Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Graiff, Lorenzo (2016) Dispositivi protesici in Odontoiatria Digitale: dall'impronta digitale intraorale alla produzione con tecnologie Cad-Cam. Caratterizzazione in vitro della precisione di accoppiamento e delle proprietà meccaniche. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
6Mb

Abstract (inglese)

The objective of this work is to study some various aspects of the modern digital workflow to produce Fixed Dental Prostheses (FDP): from the optical impression, directly in the mouth, to the finalization of the prosthetic device specific for the patient. The motivation of this study is related to the growing need around the dental world to optimize and modernize the workflows that are still essentially artisanal.
Taking advantage of modern digital technologies, that are rapidly spreading in the dental field, it is possible to obtain products with the highest quality standards, with lower production costs. Moreover it is important to spread the knowledge and skills to the dentists and to the dental technicians for an optimal use of these knowledges.
In particular, we have have taken into consideration the following issues of distinct particular clinical importance:
- optical intraoral scanning technology: specific operative and technical performance of these digital devices were investigated with particular reference to edentulous patients who need a full-arch implants rehabilitation,
- innovative ceramic materials, used to produce metalfree multilayer bridges on natural teeth using Cad-Cam technology. It was also investigated an innovative resin composite material, which is also workable with Cad-Cam technology and used for the production of single crowns on implants.
The revision of the scientific literature, suggested goals and metrological aspects of the experimental program of this research.
The investigations, have evaluated precision and accuracy aspects of the optical impression of implants position, the geometric coupling precision of the multilayer metal free bridge components, mechanical resistance of different types of materials, and adhesion between a recent Cad-Cam resin composite referred as, Resin Nano-Ceramic (RNC) and zirconia. Moreover the introduction of instruments and methods established in the technical-scientific field, has been provided suitable to characterize the manufacturing processes used, the materials used and the devices manufactured.
More in detail, the activities involved:
1. the study, in terms of metrological performance, of the acquisition process performed by the True Definition Scanner using a clinical sample reproducing a fully edentulous arch rehabilitated with 6 implants,
2. the verification of the geometric precision of the coupling component, sub and superstructure, of multilayer metalfree bridges made with different ceramic materials (zirconia-lithium disilicate), produced by Cad-Cam technology, and assembled by two different operators; the assembly / union of the bridge components, is instead carried out manually by the dental technicians totally handmade;
3. the analysis of the mechanical behavior, static, of the multilayer metalfree bridges, cited in paragraph 2, compared with another type of multilayer prosthesis (from the same Cad projects) but made with zirconia and glass ceramic (RLT),
4. the analysis by mechanical test, both static and under fatigue, of an innovative composite material resin supplied in blocks for Cad-Cam processing: Lava Ultimate. This new composite material presents, mechanical properties (Young's modulus), more similar to the natural tooth, compared to other aesthetic materials.
For this reason, it was used to produce single crowns on implants comparing two different modes of use: cementing a composite crown produced with Cad-Cam technology directly on a titanium standard abutment supplied by industry, or producing a Cad-Cam zirconia customized abutment and cementing the composite crown to this;
5.verification of bonding capacity between zirconia and Lava Ultimate, using two different resin cements by means of shear bond test.
Based on the results of the test campaigns conducted in this study it can be stated that:
1 technologies of digital intraoral optical impression are able to fulfill the clinical requirements of precision even in the case of full arch implants rehabilitations,
2. multilayer metalfree bridges, made with Cad-Cam technology according to the precision requirements of digital workflow, are affected by the intervention of the dental technician during the final assembly of the bridge components, resulting in reduced quality of precision established in the Cad phase,
3 multilayer metalfreee bridges show fracture toughness values greater than or equal to the minimum values reported in the scientific literature,
4. the implants crowns made with the innovative composite material subjected to strength tests and fatigue resistance, when cemented on an customized zirconia abutment, have superior mechanical characteristics than the cheapest solution, which provides the composite crown cementation directly to a standardized titanium abutment,
5. the use of adhesive cements for luting Lava Ultimate on zirconia, allowed to highlight the opposite results regards the strenght of adhesion, measured by means of the shear bond test.

Abstract (italiano)

L’obiettivo di questo lavoro è studiare alcuni aspetti della moderna filiera produttiva digitale di manufatti protesici in campo dentale: dalla realizzazione dell’impronta ottica, direttamente nel cavo orale, alla finalizzazione del dispositivo protesico individualizzato per il paziente. La motivazione di questo studio risiede nell’esigenza sempre più sentita da parte di tutto il mondo dentale di ottimizzare e modernizzare i flussi di lavoro che sono ancora essenzialmente artigianali. Sfruttando le moderne tecnologie digitali, che si stanno rapidamente diffondendo in campo dentale, è possibile ottenere prodotti finiti di più alto standard qualitativo a fronte di costi di realizzazione più contenuti a condizione di diffondere ai clinici ed agli odontotecnici le conoscenze e le competenze necessarie all’utilizzo ottimale.
In particolare sono stati presi in considerazione i seguenti temi di particolare rilevanza clinica:
- la tecnologia di scansione ottica intraorale: sono state indagate le specificità operative e le prestazioni tecniche in particolare riferimento all’impiego per edentulie totali riabilitate mediante impianti,
- i materiali ceramici innovativi, lavorabili mediante tecnologia Cad-Cam ed impiegati per realizzare protesi a ponte su denti naturali di tipo multilayer metalfree. E’ stato inoltre indagato un innovativo materiale in resina composita, anch’esso utilizzabile con tecnologia Cad-Cam ed impiegato per la realizzazione di corone singole su impianti.
La revisione della letteratura tecnico scientifica, ha suggerito gli obbiettivi e gli aspetti metrologici del programma di ricerca sperimentale da condurre.
Le indagini hanno riguardato aspetti di precisione ed accuratezza della lettura ottica della posizione degli impianti, di precisione geometrica di accoppiamento di protesi multilayer metal free, di resistenza meccanica di diversi tipologie di materiali e di adesione tra un recente composito a matrice resinosa, denominato Resin Nano-Ceramic (RNC) e zirconia; hanno previsto l’introduzione di strumenti e metodi consolidati in campo tecnico-scientifico, adatti a caratterizzare i processi di fabbricazione utilizzati, i materiali impiegati e i dispositivi realizzati.
Più in dettaglio, l’attività ha riguardato:
1. lo studio, in termini di prestazioni metrologiche, del processo di acquisizione effettuato mediante il sistema di scansione True Definition Scanner su un campione clinico riproducente un'arcata completamente edentula riabilitata con 6 impianti;
2. la verifica della precisione geometrica di accoppiamento delle componenti, sotto e sovrastruttura, di protesi metalfree multilayer realizzate con materiali ceramici diversi (zirconia-disilicato di litio) prodotte mediante tecnologia Cad-Cam, e assemblate da due operatori diversi; l’assemblaggio/unione delle componenti, dei singoli ponti, viene invece realizzato manualmente dall’odontotecnico con tecnica totalmente artigianale;
3. l’analisi del comportamento meccanico, statico, delle protesi metalfree multilayer, citate al punto 2, confrontate con un altro tipo di protesi multilayer (provenienti dagli stessi progetti Cad) ma costituite da zirconia e ceramica feldspatica (RLT),
4. l’analisi mediante prova meccanica, statica e a fatica, della resistenza di un innovativo materiale in resina composita fornito in blocchetti per lavorazione Cad-Cam: Lava Ultimate. Questo nuovo materiale composito presenta, rispetto ad altri materiali estetici quanto a proprietà meccaniche dichiarate, (modulo di Young), un comportamento più simili al dente naturale. In quest’ottica, è stato utilizzato per realizzare corone singole su impianti, confrontando due modalità diverse di impiego: cementando una corona realizzata con questo composito e prodotta con tecnologia Cad-Cam direttamente su un pilastro standard in titanio fornito dall’industria, o realizzando con lavorazione Cad-Cam una sottostruttura in zirconia individualizzata e cementando su quest’ultima la corona in composito;
5. la verifica delle capacità adesive tra zirconia e Lava Ultimate, utilizzando due diversi cementi resinosi mediante test di taglio.
Sulla base dei risultati delle campagne sperimentali condotte in questo studio è possibile affermare che:
1 le tecnologie di impronta ottica digitale intraorale sono in grado di rispondere ai requisiti clinici di precisione anche nel caso di arcate complete riabilitate su impianti,
2. le protesi multilayer metalfree, realizzate con tecnologia Cad-Cam secondo i requisiti di precisione propri dal workflow digitale, risentono dell’intervento di assemblaggio finale che esegue l’odontotecnico, con conseguente riduzione delle qualità di precisione stabilite in fase progettuale,
3. i ponti multilayer metalfreee presentano valori di resistenza alla frattura superiori o uguali ai valori minimi riportatati dalla letteratura scientifica
4. le corone su impianti realizzate con l’innovativo materiale composito, sottoposto a prove di resistenza statica e a fatica, quando cementate su un moncone individualizzato in zirconia, hanno caratteristiche meccaniche superiori alla soluzione più economica, che prevede la cementazione della corona direttamente ad un pilastro standardizzato in titanio.
5. l’utilizzo di cementi adesivi per cementare Lava Ultimate su zirconia, ha permesso di evidenziare comportamenti opposti per quanto riguarda le forze di adesione misurate con il test di taglio.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Meneghello, Roberto
Dottorato (corsi e scuole):Ciclo 27 > scuole 27 > INGEGNERIA MECCATRONICA E DELL'INNOVAZIONE DEL PRODOTTO
Data di deposito della tesi:30 Gennaio 2016
Anno di Pubblicazione:30 Gennaio 2016
Parole chiave (italiano / inglese):Odontoiatria Digitale, Scanner Intraorali, Cad-Cam, Protesi metalfree multilayer, Accoppiamento geometrico, Prove Meccaniche, Adesione Zirconia-Composito, Digital Dentistry, Intraoral Scanner, Cad-Cam Metalfree Multilayer Bridges, Geometric Coupling Precision, Mechanical Resistance, Adhesion Zirconia Composite
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-IND/16 Tecnologie e sistemi di lavorazione
Struttura di riferimento:Dipartimenti > Dipartimento di Tecnica e Gestione dei Sistemi Industriali
Codice ID:9430
Depositato il:07 Ott 2016 10:35
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

BIBLIOGRAFIA Capitolo1 Cerca con Google

1. Pjetursson B.E., Sailer I., Zwahlen M.,Hammerle C.H. "A systematic review of the survival and complication rates of all-ceramic and metal-ceramic reconstructions after an observation period of at least 3 years. Part I: Single crowns." Clin Oral Implants Res 2007;18 Suppl 3: 73-85. Cerca con Google

2. Reitemeier B., Hansel K., Kastner C., Weber A.,Walter M.H.. "A prospective 10-year study of metal ceramic single crowns and fixed dental prosthesis retainers in private practice set tings." J Prosthet Dent 2013;109(3): 149-155. Cerca con Google

3. Lucas L.C.,Lemons J.E. "Biodegradation of restorative metallic systems." Adv Dent Res 1992; 6: 32-37. Cerca con Google

4. Marklund S., Bergman B., Hedlund S.O.,Nilson H "An intraindividual clinical comparison of two metal-ceramic systems: a 5-year prospective study." Int J Prosthodont 2003;16(1): 70-73. Cerca con Google

5. Anusavice K.J. Recent developments in restorative dental ceramics." J Am Dent Assoc 1993 124(2): 72-80. Cerca con Google

6. Li RW, Chow TW, Matinlinna JP Ceramic dental biomaterials and CAD/CAM technology: state of the art. J Prosthodont Res. 2014 Oct; 58(4):208-16. Cerca con Google

7. Sjogren G., Sletten G.,Dahl J.E. "Cytotoxicity of dental alloys, metals, and ceramics assessed by millipore filter, agar overlay, and MTT tests." J Prosthet Dent 2000 84(2): 229-236. Cerca con Google

8. Gallucci G.O., Guex P., Vinci D.,Belser U.C.. "Achieving natural-looking morphology and surface textures in anterior ceramic fixed rehabilitations." Int J Periodontics Restorative Dent 2007 27(2): 117-125. Cerca con Google

9. McLean J.W.,Hughes T.H. "The reinforcement of dental porcelain with ceramic oxides." Br Dent J 1965; 119(6): 251-267. Cerca con Google

10. Bindl A., Richter B.,Mormann W.H. "Survival of ceramic computer-aided design/manufacturing crowns bonded to preparations with reduced macroretention geometry." Int J Prosthodont 2005;18(3): 219-224. Cerca con Google

11. Coelho P.G., Silva N.R., Bonfante E.A., Guess P.C., Rekow E.D.,Thompson V.P. "Fatigue testing of two porcelain-zirconia all-ceramic crown systems." Dent Mater 2009; 25(9): 1122-1127. Cerca con Google

12. Al-Amleh B., Lyons K.,Swain M. "Clinical trials in zirconia: a systematic review." J Oral Rehabil 2010; 37(8): 641-652. Cerca con Google

13. Fasbinder D.J., Dennison J.B., Heys D.R.,Lampe K. "The clinical performance of CAD/CAM-generated composite inlays." J Am Dent Assoc 2005; 136(12): 1714-1723. Cerca con Google

14. Vanoorbeek S., Vandamme K., Lijnen I.,Naert I. "Computer-aided designed/computer-assisted manufactured composite resin versus ceramic single-tooth restorations: a 3-year clinical study." Int J Prosthodont 2010; 23(3): 223-230. Cerca con Google

15. Coldea A., Swain M.V.,Thiel N.). "Mechanical properties of polymer-infiltrated-ceramic-network materials." Dent Mater 2013 29(4): 419-426. Cerca con Google

16. Cerardi A. Caratterizzazione meccanica, geometrica e funzionale di dispositivi biomedicali. 2009 Tesi di dottorato in ingegneria industriale Cerca con Google

17. Waltimo A, Könönen M A novel bite force recorder and maximal isometric bite force values for healthy young adults. Scand J Dent Res.1993 Jun;101(3):171-175. Cerca con Google

18. Gibbs CH, Mahan PE, Mauderli A, Lundeen HC, Walsh EK Limits of human bite strength J Prosthet Dent. 1986;56, 226–229. Cerca con Google

19. Carr AB, Laney WR. Maximum occlusal force levels in patients with osseointegrated oral implant prostheses and patients with complete dentures. Int J Oral Maxillofac Implants. 1987 Spring;2(2):101-108. Cerca con Google

20. Mericske-Stern R, Zarb GA. In vivo measurements of some functional aspects with mandibular fixed prostheses supported by implants Clin Oral Implants Res. 1996; Jun;7(2):153-61. Cerca con Google

21. Morneburg TR, Pröschel PA. Measurement of masticatory forces and implant loads: a methodologic clinical study. Int J Prosthodont. 2002;Jan-Feb;15(1):20-27. Cerca con Google

BIBLIOGRAFIA capitolo2 Cerca con Google

1. Simionato F. Scienza dei materiali dentari 1996 Ed. Piccini nuova libraria Cerca con Google

2. Kohorst P, Brinkmann H, Li J, Borchers L, Stiesch M. Marginal accuracy of four-unit zirconia fixed dental prostheses fabricated using different computer-aided design/computer-aided manufacturing systems. Eur J Oral Sci. 2009;117:319–325 Cerca con Google

3. Sahin S, Cehreli MC. The significance of passive framework fit in implant prosthodontics: current status. Implant Dent 200110: 85-92,. Cerca con Google

4. Kim Y, Oh TJ, Misch CE, Wang HL. Occlusal considerations in implant therapy: clinical guidlines with biomechanical rationale. Clinical Oral Implants Res 2005;16: 26-35,. Cerca con Google

5. Sahin S, Cehreli M, Yalcin E. The influence of functional forces on the biomechanics of implant-supported prostheses. A review J Dent 2002;30: 271-282,. Cerca con Google

6. Wang T, Leu L, Wang J, Lin L. Effects of prosthesis materials and prosthesis splinting on peri-implant bone stress around implants in poor-quality bone: A numeric analysis. Int J Oral Maxillofac Implants 2002;17: 231-237,. Cerca con Google

7. Sones AD. Complications with osseointegrated implants. J Prosthet Dent 1989;62: 581-585,. Cerca con Google

8. Kunavisarut C, Lang L, Stoner B, Felton D. Finite element analysis on dental-implant supported prostheses without passive fit. J Prosthodont 2002;11: 30-40,. Cerca con Google

9. Brånemark P. Osseointegration and its experimental background. J Prosthet Dent 1983;50: 399-410, Cerca con Google

10. Ongül D, Gökçen-Röhlig B, Sermet B, Keskin H. A comparative analysis of the accuracy of different direct impression techniques for multiple implants. Aust Dent J 2012;57: 184-189, Cerca con Google

11. Abduo J, Bennani V, Waddell N, Lyons K, Swain M. Assessing the fit of implant fixed prostheses: a critical review. Int J Oral Maxillofac Implants 2010;25: 506-515 Cerca con Google

12. Picton DC, Creasey SJ Some causes of failure of crowns, bridges and dentures. J Oral Rehabil. 1989 Mar;16(2):109-18 Cerca con Google

13. Christensen GJ (2008) Will digital impressions eliminate the current problems with conventional impressions? J Am Dent Assoc 139(6): 761–763 Cerca con Google

14. Christensen GJ (2009) Impressions are changing: deciding on conventional, digital or digital plus in-office milling. J Am Dent Assoc 140(10):1301–1304 Cerca con Google

15. Carfagna G. CAD/CAM 3D. Studi di progettazione e produzione di un componente meccanico Edizioni Savine (2010) Cerca con Google

16. Online http://cadcamfunda.com/history Vai! Cerca con Google

17. Guidi G., Russo M., Beraldin JA. Acquisizione 3D e modellazione poligonale Cerca con Google

2010 McGraw-Hill Companies srl Milano Cerca con Google

18. Meneghello R. La tecnologia CAD/CAM in implantoprotesi. capitolo 17 del libro Implantoprotesi di Zamuner L. edizioni Oralpalnt Suisse Cerca con Google

19. Beuer F., Edelhoff D., Gernet W.,Sorensen J.A. "Three-year clinical prospective evaluation of zirconia-based posterior fixed dental prostheses (FDPs)." Clin Oral Investig 2009;13(4): 445-451 Cerca con Google

20. Beuer F., Schweiger J.,Edelhoff D.. "Digital dentistry: an overview of recent developments for CAD/CAM generated restorations." Br Dent J 2008; 204(9): 505-511 Cerca con Google

21. Duret F.,Preston J.D. (1991). "CAD/CAM imaging in dentistry." Curr Opin Dent 1(2): 150-154. Cerca con Google

22. Liu P.R. (2005). "A panorama of dental CAD/CAM restorative systems." Compend Contin Educ Dent 26(7): 507-508, 510, 512 Cerca con Google

23. Mormann W.H. (2004). "The origin of the Cerec method: a personal review of the first 5 years." Int J Comput Dent 7(1): 11-24. Cerca con Google

24. Andersson M., Carlsson L., Persson M.,Bergman B. (1996). "Accuracy of machine milling and spark erosion with a CAD/CAM system." J Prosthet Dent 76(2): 187-193. Cerca con Google

25. Andersson M.,Oden A. "A new all-ceramic crown. A dense-sintered, high-purity alumina coping with porcelain." Acta Odontol Scand 1993; 51(1): 59-64. Cerca con Google

26. Quass S., Rudolph, H. e Luthardt RG. Direct mechanical data acquisition of dental impressions for the manufacturing of CAD/CAM restorations. 2007, Journal of Dentistry, Vol. 35, p. 903-908. Cerca con Google

27. Persson A, Andersson M, Oden A, Sandborgh-Englund G A three-dimensional evaluation of a laser scanner and a touch-probe scanner. 2006, The Journal of Prosthetics Dentistry, Vol. 95, issue 3 p. 194-200. Cerca con Google

28. Hollenbeck K, Allin T, van der Poel M Dental Lab 3D Scanners – How they work and what works best 3Shape Technology Research, Copenhagen 2012 Cerca con Google

www.3shapedental.com/media/1037094/dental_lab_3d_scanners_article_it.pdf Vai! Cerca con Google

29. Fasbinder D.J.. "Digital dentistry: innovation for restorative treatment." Compend Contin Educ Dent 201031 Spec No 4: 2-11; quiz 12. Cerca con Google

30. Christensen GJ The challenge to conventional impressions. J Am Dent Assoc 2008; 139:347–349 Cerca con Google

31. Christensen GJ Will digital impressions eliminate the current problems with conventional impressions? J Am Dent Assoc 2008 139(6): 761–763 Cerca con Google

32. ISO 10360-9:2013 Geometrical product specifications (GPS) -- Acceptance and reverification tests for coordinate measuring systems (CMS) -- Part 9: CMMs with multiple probing systems Cerca con Google

33. ISO 12836:2012 specifies test methods for the assessment of the accuracy of digitizing devices for computer-aided design/computer-aided manufacturing (CAD/CAM) systems for indirect dental restorations. Cerca con Google

34. Ronald L. Sakaguchi P.D.,John M. Powers P.D. Craig's Restorative Dental Materials, 2011. Elsevier/Mosby. Cerca con Google

35. Mormann W.H. "The evolution of the CEREC system." J Am Dent Assoc 2006 137 Suppl: 7S13S. Cerca con Google

36. Van der Meer WJ, Andriessen FS, Wismeijer D, et al. Application of intra-oral dental scanners in the digital workflow of implantology. PLoS One. 2012;7:e43312 Cerca con Google

37. Logozzo, S., Zanetti, E.M., Franceschini, G. Recent advances in dental optics. Part I: 3D intraoral scanners for restorative dentistry. Optics and Lasers in Engineering. 2014;54:203–221. Cerca con Google

38. Gary D. Hack, Sebastian B. M. Patzelt, Evaluation of the Accuracy of Six Intraoral Scanning Devices: An in-vitro Investigation ADA American Dental Association September 2015,Volume 10 Issue 4, 1-5 Cerca con Google

39. Güth, J.F.; Keul, C.; Stimmelmayr, M.; Beuer, F.; Edelhoff, D. Accuracy of digital models obtained by direct and indirect data capturing. Clin. Oral Investig. 2013, 17, 1201–1208. Cerca con Google

40. Patzelt SB, Bishti S, Stampf S, Att W. Accuracy of computer-aided design/computer-aided manufacturing-generated dental casts based on intraoral scanner data. J Am Dent Assoc. 2014 Nov;145(11):1133-40 Cerca con Google

41. Giménez, B.; Özcan, M.; Martínez-Rus, F.; Pradíes, G. Accuracy of a digital impression system based on active wavefront sampling technology for implants considering operator experience, implant angulation, and depth. Clin. Implant Dent. Relat. Res. 2015, 17, e54–e64. Cerca con Google

42. Malchow D. Optical Coherence Tomography/Dentistry: Driving OCT into dentistry 2014 http://www.bioopticsworld.com/articles/print/volume-7/issue-1/features/optical-coherence-tomography-dentistry-driving-oct-into-dentistry.html Vai! Cerca con Google

43. Hsieh YS, HoYC, Lee SY, Chuang CC, Tsai J, Lin KF, Sun CW Dental Optical Coherence Tomography Sensors (Basel) 2013 July; 13(7): 8928–8949. Published online 2013 July 12. Cerca con Google

44. Chuembou Pekam F, Marotti J, Wolfart S, Tinschert J, Radermacher K, Heger S. High-frequency ultrasound as an option for scanning of prepared teeth: an in vitro study. Ultrasound Med Biol.2015 Jan;41(1):309-16 Cerca con Google

45. Naegeli C Your smartphone as a 3D scanner 2013 https://www.ethz.ch/en/news-and-events/eth-news/news/2013/12/your-smartphone-as-a-3d-scanner.html Vai! Cerca con Google

46. Colantuoni L, MobileFusion, lo smartphone diventa uno scanner 3D 25 agosto 2015 http://www.webnews.it/2015/08/25/microsoft-mobilefusion-smartphone-scanner-3d/ Vai! Cerca con Google

47. Mormann W.H. "The evolution of the CEREC system." J Am Dent Assoc 2006 137 Suppl: 7S13S. Cerca con Google

48. Witkowski S. "CAD/CAM in Dental Technology." Quintessence Dent Technol 2005. 28: 169-184 Cerca con Google

49. Mehl A., Gloger W., Kunzelmann K.H.,Hickel R. "A new optical 3-D device for the detection of wear." 1997 J Dent Res 76(11): 1799-1807. Cerca con Google

50. Beuer F., Schweiger J.,Edelhoff D.. "Digital dentistry: an overview of recent developments for CAD/CAM generated restorations." Cerca con Google

Br Dent J 2008 204(9): 505-.511. Cerca con Google

51. Scienze dei materiali dentali e laboratorio. Tecnologia Cad-Cam - Zanichelli http://online.scuola.zanichelli.it/smd/files/2013/02/Cad-Cam.pdf Vai! Cerca con Google

52. Ronald L. Sakaguchi P.D.,John M. Powers P.D. Craig's Restorative Dental Materials, 2011. Elsevier/Mosby Cerca con Google

53. Luthardt RG, Sandkuhl O, Herold V, Walter MH Accuracy of mechanical digitizing with a CAD/CAM system for fixed restorations. Int J Prosthodont. 2001 Mar-Apr;14(2):146-51. Cerca con Google

54. Van Noort R. "The future of dental devices is digital." Dent Mater 2012; 28(1): 3-12. Cerca con Google

55. Ebert J., Ozkol E., Zeichner A., Uibel K., Weiss O., Koops U., Telle R.,Fischer H. "Direct inkjet printing of dental prostheses made of zirconia." J Dent Res 2009; 88(7): 673-676. Cerca con Google

56. Baroudi Kand, Nasser Ibraheem S Assessment of Chair-side Computer-Aided Design and Computer-Aided Manufacturing Restorations: A Review of the Literature J Int Oral Health. 2015 Apr; 7(4): 96–104 Cerca con Google

57. What is Additive Manufacturing? http://additivemanufacturing.com/basics/ Vai! Cerca con Google

58. Cos’è la Prototipazione Rapida? http//www.stratasys.com/it/resources/rapid-protyping Vai! Cerca con Google

59. Vezzaro A.Tesi di Laurea: Prototipazione rapida di prodotto: tecniche e applicazioni - Facoltà di ingegneria - Dipartimento di tecnica e gestione dei sistemi industriali - Corso di laurea triennale in ingegneria gestionale- Univ di Padova 2011 Cerca con Google

60. Lee JH, Lee CH A Stereolithographic resin pattern for evaluating the framework, altered cast partial removable dental prosthesis impression, and maxillomandibular relationship record in a single appointment.J Prosthet Dent. 2015 Nov;114(5):625-6. Cerca con Google

61. Rosenzweig DH, Carelli E, Steffen T, Jarzem P, Haglund L 3D-Printed ABS and PLA Scaffolds for Cartilage and Nucleus Pulposus Tissue Regeneration. Int J Mol Sci. 2015 Jul 3;16(7):15118-35 Cerca con Google

62. JWu GH, Hsu SH Med Biol Eng. Review: Polymeric-Based 3D Printing for Tissue Engineering 2015;35(3):285-292. Epub 2015 Jun 10. Cerca con Google

63. Farré-Guasch E, Wolff J, Helder MN, Schulten EA, Forouzanfar T, Klein-Nulend J Application of Additive Manufacturing in Oral and Maxillofacial Surgery. J Oral Maxillofac Surg. 2015 Dec;73(12):2408-18. Cerca con Google

64. Torabi K, Farjood E, Hamedani S. Rapid Prototyping Technologies and their Applications in Prosthodontics, a Review of Literature J Dent (Shiraz). 2015 Mar;16(1):1-9 Cerca con Google

65. Koutsoukis T, Zinelis S, Eliades G, Al-Wazzan K, Rifaiy MA, Al Jabbari YS Selective Laser Melting Technique of Co-Cr Dental Alloys: A Review of Structure and Properties and Comparative Analysis with Other Available Techniques. Cerca con Google

J Prosthodont. 2015 Jun;24(4):303-12. Cerca con Google

66. http://www.dwssystems.com/stampanti/laboratori-cliniche-dentali?lang=it Vai! Cerca con Google

67. Andrea Sega A -Come funziona una stampante 3D? 2014 http://www.stampa3d-forum.it/come-funziona-stampante-3d/ Vai! Cerca con Google

BIBLIOGRAFIA Capitolo 3 Cerca con Google

1. Fischer H.,Marx R. "Fracture toughness of dental ceramics: comparison of bending and indentation method." Dent Mater 2002;18(1): 12-19. Cerca con Google

2. Denry I.L., Mackert J.R., Jr., Holloway J.A.,Rosenstiel S.F. "Effect of cubic leucite stabilization on the flexural strength of feldspathic dental porcelain." J Dent Res 1996; 75(12): 1928-1935. Cerca con Google

3. Giordano R.,McLaren E.A. "Ceramics overview: classification by microstructure and processing methods." Compend Contin Educ Dent 2010; 31(9): 682-684, 686, 688 Cerca con Google

4. Pjetursson B.E., Sailer I., Zwahlen M.,Hammerle C.H. "A systematic review of the survival and complication rates of all-ceramic and metal-ceramic reconstructions after an observation period of at least 3 years. Part I: Single crowns." Clin Oral Implants Res 2007; 18 Suppl 3: 73-85. Cerca con Google

5. Fischer J., Stawarczyk B.,Hammerle C.H. "Flexural strength of veneering ceramics for zirconia." J Dent 2008; 36(5): 316-321. Cerca con Google

6. Giordano R., Cima M.,Pober R. "Effect of surface finish on the flexural strength of feldspathic and aluminous dental ceramics." Int J Prosthodont 1995; 8(4): 311-319. Cerca con Google

7. Otto T.,De Nisco S. "Computer-aided direct ceramic restorations: a 10-year prospective clinical study of Cerec CAD/CAM inlays and onlays." Int J Prosthodont 2002;15(2): 122-128. Cerca con Google

8. Tinschert J., Zwez D., Marx R.,Anusavice K.J. "Structural reliability of alumina-, feldspar-, leucite-, mica- and zirconia-based ceramics." J Dent 2000; 28(7): 529-535. Cerca con Google

9. Holand W., Schweiger M., Watzke R., Peschke A.,Kappert H. "Ceramics as biomaterials for dental restoration." Expert Rev Med Devices 2008; 5(6): 729-745. Cerca con Google

10. Krejci I., Lutz F.,Reimer M. "Wear of CAD/CAM ceramic inlays: restorations, opposing cusps, and luting cements." Quintessence Int 1994; 25(3): 199-207. Cerca con Google

11. Posselt A.,Kerschbaum T. "Longevity of 2328 chairside Cerec inlays and onlays." Int J Comput Dent 2003; 6(3): 231-248. Cerca con Google

12. Fradeani M., Redemagni M.,Corrado M. "Porcelain laminate veneers: 6- to 12-year clinical evaluation--a retrospective study." Int J Periodontics Restorative Dent 2005; 25(1): 9-17. Cerca con Google

13. Bindl A., Richter B.,Mormann W.H. "Survival of ceramic computer-aided design/manufacturing crowns bonded to preparations with reduced macroretention geometry." Int J Prosthodont 2005; 18(3): 219-224. Cerca con Google

14. Klink A.,Huettig F. "Complication and survival of Mark II restorations: 4-year clinical follow-up." Int J Prosthodont 2013; 26(3): 272-276. Cerca con Google

15. Deany I.L. "Recent advances in ceramics for dentistry." Crit Rev Oral Biol Med 1996; 7(2): 134143. Cerca con Google

16. Campbell S.D. "A comparative strength study of metal ceramic and all-ceramic esthetic materials: modulus of rupture." J Prosthet Dent 1989; 62(4): 476-479. Cerca con Google

17. Seghi R.R., Crispin B.C.,Mito W. "The effect of ion exchange on the flexural strength of feldspathic porcelains." Int J Prosthodont 1990; 3(2): 130-134 Cerca con Google

18. Heffernan M.J., Aquilino S.A., Diaz-Arnold A.M., Haselton D.R., Stanford C.M.,Vargas M.A. "Relative translucency of six all-ceramic systems. Part I: core materials." J Prosthet Dent 2002; 88(1): 4-9. Cerca con Google

19. Guess P.C., Schultheis S., Bonfante E.A., Coelho P.G., Ferencz J.L.,Silva N.R. "Allceramic systems: laboratory and clinical performance." Dent Clin North Am 2011; 55(2): 333-352, Cerca con Google

20. Gonzaga C.C., Cesar P.F., Okada C.Y., Fredericci C., Beneduce Neto F.,Yoshimura H.N. "Mechanical properties and porosity of dental glass-ceramics hot-pressed at different temperatures." Materials Research 2008: 11: 301-306 Cerca con Google

21. Simionato F Scienza dei materiali dentali 1996, Piccin-Nuova Libraria Cerca con Google

22. Dong J.K., Luthy H., Wohlwend A.,Scharer P. "Heat-pressed ceramics: technology and strength." Int J Prosthodont 1992; 5(1): 9-16. Cerca con Google

23. Groten M.,Probster L. "The influence of different cementation modes on the fracture resistance of feldspathic ceramic crowns." Int J Prosthodont 1997;10(2): 169-177. Cerca con Google

24. Fradeani M.,Redemagni M. "An 11-year clinical evaluation of leucite-reinforced glassceramic crowns: a retrospective study." Quintessence Int 2002; 33(7): 503-510. Cerca con Google

25. Guazzato M., Albakry M., Ringer S.P.,Swain M.V. "Strength, fracture toughness and microstructure of a selection of all-ceramic materials. Part I. Pressable and alumina glass-infiltrated ceramics." Dent Mater 2004; 20(5): 441-448. Cerca con Google

26. Quinn J.B., Sundar V.,Lloyd I.K. "Influence of microstructure and chemistry on the fracture toughness of dental ceramics." Dent Mater 2003; 19(7): 603-611 Cerca con Google

27. Holand W., Schweiger M., Frank M.,Rheinberger V. "A comparison of the microstructure and properties of the IPS Empress 2 and the IPS Empress glass-ceramics." J Biomed Mater Res 2000;53(4): 297-303 Cerca con Google

28. Denry I.,Holloway J. "Ceramics for Dental Applications: A Review." Materials 2010; 3(1): 351-368. Cerca con Google

29. Marquardt P.,Strub J.R.. "Survival rates of IPS empress 2 all-ceramic crowns and fixed partial dentures: results of a 5-year prospective clinical study." Quintessence Int 2006;37(4): 253-259. Cerca con Google

30. Toksavul S.,Toman M. "A short-term clinical evaluation of IPS Empress 2 crowns." Int J Prosthodont 2007;20(2): 168-172. Cerca con Google

31. Valenti M.,Valenti A. "Retrospective survival analysis of 261 lithium disilicate crowns in a private general practice." Quintessence Int 2009;40(7): 573-579 Cerca con Google

32. Stappert C.F., Att W., Gerds T.,Strub J.R. "Fracture resistance of different partial-coverage ceramic molar restorations: An in vitro investigation." J Am Dent Assoc 2006; 137(4): 514-522 Cerca con Google

33. Holand W., Schweiger M., Frank M.,Rheinberger V. "A comparison of the microstructure and properties of the IPS Empress 2 and the IPS Empress glass-ceramics." J Biomed Mater Res 2000; 53(4): 297-303. Cerca con Google

34. Gehrt M., Wolfart S., Rafai N., Reich S.,Edelhoff D. "Clinical results of lithium-disilicate crowns after up to 9 years of service." Clin Oral Investig 2013;17(1): 275-284 Cerca con Google

35. Bindl A., Luthy H.,Mormann W.H. "Strength and fracture pattern of monolithic CAD/CAM-generated posterior crowns." Dent Mater 2006. 22(1): 29-36.. Cerca con Google

36. Fasbinder D.J., Dennison J.B., Heys D.,Neiva G. (2010). "A clinical evaluation of chairside lithium disilicate CAD/CAM crowns: a two-year report." J Am Dent Assoc 141 Suppl 2: 10S-14S. Cerca con Google

37. Reich S., Fischer S., Sobotta B., Klapper H.U.,Gozdowski S. (2010). "A preliminary study on the short-term efficacy of chairside computer-aided design/computer-assisted manufacturing- generated posterior lithium disilicate crowns." Int J Prosthodont 23(3): 214-216. Cerca con Google

38. Reich S.,Schierz O. "Chair-side generated posterior lithium disilicate crowns after 4 years." Clin Oral Investig. 2013;Sep;17(7):1765-72 Cerca con Google

39. Haselton D.R., Diaz-Arnold A.M.,Hillis S.L. "Clinical assessment of high-strength allceramic crowns." J Prosthet Dent 2000; 83(4): 396-401. Cerca con Google

40. Xiao-ping L., Jie-mo T., Yun-long Z.,Ling W. "Strength and fracture toughness of MgOmodified glass infiltrated alumina for CAD/CAM." Dent Mater 2002; 18(3): 216-220. Cerca con Google

41. Bindl A.,Mormann W.H. "An up to 5-year clinical evaluation of posterior in-ceram CAD/CAM core crowns." Int J Prosthodont 2002; 15(5): 451-456. Cerca con Google

42. Haselton D.R., Diaz-Arnold A.M.,Hillis S.L. "Clinical assessment of high-strength allceramic crowns." J Prosthet Dent 2000; 83(4): 396-401. Cerca con Google

43. Rinke S., Tsigaras A., Huels A.,Roediger M. "An 18-year retrospective evaluation of glassinfiltrated alumina crowns." Quintessence Int 2011; 42(8): 625-633 Cerca con Google

44. Andersson M.,Oden A. "A new all-ceramic crown. A dense-sintered, high-purity alumina coping with porcelain." Acta Odontol Scand 1993;51(1): 59-64. Cerca con Google

45. Heffernan M.J., Aquilino S.A., Diaz-Arnold A.M., Haselton D.R., Stanford C.M.,Vargas M.A. (2002). "Relative translucency of six all-ceramic systems. Part I: core materials." J Prosthet Dent 88(1): 4-9. Cerca con Google

46. Raigrodski A.J. "Contemporary all-ceramic fixed partial dentures: a review." Dent Clin North Am 2004; 48(2): viii, 531-544. Cerca con Google

47. Zitzmann N.U., Galindo M.L., Hagmann E.,Marinello C.P. "Clinical evaluation of Procera AllCeram crowns in the anterior and posterior regions." Int J Prosthodont 2007; 20(3): 239-241. Cerca con Google

48. Wassermann A., Kaiser M.,Strub J.R. "Clinical long-term results of VITA In-Ceram Classic crowns and fixed partial dentures: A systematic literature review." Int J Prosthodont 2006; 19(4): 355-363. Cerca con Google

49. Bindl A.,Mormann W.H.. "Survival rate of mono-ceramic and ceramic-core CAD/CAMgenerated anterior crowns over 2-5 years." Eur J Oral Sci 2004;112(2): 197-204. Cerca con Google

50. Guazzato M., Albakry M., Swain M.V.,Ironside J.. "Mechanical properties of In-Ceram Alumina and In-Ceram Zirconia." Int J Prosthodont 2002;15(4): 339-346 Cerca con Google

51. Tinschert J., Zwez D., Marx R.,Anusavice K.J. "Structural reliability of alumina-, feldspar-, leucite-, mica- and zirconia-based ceramics." J Dent 2000; 28(7): 529-535. Cerca con Google

52. Cehreli M.C., Kokat A.M.,Akca K. "CAD/CAM Zirconia vs. slip-cast glass-infiltrated Alumina/Zirconia all-ceramic crowns: 2-year results of a randomized controlled clinical trial." J Appl Oral Sci 2009; 17(1): 49-55. Cerca con Google

53. Piconi C.,Maccauro G. "Zirconia as a ceramic biomaterial." Biomaterials 1999; 20(1): 1-25. Cerca con Google

54. Vagkopoulou T., Koutayas S.O., Koidis P.,Strub J.R. "Zirconia in dentistry: Part 1. Discovering the nature of an upcoming bioceramic." Eur J Esthet Dent 2009; 4(2): 130-151 Cerca con Google

55. Manicone P.F., Rossi Iommetti P.,Raffaelli L. "An overview of zirconia ceramics: basic properties and clinical applications." J Dent 2007; 35(11): 819-826. Cerca con Google

56. Christel P., Meunier A., Dorlot J.M., Crolet J.M., Witvoet J., Sedel L.,Boutin P. "Biomechanical compatibility and design of ceramic implants for orthopedic surgery." Ann N Y Acad Sci 1988; 523: 234-256 Cerca con Google

57. Meyenberg K.H., Luthy H.,Scharer P. "Zirconia posts: a new all-ceramic concept for nonvital abutment teeth." J Esthet Dent1995; 7(2): 73-80. Cerca con Google

58. Springate S.D.,Winchester L.J.. "An evaluation of zirconium oxide brackets: a preliminary laboratory and clinical report." Br J Orthod 1991;18(3): 203-209 Cerca con Google

59. Luthardt R.G., Sandkuhl O.,Reitz B. "Zirconia-TZP and alumina--advanced technologies for the manufacturing of single crowns." Eur J Prosthodont Restor Dent 1999; 7(4): 113-119. Cerca con Google

60. Kohal R.J., Weng D., Bachle M.,Strub J.R. "Loaded custom-made zirconia and titanium implants show similar osseointegration: an animal experiment." J Periodontol 7 2004; 5(9): 1262-1268. Cerca con Google

61. Glauser R., Sailer I., Wohlwend A., Studer S., Schibli M.,Scharer P. "Experimental zirconia abutments for implant-supported single-tooth restorations in esthetically demanding regions: 4-year results of a prospective clinical study." Int J Prosthodont 2004; 17(3): 285-290. Cerca con Google

62. Kern M.,Wegner S.M. "Bonding to zirconia ceramic: adhesion methods and their durability." Dent Mater 1998; 14(1): 64-71. Cerca con Google

63. Derand T., Molin M.,Kvam K. "Bond strength of composite luting cement to zirconia ceramic surfaces." Dent Mater 2005; 21(12): 1158-1162. Cerca con Google

64. Blatz M.B., Sadan A., Martin J.,Lang B. "In vitro evaluation of shear bond strengths of resin to densely-sintered high-purity zirconium-oxide ceramic after long-term storage and thermal cycling." J Prosthet Dent 2004; 91(4): 356-362 Cerca con Google

65. Aboushelib M.N., Kleverlaan C.J.,Feilzer A.J. "Selective infiltration-etching technique for a strong and durable bond of resin cements to zirconia-based materials." J Prosthet Dent 2007; 98(5): 379388. Cerca con Google

66. Sailer I., Feher A., Filser F., Gauckler L.J., Luthy H.,Hammerle C.H. "Five-year clinical results of zirconia frameworks for posterior fixed partial dentures." Int J Prosthodont 2007; 20(4): 383388. Cerca con Google

67. Beuer F., Edelhoff D., Gernet W.,Sorensen J.A. "Three-year clinical prospective evaluation of zirconia-based posterior fixed dental prostheses (FDPs)." Clin Oral Investig 2009; 13(4): 445-451. Cerca con Google

68. Guess P.C., Zavanelli R.A., Silva N.R., Bonfante E.A., Coelho P.G.,Thompson V.P. (2010). "Monolithic CAD/CAM lithium disilicate versus veneered Y-TZP crowns: comparison of failure modes and reliability after fatigue." Int J Prosthodont 23(5): 434-442. Cerca con Google

69. Denry I.,Kelly J.R. "State of the art of zirconia for dental applications." Cerca con Google

Dent Mater 2008; 24(3): 299-307. Cerca con Google

70. Guazzato M., Quach L., Albakry M.,Swain M.V. "Influence of surface and heat treatments on the flexural strength of Y-TZP dental ceramic." J Dent 2005; 33(1): 9-18. Cerca con Google

71. Filser F., Kocher P., Weibel F., Luthy H., Scharer P.,Gauckler L.J. "Reliability and strength of all-ceramic dental restorations fabricated by direct ceramic machining (DCM)." Int J Comput Dent 2001; 4(2): 89-106. Cerca con Google

72. Suttor D., Bunke K., Hoescheler S., Hauptmann H.,Hertlein G. "LAVA--the system for allceramic ZrO2 crown and bridge frameworks." Int J Comput Dent 2001; 4(3): 195-206. Cerca con Google

73. Preis V., Weiser F., Handel G.,Rosentritt M.. "Wear performance of monolithic dental ceramics with different surface treatments." Quintessence Int 2013;44(5): 393-405. Cerca con Google

74. Rojas-Vizcaya F. "Full zirconia fixed detachable implant-retained restorations manufactured from monolithic zirconia: clinical report after two years in service." J Prosthodont 2011; 20(7): 570-576. Cerca con Google

75. Sato TP, Anami LC, Melo RM, Valandro LF, Bottino MA Effects of Surface Treatments on the Bond Strength Between Resin Cement and a New Zirconia-reinforced Lithium Silicate Ceramic. Oper Dent. 2015 Dec 11. [Epub ahead of print] Cerca con Google

76. Frankenberger R, Hartmann VE, Krech M, Krämer N, Reich S, Braun A, Roggendorf M. Adhesive luting of new CAD/CAM materials. Int J Comput Dent. 2015;18(1):9-20 Cerca con Google

77. Kunzelmann K.H., Jelen B., Mehl A.,Hickel R. "Wear evaluation of MZ100 compared to ceramic CAD/CAM materials." Int J Comput Dent 2001 4(3): 171-184. Cerca con Google

78. Awada A, Nathanson D Mechanical properties of resin-ceramic CAD/CAM restorative materials. J Prosthet Dent. 2015 Oct;114(4):587-93. Cerca con Google

79. Rusin R.P"Properties and applications of a new composite block for CAD/CAM." Compend Contin Educ Dent 2001; 22(6 Suppl): 35-41 Cerca con Google

80. Fasbinder D.J. "Digital dentistry: innovation for restorative treatment." Compend Contin Educ Dent 2010; 31 Spec No 4: 2-11;. Cerca con Google

81. Edelhoff D., Beuer F., Schweiger J., Brix O., Stimmelmayr M.,Guth J.F. "CAD/CAMgenerated high-density polymer restorations for the pretreatment of complex cases: a case report." Quintessence Int 2012; 43(6): 457-467 Cerca con Google

82. Fasbinder D.J., Dennison J.B., Heys D.R.,Lampe K. "The clinical performance of CAD/CAM-generated composite inlays." J Am Dent Assoc 2005; 136(12): 1714-1723. Cerca con Google

83. Shembish FA, Tong H, Kaizer M, Janal MN, Thompson VP, Opdam NJ, Zhang Y. Fatigue resistance of CAD/CAM resin composite molar crowns. Dent Mater. 2016 Jan 8 [Epub ahead of print] Cerca con Google

84. Koller M., Arnetzl G.V., Holly L.,Arnetzl G. "Lava ultimate resin nano ceramic for CAD/ CAM: customization case study." Int J Comput Dent 2012; 15(2): 159-164 Cerca con Google

85. de Kok P, Kleverlaan CJ, de Jager N, Kuijs R, Feilzer AJ4. Mechanical performance of implant-supported posterior crowns. J Prosthet Dent. 2015 Jul;114(1):59-66 Cerca con Google

86. Weinsten M K.S., Weinstein AB " Fused porcelain-to-metal teeth." US Patent 3,052,982 1962;September 11 Cerca con Google

87. De Backer H., Van Maele G., De Moor N., Van den Berghe L.,De Boever J. (2006). "An 18-year retrospective survival study of full crowns with or without posts." Int J Prosthodont 19(2): 136-142. Cerca con Google

88. Pjetursson B.E., Sailer I., Zwahlen M.,Hammerle C.H.. "A systematic review of the survival and complication rates of all-ceramic and metal-ceramic reconstructions after an observation period of at least 3 years. Part I: Single crowns." Clin Oral Implants Res 2007;18 Suppl 3: 73-85. Cerca con Google

89. Nakajima H.,Okabe T. "Titanium in dentistry: development and research in the U.S.A." Dent Mater J 1996;. 15(2): 77-90 Cerca con Google

90. Wang R.R.,Fenton A. "Titanium for prosthodontic applications: a review of the literature." Quintessence Int 1996; 27(6): 401-408. Cerca con Google

91. Kimura H., Horng C.J., Okazaki M.,Takahashi J. "Oxidation effects on porcelain-titanium interface reactions and bond strength." Dent Mater J 1990; 9(1): 91-99. Cerca con Google

92. Chai T.I.,Stein R.S. "Porosity and accuracy of multiple-unit titanium castings." J Prosthet Dent 1995; 73(6): 534-541. Cerca con Google

93. Turkyilmaz I.,Corrigan C.L. "A custom-milled titanium complete-arch mandibular framework and a maxillary complete denture fabricated in 3 appointments: a dental technique." Tex Dent J 2012;. 129(7): 695-701 Cerca con Google

94. Boeckler A.F., Lee H., Stadler A.,Setz J.M. "Prospective observation of CAD/CAM titanium ceramic single crowns: a three-year follow up." J Prosthet Dent 2009; 102(5): 290-297 Cerca con Google

95. Leong D., Chai J., Lautenschlager E.,Gilbert J. "Marginal fit of machine-milled titanium and cast titanium single crowns." Int J Prosthodont 1994; 7(5): 440-447. Cerca con Google

96. Ortorp A., Jemt T., Back T.,Jalevik T. "Comparisons of precision of fit between cast and CNC-milled titanium implant frameworks for the edentulous mandible." Int J Prosthodont 2003; 16(2): 194-200. Cerca con Google

97. Kelly J.R.,Benetti P. "Ceramic materials in dentistry: historical evolution and current practice." Aust Dent J 2011; 56 Suppl 1: 84-96. Cerca con Google

98. Monaco C., Caldari M.,Scotti R. "Clinical Evaluation of 1,132 Zirconia-Based Single Crowns: A Retrospective Cohort Study from the AIOP Clinical Research Group." Int J Prosthodont 2013; 26(5): 435-442 Cerca con Google

99. Schmitt J., Wichmann M., Holst S.,Reich S. "Restoring severely compromised anterior teeth with zirconia crowns and feather-edged margin preparations: a 3-year follow-up of a prospective clinical trial." Int J Prosthodont 2010; 23(2): 107-109. Cerca con Google

100. Rinke S., Schafer S., Lange K., Gersdorff N.,Roediger M. "Practice-based clinical evaluation of metal-ceramic and zirconia molar crowns: 3-year results." J Oral Rehabil 2013; 40(3): 228237. Cerca con Google

101. Fischer J., Stawarczyk B., Tomic M., Strub J.R.,Hammerle C.H. "Effect of thermal misfit between different veneering ceramics and zirconia frameworks on in vitro fracture load of single crowns." Dent Mater J 2007; 26(6): 766-772. Cerca con Google

102. Koenig V., Vanheusden A.J., Le Goff S.O.,Mainjot A.K. "Clinical risk factors related to failures with zirconia-based restorations:An up to 9-year retrospective study." J Dent 2013; Dec;41(12):1164-74. Cerca con Google

103. Goldin E.B., Boyd N.W., 3rd, Goldstein G.R., Hittelman E.L.,Thompson V.P. "Marginal fit of leucite-glass pressable ceramic restorations and ceramic-pressed-to-metal restorations." J Prosthet Dent 2005;93(2): 143-147 Cerca con Google

104. Holden J.E., Goldstein G.R., Hittelman E.L.,Clark E.A. "Comparison of the marginal fit of pressable ceramic to metal ceramic restorations." J Prosthodont 2009 18(8): 645-648. Cerca con Google

105. Guess P.C., Bonfante E.A., Silva N.R., Coelho P.G.,Thompson V.P. "Effect of core design and veneering technique on damage and reliability of Y-TZP-supported crowns." Dent Mater 2013; 29(3): 307-316. Cerca con Google

106. Beuer F., Edelhoff D., Gernet W.,Sorensen J.A. "Three-year clinical prospective evaluation of zirconia-based posterior fixed dental prostheses (FDPs)." Cerca con Google

Clin Oral Investig 2009; 13(4): 445-451. Cerca con Google

107. Christensen R.P.,Ploeger B.J. "A clinical comparison of zirconia, metal and alumina fixedprosthesis frameworks veneered with layered or pressed ceramic: a three-year report." J Am Dent Assoc 2010; 141(11): 1317-1329. Cerca con Google

108. Beuer F., Schweiger J., Eichberger M., Kappert H.F., Gernet W.,Edelhoff D. "Highstrength CAD/CAM-fabricated veneering material sintered to zirconia copings--a new fabrication mode for all-ceramic restorations." Dent Mater 2009; 25(1): 121-12 Cerca con Google

109. Brawek PK, Wolfart S, Endres L, Kirsten A, Reich S. The clinical accuracy of single crowns exclusively fabricated by digital workflow--the comparison of two systems. Clin Oral Investig. 2013 Dec;17(9):2119-25. Cerca con Google

BIBLIOGRAFIA Capitolo 4 Cerca con Google

1. Pallis K, Griggs JA, Woody RD, Guillen GE, Miller AW. Fracture resistance of three all-ceramic restorative systems for posterior applications. J Prosthet Dent 2004;91:561–9. Cerca con Google

2. Kelly JR. Clinically relevant approach to failure testing of all-ceramic restorations. J Prosthet Dent 1999;81:652–61. Cerca con Google

3. Kakehashi Y, Luthy H, Filser F, Gauckler L, Scharer P. Strength of zirconia/veneer bilayered structures. J Dent Res 1997;76:996 [special issue]. Cerca con Google

4. Guazzatto M, Proos K, Quach L, Swain MV. Strength,reliability and mode of fracture of bilayered porcelain/zirconia (Y-TZP) dental ceramics. Biomaterials 2004;25:5045–52. Cerca con Google

5. Thompson GA. Influence of relative layer height and testing method on the failure mode and origin in a bilayered dental ceramic composite. Dent Mater 2000;16:235–43 Cerca con Google

6. White SN, Caputo AA, Vidjak FMA, Seghi RR. Moduli ofrupture of layered dental ceramics. Dent Mater1994;10:52–8. Cerca con Google

7. Zeng KY, Oden A, Rowcliffe D. Evaluation of mechanicalproperties of dental ceramic core materials in combination with porcelains. Int J Prosthodontics 1998;11:183–9. Cerca con Google

8. Sundh A, Molin M, Sjogren G. Fracture resistance of yttrium oxide partially-stabilized zirconia all-ceramic bridges after veneering and mechanical fatigue testing. Dent Mater 2005;21:476–82 Cerca con Google

9. Quantification of human chewing-cycle kinematics. Buschang, P. H., Hayasaki, H. e Throckmorton, G. S. 2000, Archives of Oral Biology, Vol. 45, p. 461-474. Cerca con Google

10. Gapido CG, Kobayashi H, Miyakawa O, Kohno S. Fatigue resistance of cast occlusal rest using Co-Cr and Ag-Pd-Cu-Au alloys, The Journal of Prosthetic Dentistry, .2003 Vol. 90, p. 261-269. Cerca con Google

11. Scherrer SS, Wiskott AH, Coto-Hunziker V, Belser UC. Monotonic flexure and fatigue strength of composites for provisional and definitive restorations., The Journal of Prosthetic Dentistry, 2003 Vol. 89, p. 579-588. Cerca con Google

12. Teoh, S. H Fatigue of biomaterials: a review., International Journal of Fatigue, 2000Vol. 22, p. 825-837. Cerca con Google

13. Kohorst P, Dittmer MP, Borchers L, Stiesch-Scholz M Influence of cyclic fatigue in water on the load-bearing capacity of dental bridges made of zirconia. Acta Biomater. 2008 Sep;4(5):1440-7. Cerca con Google

14. Magne P, Knezevic A. Simulated fatigue resistance of composite resin versus porcelain CAD/CAM overlay restorations on endodontically treated molars. Quintessence Int. 2009 Feb;40(2):125-33 Cerca con Google

15. Kelly, J.R. Clinically relevant approach to failure testing of all-ceramic restorations. J Prosthet Dent. 1999; 81: 652–661 Cerca con Google

BIBLIOGRAFIA Precisione e Accuratezza con True Definition Scanner Cerca con Google

1. Mormann WH, Brandestini M, Lutz F, Barbakow F. Chair side computer-aided direct ceramic inlays. Quintessence Int 1989; 20: 329-339 Cerca con Google

2. Fasbinder DJ Digital dentistry: innovation for restorative treatment. Compend Contin Educ Dent 2010;31(Spec. No. 4):2–11 Cerca con Google

3. Yuzbasioglu, E.; Kurt, H.; Turunc, R.; Bilir, H. Comparison of digital and conventional impression techniques: Evaluation of patients’ perception, treatment comfort, effectiveness and clinical outcomes. BMC Oral Health 2014, 14, doi:10.1186/1472-6831-14-10. Cerca con Google

4. Beuer F., Schweiger J.,Edelhoff D. "Digital dentistry: an overview of recent developments for CAD/CAM generated restorations." Br Dent J 2008;204(9): 505-511 Cerca con Google

5. Gozdowski S, Reich S A comparison of the fabrication times of all-ceramic partial crowns: Cerec 3D vs IPS Empress. Int J Comput Dent 200912(3):279–289 Cerca con Google

6. Mehl A, Hickel R Current state of development and perspectives of machine-based production methods for dental restorations. Int J Comput Dent 1999 2(1):9–35 Cerca con Google

7. Lee, S.J.; Gallucci, G.O. Digital vs. conventional implant impressions: Efficiency outcomes. Clin. Oral Implant. Res. 2013, 24, 111–115. Cerca con Google

8. DIN ISO 5725‐1:1994. Accuracy (trueness and precision) of Measurement Methods and Results Part 1: General Prinicples and Definitions; International Organization for Standardization: Geneve, Switzerland, 1994 Cerca con Google

9. Güth, J.F.; Keul, C.; Stimmelmayr, M.; Beuer, F.; Edelhoff, D. Accuracy of digital models obtained by direct and indirect data capturing. Clin. Oral Investig. 2013, 17, 1201–1208. Cerca con Google

10. Ender A, Mehl A. Full arch scans: conventional versus digital impressions an in vitro study. Int J Comp Dent 2011;14:11-21. Cerca con Google

11. Flügge, T.V.; Schlager, S.; Nelson, K.; Nahles, S.; Metzger, M.C. Precision of intraoral digital dental impressions with iTero and extraoral digitization with the iTero and a model scanner. Am. J. Orthod. Dentofac. Orthop. 2013, 144, 471–478. Cerca con Google

12. Giménez, B.; Özcan, M.; Martínez-Rus, F.; Pradíes, G. Accuracy of a digital impression system based on active wavefront sampling technology for implants considering operator experience, implant angulation, and depth. Clin. Implant Dent. Relat. Res. 2015, 17, e54–e64. Cerca con Google

13. Giménez, B.; Özcan, M.; Martínez-Rus, F.; Pradíes, G Accuracy of a Digital Impression System Based on Active Triangulation Technology With Blue Light for Implants: Effect of Clinically Relevant Parameters. Implant Dent. 2015 Oct;24(5):498-504. Cerca con Google

14. Rudolph, H.; Luthardt, R.G.; Walter, M.H. Computer-aided analysis of the influence of digitizing and surfacing on the accuracy in dental CAD/CAM technology. Comput. Biol. Med. 2007, 37, 579–587. Cerca con Google

15. Schaefer, O.; Decker, M.; Wittstock, F.; Kuepper, H.; Guentsch, A. Impact of digital impression techniques on the adaption of ceramic partial crowns in vitro. J. Dent. 2014, 42, 677–683. Cerca con Google

16. Han, H.S.; Yang, H.S.; Lim, H.P.; Park, Y.J. Marginal accuracy and internal fit of machine-milled and cast titanium crowns. J. Prosthet. Dent. 2011, 106, 191–197 Cerca con Google

17. Tuntiprawon, M.; Wilson, P.R. The effect of cement thickness on the fracture strength of all-ceramic crowns. Aust. Dent. J. 1995, 40, 17–21 Cerca con Google

18. McLean JW, von Fraunhofer JA. The estimation of cement film thickness by an in vivo technique. Br Dent J. 1971 Aug 3;131(3):107-11. Cerca con Google

19. Güth JF, Edelhoff D, Schweiger J, Keul C. A new method for the evaluation of the accuracy of full-arch digital impressions in vitro. Clin Oral Investig. 2015 Oct 10. Epub ahead of print Cerca con Google

20. Christensen GJ. Impressions are changing: deciding on conventional, digital or digital plus in-office milling. J Am Dent Assoc 2009;140(10):1301–1304. Cerca con Google

21. Ender A., Zimmermann M., Attin T., Mehl A. In vivo precision of conventional and digital methods for obtaining quadrant dental impressions. Clin Oral Investig. 2015 Nov 7. Epub ahead of print Cerca con Google

BIBLIOGRAFIA Resistenza alla frattura di ponti Cad-Cam multilayer privi di metallo. Cerca con Google

1. Pjetursson BE, Sailer I, Zwahlen M, Hammerle CH "A systematic review of the survival and complication rates of all-ceramic and metal-ceramic reconstructions after an observation period of at least 3 years. Part I: Single crowns." Clin Oral Implants Res 2007 18 Suppl 3: 73-85. Cerca con Google

2. Sundh A, Molin M, Sjögren G Fracture resistance of yttrium oxide partially-stabilized zirconia all-ceramic bridges after veneering and mechanical fatigue testing. Dent Mater. 2005 May;21(5):476-82. Cerca con Google

3. Vagkopoulou T, Koutayas SO, Koidis P, Strub JR Zirconia in dentistry: part 1. Discovering the nature of an upcoming bio-ceramic. Eur J Esthet Dent 2009;4:130-51 Cerca con Google

4. Koutayas SO1, Vagkopoulou T, Pelekanos S, Koidis P, Strub JR Zirconia in dentistry: part 2. Evidence-based clinical breakthrough. Eur J Esthet Dent. 2009; 4:348-8 Cerca con Google

5. Barnfather KD, Brunton PA. Restoration of the upper dental arch using lava all-ceramic crown and bridgework. Br Dent J 2007;202:731–5. Cerca con Google

6. Coli P, Karlsson S Precision of a CAD/CAM technique for the production of Zirconium dioxide copings. Int J Prosthodont 2004;17:577–80. Cerca con Google

7. Borba M, De Araújo MD, De Lima E, Yoshimura HN, Cesar PF, Griggs JA, et al. Flexural strength and failure modes of layered ceramic structures. Dent Mater 2011;27:1259-66 Cerca con Google

8. Makarouna M, Ullmann K, Lazarek K, Boening KW. Six-year clinical performance of lithium disilicate fixed partial dentures. Int J Prosthodont. 2011 May-Jun;24(3):204-6. Cerca con Google

9. Raigrodski AJ. All-ceramic full-coverage restorations: concepts and guidelines for material selection. Pract Proced Aesthet Dent 2005;17:249–56, Cerca con Google

10. Devaud V. Guidelines for success with zirconia ceramics: the changing standards. Pract Proced Aesthet Dent 2005;17:508–10 Cerca con Google

11. Tinschert J, Natt G, Mautsch W, Augthun M, Spiekermann H Fracture resistance of lithium-disilicate-, alumina-, and zirconia-based three-unit fixed partial dentures: a laboratory study. Int J Prosthodont 2001;14:231–8. Cerca con Google

12. Wolfart S, Ludwig K, Uphaus A, Kern M Fracture strength of all-ceramic posterior inlay-retained fixed partial dentures. Dent Mater. 2007 Dec;23(12):1513-20. Cerca con Google

13. Beuer F, Steff B, Naumann M, Sorensen JA Load-bearing capacity of all-ceramic three-unit fixed partial dentures with different computer-aided design (CAD)/computer-aided manufacturing (CAM) fabricated framework materials. Eur J Oral Sci. 2008 Aug;116(4):381-6 Cerca con Google

14. Nakamura K, Harada A, Inagaki R, Kanno T, Niwano Y, Milleding P, Örtengren U Fracture resistance of monolithic zirconia molar crowns with reduced thickness. Acta Odontol Scand. 2015 Jan 30:1-7. Cerca con Google

15. Studart AR, Filser F, Kocher P, Gauckler LJ Fatigue of zirconia under cyclic loading in water and its implications for the design of dental bridges. Dent Mater. 2007 Jan;23(1):106-14. Cerca con Google

16. Fischer J, Stawarzcyk B, Trottmann A, Hämmerle CH Impact of thermal misfit on shear strength of veneering ceramic/zirconia composites. Dent Mater 2009; 25:419-23 Cerca con Google

17. Luthardt RG, Holzhuter MS, Rudolph H, Herold V, Walter MH CAD/CAM-machining effects on Y-TZP zirconia. Dent Mater 2004;20:655–62. Cerca con Google

18. Aboushelib MN, Kleverlaan CJ, Feilzer AJ Microtensile bond strength of different components of core veneered all-ceramic restorations. Part II. zirconia veneering ceramics. Dent Mater 2006;22:857–63. Cerca con Google

19. Aboushelib MN, Kleverlaan CJ, Feilzer AJ Effect of zirconia type on its bond strength with different veneer ceramics. J Prosthodont. 2008 Jul;17(5):401-8 Cerca con Google

20. Vigolo P, Mutinelli S Evaluation of zirconium-oxide-based ceramic single-unit posterior fixed dental prostheses (FDPs) generated with two CAD/CAM systems compared to porcelain-fused-to-metal single-unit posterior FDPs: a 5-year clinical prospective study. J Prosthodont. 2012 Jun;21(4) :265-9. Cerca con Google

21.Vult von Steyern P, Carlson P, Nilner K All-ceramic fixed partial dentures designed according to the DC-Zirkon technique. A 2-year clinical study. J Oral Rehabil 2005;32:180- 7. Cerca con Google

22. Sailer I, Feher A, Filser F, Luthy H, Gauckler LJ, Scharer P, et al. Prospective clinical study of zirconia posterior fixed partial dentures: 3-year follow-up. Quintessence Int 2006;37: 685–93. Cerca con Google

23. Sailer I, Fehér A, Filser F, Gauckler LJ, Lüthy H, Hämmerle CH Five-year clinical results of zirconia frameworks for posterior fixed partial dentures. Int J Prosthodont. 2007 Jul-Aug;20(4):383-8. Cerca con Google

24. Coornaert J, Adriaens P, De Boever J Long-term clinical study of porcelain-fused-to-gold restorations. J Prosthet Dent. 1984;51:338–42. Cerca con Google

25. Valderhaug J A 15-year clinical evaluation of fixed prosthodontics. Acta Odontol Scand. 1991;49:35–40. Cerca con Google

26. Beuer F, Schweiger J, Eichberger M, Kappert HF, Gernet W, Edelhoff D. High-strength CAD/CAM-fabricated veneering material sintered to zirconia copings--a new fabrication mode for all-ceramic restorations. Dent Mater. 2009 Jan;25(1):121-8. Cerca con Google

27. Schmitter M, Schweiger M, Mueller D, Rues S. Effect on in vitro fracture resistance of the technique used to attach lithium disilicate ceramic veneer to zirconia frameworks. Dent Mater. 2014 Feb;30(2):122-30. Cerca con Google

28. Kanat B, Cömlekoğlu EM, Dündar-Çömlekoğlu M, Hakan Sen B, Ozcan M, Ali Güngör M. Effect of various veneering techniques on mechanical strength of computer-controlled zirconia framework designs. J Prosthodont. 2014 Aug;23(6):445-5 Cerca con Google

29. Renda JJ, Harding AB, Bailey CW, Guillory VL, Vandewalle KS.Microtensile Bond Strength of Lithium Disilicate to Zirconia with the CAD-on Technique. J Prosthodont. 2015 Apr;24(3):188-93. Cerca con Google

30. Seydler B, Schmitter M Clinical performance of two different CAD/CAM-fabricated ceramic crowns: 2-Year results. J Prosthet Dent. 2015 Apr 30. [Epub ahead of print] Cerca con Google

31. Att W, Grigoriadou M, Strub JR. ZrO2 three-unit fixed partial dentures: comparison of failure load before and after exposure to a mastication simulator. J Oral Rehabil. 2007 Apr;34(4):282-90. Cerca con Google

32. Cho Y, Raigrodski AJ. The rehabilitation of an edentulous mandible with a CAD/CAM zirconia framework and heat-pressed lithium disilicate ceramic crowns: a clinical report. J Prosthet Dent. 2014 Jun;111(6):443-7. Cerca con Google

33. Waltimo A, Könönen M A novel bite force recorder and maximal isometric bite force values for healthy young adults. Scand J Dent Res. 1993 Jun;101(3):171-5. Cerca con Google

34. Gibbs CH, Mahan PE, Mauderli A, Lundeen HC, Walsh EK Limits of human bite strength J Prosthet Dent. 1986;56, 226–229 Cerca con Google

35. Korber K.H, Ludwig K The maximum biting force as a critical factor for fixed partial dentures. Dent Labor, 31 (1983), pp. 55–60 Cerca con Google

36. Geis-Gerstorfer J, Faessler P, Evaluation of the endurance limit for fatigue cycling of dental ceramics. Dtsch. Zahnarztl. Z. 1999.54, 692–694 Cerca con Google

BIBLIOGRAFIA Valutazione geometrica dell’accoppiamento delle componenti della protesi multilayer Cad-on Cerca con Google

1. Miyazaki, T.; Hotta, Y.; Kunii, J.; Kuriyama, S. Tamaki, Y. A review of dental CAD/CAM: current status and future perspectives from 20 years of experience. Dent. Mater. J. 2009, 28, 44–56. Cerca con Google

2. Van Noort, R. The future of dental devices is digital. Dent Mater. 2012; 28: 3–12 Cerca con Google

3. Christensen R.P., Galan A.D., Mosher T.A. Clinical status of eleven CAD/CAM materials after one to twelve years of service State of the art of CAD/CAM restorations: 20 years of CEREC, Quintessence Publishing, Surrey (2006) Cerca con Google

4. Liu P.R., Essig M.E. Panorama of dental CAD/CAM restorative systems Compend Contin Educ Dent, 29 (2008), pp. 482–488 Cerca con Google

5. Miyazaki T., Nakamura T., Matsumura H, Ban S., Kobayashi T., Current status of zirconia restoration J Prosthodont Res, 57 (2013), pp. 236–261 Cerca con Google

6. Takaba M., Tanaka S, Ishiura I., Baba K. Implant-supported fixed dental prostheses with CAD/CAM-fabricated porcelain crown and zirconia-based framework J Prosthodont, 22 (2013), pp. 402–407 Cerca con Google

7. Strub, JR, Rekow, ED, and Witkowski, S. Computer-aided design and fabrication of dental restorations: current systems and future possibilities. J Am Dent Assoc. 2006; 137: 1289–1296 Cerca con Google

8. Fasbinder, DJ. Materials for chairside CAD/CAM restorations. Compend Contin Educ Dent. 2010; 31: 702–704 (706,708-9.) Cerca con Google

9. Ritter, RG. Multifunctional uses of a novel ceramic-lithium disilicate. J Esthet Restor Dent. 2010; 22: 332–341 Cerca con Google

10. Fasbinder, DJ, Dennison, JB, Heys, D, and Neiva, G. A clinical evaluation of chairside lithium disilicate CAD/CAM crowns: a two-year report. J Am Dent Assoc. 2010; 141: 10S–14S Cerca con Google

11. Yoon, TH and Chang, WG. The fabrication of a CAD/CAM ceramic crown to fit an existing partial removable dental prosthesis: A clinical report. J Prosthet Dent. 2012; 108: 143–146 Cerca con Google

12. Guess, PC, Zavanelli, RA, Silva, NR, Bonfante, EA, Coelho, PG, and Thompson, VP. Monolithic CAD/CAM lithium disilicate versus veneered Y-TZP crowns: comparison of failure modes and reliability after fatigue. Int J Prosthodont. 2010; 23: 434–442 Cerca con Google

13. Lin, WS, Ercoli, C, Feng, C, and Morton, D. The effect of core material, veneering porcelain, and fabrication technique on the biaxial flexural strength and weibull analysis of selected dental ceramics. J Prosthodont. 2012; 21: 353–362 Cerca con Google

14. Magne, P, Schlichting, LH, Maia, HP, and Baratieri, LN. In vitro fatigue resistance of CAD/CAM composite resin and ceramic posterior occlusal veneers. J Prosthet Dent. 2010; 104: 149–157 Cerca con Google

15. Güth, JF, Silva, JSE, Beuer, FF, and Edelhoff, D. Enhancing the predictability of complex rehabilitation with a removable CAD/CAM-fabricated long-term provisional prosthesis: A clinical report. J Prosthet Dent. 2012; 107: 1–6 Cerca con Google

16. Beuer, F, Schweiger, J, Edelhoff, D, and Sorensen, JA. Reconstruction of esthetics with a digital approach. Int J Periodontics Restorative Dent. 2011; 31: 185–193 Cerca con Google

17. Zhang Y., Lee J. J.-W., Srikanth R.,. Lawn B. R, “Edge chipping and flexural resistance of monolithic ceramics,” Dental Materials, vol. 29, no. 12, pp. 1201–1208, 2013. Cerca con Google

18. Pieger, S., Salman, A., and Bidra, A.S. Clinical outcomes of lithium disilicate single crowns and partial fixed dental prostheses: a systematic review. J Pros Dent. 2014; 112: 22–30 Cerca con Google

19. Al-Amleh B, Lyons K, Swain M. Clinical trials in zirconia: a systematic review. J Oral Rehabil 2010;73:641–52.[2] Cerca con Google

20. Benetti P, Kelly JR, Sanchez M, Della Bona A. Influence of thermal gradients on stress state of veneered restorations. Dent Mater. 2014 May;30(5):554–63. Cerca con Google

21. Al-Amleh B, Waddell JN, Lyons K, Swain MV. Influence of veneering porcelain thickness and cooling rate on residual stresses in zirconia molar crowns. Dent Mater. 2014 Mar;30(3):271–80. Cerca con Google

22. Baldassarri M, Stappert CF, Wolff MS, Thompson VP, Zhang Y. Residual stresses in porcelain-veneered zirconia prostheses. Dent Mater. 2012 Aug;28(8):873–9. Cerca con Google

23. Lima JMC, Souza ACO, Anami LC, Bottino MA, Melo RM, Souza ROA. Effects of thickness, processing technique, and cooling rate protocol on the flexural strength of a bilayer ceramic system. Dent Mater. 2013 Oct;29(10):1063–72. Cerca con Google

24. Corazza PH, Feitosa AS, Borges AL, Della Bona A. Influence of convergence angle of tooth preparation on the fracture resistance of Y TZP-based all-ceramic restorations. Dental Mater. 2013 Mar;29(3):339–47. Cerca con Google

25. Wimmer T, Erdelt KJ, Eichberger M, Roos M, Edelhoff D, Stawarczyk B Influence of abutment model materials on the fracture loads of three-unit fixed dental prostheses Dent Mater J. 2014;33(6):717-24. Cerca con Google

26. Beuer F, Schweiger J, Eichberger M, Kappert HF, Gernet W, Edelhoff D. High-strength CAD/CAM-fabricated veneering material sintered to zirconia copings: a new fabrication mode for all-ceramic restorations. Dent Mater. 2009 Jan;25(1):121-8. Cerca con Google

27. Schmitter M, Schweiger M, Mueller D, Rues S Effect on in vitro fracture resistance of the technique used to attach lithium disilicate ceramic veneer to zirconia frameworks. Dent Mater. 2014 Feb;30(2):122-30. Cerca con Google

BIBLIOGRAFIA Valutazione mediante test a fatica di corone in resina composita realizzate mediante lavorazione Cad-Cam e cementate su pilastri in titanio e zirconia. Cerca con Google

1. Chee W, Jivraj S. Screw versus cemented implant supported restorations. Br Dent J. 2006 Oct 21;201(8):501-7. Cerca con Google

2. Sailer I, Sailer T, Stawarczyk B, Jung RE, Hammerle CH. In Vitro Study of the influence of the type of connection on the fracture load of zirconia abutments with internal and external implant-abutment connection. Int J Oral Maxillofac Implants. 2009 Sep-Oct;24(5):850-8. Cerca con Google

3. Stimmelmayr M, Sagerer S, Erdelt K, Beuer F. In vitro fatigue and fracture strength testing of one-piece zirconia implant abutments and zirconia implant abutments connected to titanium cores. Int J Oral Maxillofac Implants. 2013 Mar-Apr;28(2):488-93. Cerca con Google

4. Pesqueira AA1, Goiato MC, Filho HG, Monteiro DR, Santos DM, Haddad MF, Pellizzer EP. Use of stress analysis methods to evaluate the biomechanics of oral rehabilitation with implants. J Oral Implantol. 2014 Apr;40(2):217-28 Cerca con Google

5. Oderich E, Boff LL, Cardoso AC, Magne P, Fatigue resistance and failure mode of adhesively restored custom implant zirconia abutments. Clin. Oral Imp. Res. 23, 2012, 1360–1368 Cerca con Google

6. Johnson AC, Versluis A, Tantbirojn D, Ahuja S. Fracture strength of CAD/CAM composite and composite-ceramic occlusal veneers J Prosthodont Res. 2014 Apr;58(2):107-14.. Cerca con Google

7. Sripetchdanond J, Leevailoj C Wear of human enamel opposing monolithic zirconia, glass ceramic, and composite resin: An in vitro study. J Prosthet Dent. 2014 Nov;112(5):1141-50. Cerca con Google

8. Magne P, Knezevic A. Simulated fatigue resistance of composite resin versus porcelain CAD/CAM overlay restorations on endodontically treated molars. Quintessence Int. 2009 Feb;40(2):125-33 Cerca con Google

9. Schultheis S, Strub JR, Gerds TA, Guess PC. Monolithic and bi-layer CAD/CAM lithium-disilicate versus metal-ceramic fixed dental prostheses: comparison of fracture loads and failure modes after fatigue. Clin Oral Investig. 2013 Jun;17(5):1407-13 Cerca con Google

10. Ferrari M, Giovannetti A, Carrabba M, Bonadeo G, Rengo C, Monticelli F, Vichi A Fracture resistance of three porcelain-layered CAD/CAM zirconia frame designs Dent Mater. 2014 Jul;30(7):e163-8. Cerca con Google

11. Carvalho AO, Bruzi G, Giannini M, Magne P. Fatigue resistance of CAD/CAM complete crowns with a simplified cementation process J Prosthet Dent. 2014 Apr;111(4):310-7 Cerca con Google

12. Guess PC, Zavanelli RA, Silva NR, Bonfante EA, Coelho PG, Thompson VP. Monolithic CAD CAM lithium disilicate versus veneered 1YTZP crowns. Int J Prosthodont. 2010 Sep-Oct;23(5):434-4212. Cerca con Google

13. Magne P, Paranhos MPG, Burnett LH Jr, Magne M, Belser UC. Fatigue resistance and failure mode of novel-design anterior single-tooth implant restorations: influence of material selection for type III veneers bonded to zirconia abutment. Clin. Oral Impl. Res. 22, 2011; 195–2011. Cerca con Google

14. Kelly, J.R. Clinically relevant approach to failure testing of all-ceramic restorations. J Prosthet Dent. 1999; 81: 652–661 Cerca con Google

BIBLIOGRAFIA Adesione zirconia-LavaTM Ultimate Cerca con Google

1. Vult Von Steyern P, Jonsson O, Nilner K, Five-year evaluation of posterior all-ceramic three-unit (In-Ceram) FPDs. Int. J. Prosthodont. 2001; 14, 379–384. Cerca con Google

2. Oden A, Andersson M, Krystek-Ondracek I, Magnusson D. Five-year clinical evaluation of AllCeram crowns. J. Prosthet. Dent. 1998; 80, 450–456. Cerca con Google

3. Aboushelib M N, DeJager N, Kleverlaan C J, Feilzer AJ. Effect of loading method on the fracture mechanics of two layered all-ceramic restorative systems.Dent. Mater. 2007 23, 952–959. Cerca con Google

4. Della Bona A, Kelly J. The clinical success of all-ceramic restorations. J Am Dent Assoc 2008;139(suppl):8S-13S. Cerca con Google

5. Saito A, Komine F, Blatz M, Matsumura H. A comparison of bond strength of layered veneering porcelains to zirconia and metal. J Prosthet Dent 2010;104:247-57. Cerca con Google

6. Sailer I, Fehér A, Filser F, Lüthy H, Gauckler L, Schärer P et al. Prospective clinical study of zirconia posterior fixed partial dentures: 3-year follow-up. Quintessence Int 2006 37:685-93. Cerca con Google

7. Denry I, Kelly J. State of the art of zirconia for dental applications. Dent Mater 2008 24: 299-307. Cerca con Google

8. Sailer I, Gottnerb J, Kanelb S, Hammerle C. Randomized controlled clinical trial of zirconia-ceramic and metal-ceramic posterior fixed dental prostheses: a 3-year follow-up. Int J Prosthodont; 2009; 22:553-60. Cerca con Google

9. Triwatana P, Nagaviroj N, Tulapornchai C. Clinical performance and failures of zirconia based fixed partial dentures: a review literature. J Adv Prosthodont; 2012 4:76-83. Cerca con Google

10. Campos F, Almeida CS, Rippe MP, De Melo RM, Valandro LF, Bottino MA. Resin Bonding to a Hybrid Ceramic: Effects of Surface Treatments and Aging. Oper Dent. 2015 Aug 12. [Epub ahead of print] Cerca con Google

11. Cvikl B, Dragic M, Franz A, Raabe M, Gruber R, Moritz A. Long-term storage affects adhesion between titanium and zirconia using resin cements. J Adhes Dent. 2014; Oct,16(5):459-64. Cerca con Google

12. Andersson B, Odman P, Carlsson L. & Branemark P I. A new Branemark single tooth abutment: handling and early clinical experiences. The International Journal of Oral Maxillofacial Implants 1992; 7: 105–111. Cerca con Google

13. Haas R, Polak C, Furhauser R, Mailath-Pokorny G, Dortbudak O & Watzek G. A longterm follow-up of 76 Branemark single-tooth implants. Clinical Oral Implants Research 2002; 13: 38–43. Cerca con Google

14. Behr M, Lang R, Leibrock A, Rosentritt M & Handel G. Complication rate with prosthodontic reconstructions on ITI and IMZ dental implants. Clinical Oral Implants Research 1998 9: 51–58. Cerca con Google

15. Wang H, Aboushelib M N & Felizer A J Strength influencing variables on CAD/CAM zirconia frameworks. Dental Materials 2008; 24: 633–638. Cerca con Google

16. Zembic A, Sailer I, Jung R E & Hammerle F C H. Randomized-controlled clinical trial of customized zirconia and titanium implant abutments for single-tooth implants in canine and posterior regions: 3-year results. Clinical Oral Implants Research 2009; 20: 802–808. Cerca con Google

17. Sailer I, Sailer T, Stawarczyk B, Jung R E & Hammerle CH. In vitro study of the influence of the type of connection on the fracture load of zirconia abutments with internal and external implant-abutment connections. The International Journal of Oral Maxillofacial Implants 2009; 24: 850–858. Cerca con Google

18. Nothdurft F.P. & Pospiech P.R. Prefabricated zirconium dioxide abutments for single tooth replacement in the posterior region: evaluation of peri-implant tissues and superstructures after 12 months of function. Clinical Oral Implants Research 2010; 21: 857–865. Cerca con Google

19. Magne P, Magne M. & Jovanovic S.A. An esthetic solution for single-implant restorations type III porcelain veneer bonded to a screw retained custom abutment: a clinical report. The Journal of Prosthetic Dentistry 2008;99: 2–7. Cerca con Google

20. Magne P, Oderich E, Boff LL, Cardoso AC, Belser UC. Fatigue resistance and failure mode of CAD/CAM composite resin implant abutments restored with type III composite resin and porcelain veneers. Clin Oral Implants Res. 2011;Nov;22(11):1275-81. Cerca con Google

21. Oderich E, Boff LL, Cardoso AC, Magne P. Fatigue resistance and failure mode of adhesively restored custom implant zirconia abutments. Clin. Oral Imp. Res. 2012; 23, 1360–1368. Cerca con Google

22. Wolfart M, Lehmann F, Wolfart S, Kern M. Durability of the resin bond strength to zirconia ceramic after using different surface conditioning methods. Dent Mater; 2007; 23:45–50. Cerca con Google

23. Phark JH, Duarte S Jr, Blatz M & Sadan A. An in vitro evaluation of the long-term resin bond to a new densely sintered high-purity zirconium-oxide ceramic surface. The Journal of Prosthetic Dentistry 2009;101: 29–38. Cerca con Google

24. Skalak, R. Biomechanical considerations in osseointegrated prostheses. The Journal of Prosthetic Dentistry 1983; 49: 843–848. Cerca con Google

25. Brunski, J.B. Biomechanical factors affecting the bone-dental implant interface. Clinical Materials 1992; 10:153–201. Cerca con Google

26. Ciftçi Y, Canay S. The effect of veneering materials on stress distribution in implant-supported fixed prosthetic restorations. Int J Oral Maxillofac Implants. 2000; Jul-Aug;15(4):571-82. Cerca con Google

27. Kern M, Wegner SM. Bonding to zirconia ceramic: adhesion methods and their durability. Dent Mater 1998;14: 64-71. Cerca con Google

28. Özcan M, Vallittu PK. Effect of surface conditioning methods on the bond strength of luting cement to ceramics. Dent Mater 2003;19:725-31. Cerca con Google

29. Thompson JY, Stoner BR, Piascik JR, Smith R. Adhesion/cementation to zirconia and other non-silicate ceramics: where are we now? Dent Mater 2011;27:71-82. Cerca con Google

30. Gomes AL, l Castillo-Oyagu R,. Lynch C.D Montero J, Albaladejo A Influence of sandblasting granulometry and resin cement composition on microtensile bond strength to zirconia ceramic for dental prosthetic frameworks Journal of Dentistry 2013; 41(1) 31–41 Cerca con Google

31. Kosmac T, Oblak C, Jevnikar P, Funduk N, Marion L. The effect of surface grinding and sandblasting on flexural strength and reliability of Y-TZP zirconia ceramic. Dent Mater 1999;15:426-33. Cerca con Google

32. Aboushelib M, Matinlinna J, Salameh Z, Ounsi H. Innovations in bonding to zirconia based materials: part I. Dent Mater 2008;24:1268-72. Cerca con Google

33. Cavalcanti AN, Foxton RM, Watson TF, Oliveira MT, Giannini M, Marchi GM. Bond strength of resin cements to a zirconia ceramic with different surface treatments. Oper Dent 2009;34:280-7. Cerca con Google

34. Usumez A, Hamdemirci N, Koroglu BY, Simsek I, Parlar O, Sari T. Bond strength of resin cement to zirconia ceramic with different surface treatments. Lasers Med Sci 2013;28:259-66. Cerca con Google

35. Subas¸ MG, Inan Ö. Evaluation of the topographical surface changes and roughness of zirconia after different surface treatments. Lasers Med Sci 2012;27:735-42. Cerca con Google

36. Attia A, Kern M. Long-term resin bonding to zirconia ceramic with a new universal primer. J Prosthet Dent 2011;106: 319-27. Cerca con Google

37. Román-Rodríguez JL, Roig-Vanaclocha A, Fons-Font A, Granell-Ruiz M, Solá-Ruiz MF, Amigó-Borrás V. In vitro experimental study of bonding between aluminium oxide ceramics and resin cements. Med Oral Patol Oral Cir Bucal. 2010;15: 95–100 Cerca con Google

38. Tanaka R, Fujishima A, Shibata Y, Manabe A, Miyazaki T. Cooperation of phosphate monomer and silica modification on zirconia. J Dent Res. 2008;87 :666–670. Cerca con Google

39. Amaral R, Ozcan M, Bottino MA, Valandro LF. Microtensile bond strength of a resin cement to glass infiltrated zirconia-reinforced ceramic: the effect of surface conditioning. Dent Mater 2006;22:283–90. Cerca con Google

40. Atsu SS, Kilicarslan MA, Kucukesmen HC, Aka PS. Effect of zirconium-oxide ceramic surface treatments on the bond strength to adhesive resin. J Prosthet Dent 2006;95:430–6. Cerca con Google

41. Bottino MA, Valandro LF, Scotti R, Buso L. Effect of surface treatments on the resin bond to zirconium-based ceramic. Int J Prosthodont 2005;18:60–5. Cerca con Google

42. Blatz MB, Chiche G, Holst S, Sandan A. Influence of surface treatment and simulated aging on bond strengths of luting agents to zirconia. Quintessence Int 2007;38:745–53. Cerca con Google

43. Kumbuloglu O, Lassila LVJ, User A, Vallitu PK. Bonding of resin composite luting cements to zirconium oxide by two air-particle abrasion methods. Oper Dent 2006;31:248–55. Cerca con Google

44. M. Inokoshi, J. De Munck,S. Minakuchi, and B. Van Meerbeek Meta-analysis of Bonding Effectiveness to Zirconia Ceramics J Dent Res 2014 93(4):329-334, Cerca con Google

45. Piwowarczyk A, Lauer HC, Sorensen JA. The shear bond strength between luting cements and zirconia ceramics after two pre-treatments. Oper Dent 2005;30:382–8. Cerca con Google

46. Sun R, Suansuwan N, Kilpatrick N, Swain M. Characterisation of tribochemically assisted bonding of composite resin to porcelain and metal. J Dent 2000;28:441–5. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record