrobial peptides: widespread moderate positive selection, Journal of Evolutionary Biology 18: 1387-1394. Cerca con Google

Tian L, Guo E, Diao Y, Zhou S, Peng Q, Cao Y, Ling E, Li S (2010) Genome-wide Regulation of Innate Immunity by Juvenile Hormone and 20-hydroxyecdysone in the Bombyx Fat Body, BMC Genomics 11: 549. Cerca con Google

Tokura A, Fu GS, Sakamoto M, Endo H, Tanaka S, Kikuta S, Tabunoki H, Sato R (2013) Factors Functioning in Nodule Melanization of Insects and their Mechanisms of Accumulation in Nodules, Journal of Insect Physiology 60: 40-49. Cerca con Google

Torrent M, Di Tommaso P, Pulido D, Nogués MV, Notredame C, Boix E, AndreuD (2012) AMPA: an Automated Web Server for Prediction of Protein Antimicrobial Regions, Bioinformatics 28:130-131. Cerca con Google

Unckless RL, Howick VM, Lazzaro BP (2016) Convergent Balancing Selection on an Antimicrobial Peptide in Drosophila, Current Biology 26, http://dx.doi.org/10.1016/j.cub.2015.11.063 Vai! Cerca con Google

Vasantharajan VN, Munirathnamm N (1978) Studies on Silkworm Diseases-III Epizootiology of a Septicemic Disease of Silkworms caused by Serratia marcescens, Journal of the Indian Institute of Science 60(4). Cerca con Google

Vega FE, Kaya HK (2012) Insect Pathology, London (UK): Academic Press, Elsevier. Cerca con Google

Velliyagounder K, Kaplan JB, Furgang D, Legarda D, Diamond G, Parkin RE, Fine DH (2003) One of Two Human Lactoferrin Variants Exhibits Increased Antibacterial and Transcriptional Activation Activities and is Associated with Localized Juvenile Periodontitis, Infection and Immunity:6141-6147. Cerca con Google

Venken KJT, Bellen HJ (2007) Transgenesis upgrades for Drosophila melanogaster, Development 134: 3571-3584. Cerca con Google

Waghu FH, Gopi L, Barai RS, Ramteke P, Nizami B, Idicula-Thomas S (2013) CAMP: Collection of Sequences and Structures of Antimicrobial Peptides, Nucleic Acids Research 42: D1154–D1158. Cerca con Google

Wang G, Li X and Wang Z (2009) APD2: the Updated Antimicrobial Peptide Database and its Application in Peptide Design, Nucleic Acids Research 37: D933-D937. Cerca con Google

Wang G, Mishra B, Lau K, Lushnikova T, Gold R, Wang X (2015) Antimicrobial Peptides in 2014, Pharmaceuticals 8: 123-150. Cerca con Google

Wang P, Granados RR (2001) Molecular Structure of the Peritrophic Membrane (PM): Identification of Potential PM Target Sites for Insect Control, Archives of Insect Biochemistry and Physiology 47: 110–118. Cerca con Google

Wang Y, Cheng T, Rayaprolu S, Zou Z, Xia Q, Xiang Z, Jian H (2007) Proteolytic Activation of Pro-Spätzle is Required for the Induced Transcription of Antimicrobial Peptide Genes in Lepidopteran Insects, Developmental and Comparative Immunology 31: 1002–1012. Cerca con Google

Watanabe A, Miyazawa S, Kitami M, Tabunoki H, Ueda K, Sato R (2006) Characterization of a Novel C-Type Lectin, Bombyx mori Multibinding Protein, from the B. mori Hemolymph: Mechanism of Wide-Range Microorganism Recognition and Role in Immunity, Journal of Immunology, 177: 4594-4604. Cerca con Google

Wei ZJ, Liao AM, Zhang HX, Liu J, Jiang ST (2009) Optimization of Supercritical Carbon Dioxide Extraction of Silkworm Pupal Oil Applying the Response Surface Methodology, Bioresurce Technology 100: 4214-4219. Cerca con Google

Weis WI, Taylor ME, Drickamer K (1998) The C-type Lectin Superfamily in the Immune System, Immunological Reviews 163: 19-34. Cerca con Google

Weiss BL, Savage AF, Griffith BC, Wu Y, Askoy S (2014) The Peritrophic Matrix Mediates Differential Infection Outcomes in the Tsetse Fly Gut Following Challenge with Commensal, Pathogenic and Parasitic Microbes, Journal of Immunology 193: 773-782. Cerca con Google

Wen H, Lan X, Cheng T, He N, Shiomi K, Kajiura Z, Zhou Z, Xia Q, Xiang Z, Nakagaki M (2009) Sequence Structure and Expression Pattern of a Novel Anionic Defensin-Like Gene from Silkworm (Bombyx mori), Molecular Biology Reports 36: 711-716. Cerca con Google

Weng H, Pan A, Yang L, Zhang C, Liu Z, Zhang D (2004) Estimating Number of Transgene Copies in Transgenic Rapeseed by Real-Time PCR Assay With HMG I/Y as an Endogenous Reference Gene, Plant Molecular Biology Reporter 22: 289-300. Cerca con Google

Werner T, Liu G, Kang D, Ekengren S, Steiner H, Hultmark D (2000) A Family of Peptidoglycan Recognition Proteins in the Fruit Fly Drosophila melanogaster, Proceedings of the National Academy of Science 97(25): 13772-13777. Cerca con Google

Widdel F (2010) Theory and Measurement of Bacterial Growth, University Bremen. Available online at: www.mpi-bremen.de/Binaries/Binary13037/Wachstumsversuch.pdf Vai! Cerca con Google

Wu JH, Wang Z, Xu SY (2007) Preparation and Characterization of Sericin Powder Extracted from Silk Industry Wastewater, Food Chemistry 103(4): 1255-1262. Cerca con Google

Wu M, Maier E, Benz R, Hancock REW (1999) Mechanism of Interaction of Different Classes of Cationic Antimicrobial Peptides with Planar Bilayers and with the Cytoplasmic Membrane of Escherichia coli, Biochemistry 38:7235–7242. Cerca con Google

Xia Q, Guo Y, Zhang Z, Li D, Xuan Z, Li Z, Dai F, Li Y, Cheng D, Li R et al (2009) Complete Resequencing of 40 Genomes Reveals Domestication Events and Genes in Silkworm (Bombyx), Science 326: 433-436. Cerca con Google

Xu H (2014) The Advances and Perspectives of Recombinant Protein Production in the Silk Gland of Silkworm Bombyx mori, Transgenic Research 23: 697-706. Cerca con Google

Yang W, Cheng T, Ye M, Deng X, Yi H, Huang Y, Tan X, Han D, Wang B, Xiang Z, Cao Y, Xia Q (2011) Functional Divergence Among Silkworm Antimicrobial Peptide Paralogs by the Activities of Recombinant Proteins and the Induced Expression Profiles, PLoS One 6(3):e18109. Cerca con Google

Yano T, Mita S, Ohmori H, Oshima Y, Fujimoto Y, Ueda R, Takada H, Goldman WE, Fukase K, Silverman N, Yoshimori T, Kurata S (2008) Autophagic Control of Listeria Through Intracellular Innate Immune Recognition in Drosophila, Nature Immunology 9(8): 908-916. Cerca con Google

Yeaman MR, Yount NY (2003) Mechanism of Antimicrobial Peptide Action and Resistance, Pharmacological Reviews 55:27-55. Cerca con Google

Yi H-Y, Chowdhury M, Huang Y-D, Yu X-Q (2014) Insect Antimicrobial Peptides and Their Applications, Applied Microbiology and Biotechnology 98(13): 5807–5822. Cerca con Google

Yi HY, Deng XJ, Yang WY, Zhou CZ, Cao Y, Yu XQ (2013) Gloverins of the Silkworm Bombyx mori: Structural and Binding Properties and Activities, Insect Biochemistry and Molecular Biology 43: 612-625. Cerca con Google

Yoshida H, Ochiai M, Ashida M (1986) β-1,3-glucan Receptor and Peptidoglycan Receptor are Present as Separate Entities within Insect Prophenoloxidase Activating System, Biochemical and Biophysical Research Communications 141(3): 1177-1184. Cerca con Google

Yu X-Q and Kanost MR (2000) Immulectin-2, a Lipopolysaccharide-specific Lectin from an Insect, Manduca sexta, Is Induced in Response to Gram-negative Bacteria, Journal of Biological Chemistry 275(48): 37373-37381. Cerca con Google

Yu X-Q and Kanost MR (2002) Binding of Hemolin to Bacterial Lipopolysaccharide and Lipoteichoic Acid. An Immunoglobulin Superfamily Member from Insects as a Pattern-Recognition Receptor, European Journal of Biochemistry 269: 1827-1834. Cerca con Google

Yu X-Q and Kanost MR (2003) Manduca sexta Lipopolysaccharide-Specific Immulectin-2 Protects Larvae from Bacterial Infection, Developmental and Comparative Immunology 27: 189-196. Cerca con Google

Yu Y, Park JW, Kwon HM, Hwang HO, Jang IH, Masuda A, Kurokawa K, Nakayama H, Lee WJ, Dohmae N, Zhang J, Lee BL (2010) Diversity of Innate Immune Recognition Mechanism for Bacterial Polymeric meso-Diaminopimelic Acid-type Peptidoglycan in Insects, Journal of Biological Chemistry 285(43): 32937-32945. Cerca con Google

Zanatta DB, Bravo JP, Barbosa JF, Munhoz REF, Fernandez MA (2009) Evaluation of Economically Important Traits from Sixteen Parental Strains of the Silkworm Bombyx mori L (Lepidoptera: Bombycidae), Neotropical Entomology 38(3):327-331. Cerca con Google

Zang G, Thomas A, Liu Z, Chen D, Ling H, Zhou L, Zhang F, Siu L, Zheng X (2013) Preventing Breast Cancer Growth by Cationic Cecropin B, Biological Systems 2:3, http://dx.doi.org/10.4172/2329-6577.1000112 Vai! Cerca con Google

Zasloff M (2002) Antimicrobial Peptides of Multicellular Organisms, Nature 415: 389-395. Cerca con Google

Zhang J, Shen ZY, Tang XD, Tang XU, Xu L, Zhu F (2013) Isolation and Identification of a Pathogen, Providencia rettgeri, in Bombyx mori, Journal of Bacteriology Research 5(2): 22-28. Cerca con Google

Zhang L, Wang YW, Lu ZQ (2015) Midgut Immune Response Induced by Bacterial Infection in the Silkworm, Bombyx mori, Biomedicine and Biotechnology 16(10): 875-882. Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record