Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Roner, Marcella (2016) READING THE SIGNATURES OF CHANGING ENVIRONMENTAL FORCINGS IN SALT-MARSH BIOGEOMORPHIC SYSTEMS. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
7Mb

Abstract (inglese)

The question on whether actual tidal morphologies are in equilibrium with current environmental conditions or retain signatures of past climatic changes or human interventions is a classical and fascinating one, furthermore being of intellectual as well as practical interest. Understanding the dynamic response of tidal landscapes to past conditions is critical to predict their response to future environmental changes, such as rate of relative sea-level rise and sediment supply. This is an open and fundamentally important point, particularly in times of natural and anthropogenic changes, during which tidal environments are most exposed to possibly irreversible transformations with far-reaching socio-economic and ecological implications worldwide.
The proposed work aims at analyzing the signatures of changing environmental forcings imprinted in the landscape and in the sedimentary record of the Venice Lagoon to refine our knowledge of tidal landforms dynamics. The thesis is developed following a biogeomorphic approach to the study of salt-marsh landscapes. Marsh biomorphological evolution, in response to changes in the environmental forcings, is analyzed investigating the relative role and mutual interactions and adjustments between physical and biological processes shaping the salt-marsh landscape.
This thesis was carried out through a series of extensive temporal and spatial high-resolution morphological, sedimentological, geochronological and elemental analyses, aimed at exploring the main features of sub-surface marsh samples and lagoonal sediment cores.
The study of sub-surface marsh samples highlights the mutual role of inorganic and organic accretion on salt marshes, which is mainly driven by the inorganic component near the channels, while the organic component largely contributes in the inner-marsh portion. The analyses carried out on sediment cores refine the knowledge of the latest Holocene sedimentary succession of the Venice Lagoon, and furnish a chronostratigraphical model for the evolution over the last two millennia. In particular, for a salt-marsh succession, the analyses highlight the occurrence of a delayed marsh-dynamic response to changing sediment delivery rates.

Abstract (italiano)

La questione inerente l’equilibrio delle morfologie tidali con le attuali condizioni ambientali, o se esse conservino tutt’ora i segni dei cambiamenti climatici o degli interventi antropici passati, è un argomento classico ed affascinante nel campo delle Geoscienze, oltre ad essere di interesse sia intellettuale che pratico. Comprendere i meccanismi che governano la risposta di un ambiente a marea a variazioni passate delle forzanti ambientali è fondamentale per prevedere la loro risposta a cambiamenti ambientali futuri, quali il tasso di innalzamento del livello del mare relativo e l’apporto di sedimenti. Si tratta di un tema tutt’oggi sospeso e di fondamentale importanza, soprattutto in tempi di cambiamenti sia naturali che umanamente indotti, durante i quali gli ambienti tidali sono maggiormente esposti a trasformazioni potenzialmente irreversibili, con implicazioni di vasta portata socio-economica ed ecologica in tutto il mondo.
Il presente lavoro si propone di analizzare le firme del cambiamento delle forzanti ambientali impresse nella morfologia e nel record sedimentario della Laguna di Venezia, con lo scopo di affinare la conoscenza delle dinamiche tidali. La tesi volge allo studio di sistemi di barena attraverso un approccio biogeomorfologico. L’evoluzione geomorfologica delle barene, in risposta ai cambiamenti delle forzanti ambientali, è analizzata investigando il ruolo relativo, le interazioni reciproche e le regolazioni esistenti tra i processi fisici e biologici che modellano gli ambienti di barena.
Il lavoro è realizzato attraverso una serie di analisi morfologiche, sedimentologiche, geocronologiche ed elementali, eseguite ad alta risoluzione spazio-temporale, volte ad esplorare le principali caratteristiche sia di campioni sub-superficiali di barena, sia di carote di sedimenti lagunari.
Lo studio dei campioni sub-superficiali evidenzia il ruolo reciproco delle componenti organica ed inorganica nell’accrezione delle barene, la quale è principalmente guidata dalla componente inorganica in prossimità dei canali, mentre la componente organica contribuisce in gran parte nelle porzioni più interne delle barene. L’analisi effettuata sulle carote lagunari implementa la conoscenza della successione sedimentaria tardo-Olocenica della Laguna di Venezia, e fornisce un modello di evoluzione cronostratigrafica degli ultimi due millenni. In particolare, le analisi effettuate su una successione sedimentaria di barena, evidenziano la presenza di una risposta dinamica ritardata dell’ambiente a cambiamenti nei tassi di apporto sedimentario.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:D'Alpaos , Andrea
Correlatore:Ghinassi, Massimiliano
Dottorato (corsi e scuole):Ciclo 28 > Scuole 28 > SCIENZE DELLA TERRA
Data di deposito della tesi:30 Gennaio 2016
Anno di Pubblicazione:30 Gennaio 2016
Parole chiave (italiano / inglese):Ambienti tidali / Tidal environments; Laguna di Venezia / Venice Lagoon; Barene / Salt marshes; Evoluzione biogeomorfologica / Biogeomorphological evolution
Settori scientifico-disciplinari MIUR:Area 04 - Scienze della terra > GEO/02 Geologia stratigrafica e sedimentologica
Struttura di riferimento:Dipartimenti > Dipartimento di Geoscienze
Codice ID:9433
Depositato il:21 Ott 2016 16:46
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Adam, P. (1990) Saltmarsh Ecology. Cambridge Univ Press, Cambridge, UK. Cerca con Google

Allen, J.R.L. (1990) Constraints on measurements of sea-level movements from salt-marsh accretion rates. J. Geol. Soc. London, 147, 5–7. doi:10.1144/gsjgs.147.1.0005. Cerca con Google

Allen, J.R.L. (2000) Morphodynamic of Holocene salt marshes: a review sketch from the Atlantic and southern North Sea coasts of Europe. Quat. Sci. Rev., 19, 1155–1231. Cerca con Google

Allen, J.R.L. and Thornley, D.M. (2004) Laser granulometry of Holocene estuarine silts: effects of hydrogen peroxide treatment. The Holocene, 14, 290–295. Cerca con Google

Amorosi, A., Fontana, A., Antonioli, F., Primon, S. and Bondesan, A. (2008) Post-LGM sedimentation and Holocene shoreline evolution in the NW Adriatic coastal area. GeoActa, 7, 41–67. Cerca con Google

Amos, C.L., Villatoro, M., Helsby, R., Thompson, C.E.L., Zaggia, L., Umgiesser, G., et al. (2010) The measurement of sand transport in two inlets of Venice lagoon, Italy. Estuar., Coast., Shelf Sci., 87(2), 225–236. doi:10.1016/j.ecss.2009.05.016. Cerca con Google

Ball, D.F. (1964) Loss-on-ignition as an estimate of organic matter and organic carbon in non-calcareous soils. J Soil Sci., 15, 84–92. Cerca con Google

Barbier, E.B., Hacker, S.D., Kennedy, C., Koch, E.W., Stier, A.C. and Silliman, B.R. (2011) The value of estuarine and coastal ecosystem services. Ecol. Monogr., 81(2), 169–193. Cerca con Google

Barillé-Boyer, A-L., Barillé, L., Massé, H., Razet, D. and Héral, M. (2003) Correction for particulate organic matter as estimated by loss on ignition in estuarine ecosystems. Estuar. Coast. Shelf Sci., 58, 147–153. doi:10.1016/S0272-7714(03)00069-6. Cerca con Google

Bartholy, J. (2012) Salt marsh sedimentation. In: Davis, R.A. and Dalrymple, R.W. (Eds.) Principles of tidal sedimentology, Springer, Berlin, 151–185. Cerca con Google

Bellucci, L.G., Frignani, M., Cochran, J.K., Albertazzi, S., Zaggia, L., Cecconi, G., et al. (2007) 210Pb and 137Cs as chronometers for salt marsh accretion in the Venice Lagoon – links to flooding frequency and climate change. J. Environ. Radioactiv., 97, 85–102. Cerca con Google

Boaga, J., D’Alpaos, A., Cassiani, G., Marani, M. and Putti, M. (2014) Plant-soil interactions in salt marsh environments: Experimental evidence from electrical resistivity tomography in the Venice Lagoon. Geophys. Res. Lett., 41, 6160–6166. doi:10.1002/2014GL060983. Cerca con Google

Boesch, D.F. and Turner, R.E. (1984) Dependency of fishery species on salt marshes: the role of food and refuge. Estuaries Coasts, 7, 460–468. Cerca con Google

Bonardi, M., Tosi, L., Rizzetto, F., Brancolini, G. and Baradello, L. (2006) Effects of climate changes on the Late Pleistocene and Holocene sediments of the Venice Lagoon, Italy. J. Coastal Res., 39, 279–284. Cerca con Google

Bondesan, A. and Furlanetto, P. (2012) Artificial fluvial diversions in the mainland of the Lagoon of Venice during the 16th and 17th centuries inferred by historical cartography analysis. Géomorphol. Relief Process Environ., 2, 175–200. Cerca con Google

Brambati, A. (1988) Lagune e stagni costieri: due ambienti a confronto. In: Carrada, G.C., Cicogna, F. and Fresi, E. (Eds.) Le lagune costiere: ricerca e gestione. CLEM Pubbl., Massa Lubrense (Napoli), 9–33. Cerca con Google

Brambati, A., Carbognin, L., Quaia, T., Teatini, P. and Tosi, L. (2003) The Lagoon of Venice: Geological setting, evolution and land subsidence. Episodes, 26(3), 264–268. Cerca con Google

Brancolini, G., Tosi, L., Caffau, M., Donda, F., Rizzetto, F. and Zecchin, M. (2008) Holocene evolution of the Venice Lagoon. In: Proceedings of the 9th International Conference Littoral 2008, November 25th–28th 2008, Venice, Italy, 1–7. Cerca con Google

Brivio, P.A. and Zilioli, E. (1996) Assessing wetland changes in the Venice lagoon by means of satellite remote sensing data. J. Coastal Conserv., 2, 23–32. Cerca con Google

Bromberg, K. and Silliman, B.R. (2009) Patterns of salt marsh loss within coastal regions of North America: pre-settlement to present. In: Silliman, B.R., Grosholz, T. and Bertness, M.D. (Eds.) Human impacts on salt marshes: a global perspective. University of California Press, Berkeley, California, USA, 253–266. Cerca con Google

Bronck Ramsey, C. (2008) Deposition models for chronological records. Quaternary Sci. Rev., 27, 42–60. Cerca con Google

Carbognin, L. (1992) Evoluzione naturale e antropica della Laguna di Venezia. Mem. Descr. Carta Geol. D’Italia, 42, 123–134. Cerca con Google

Carbognin, L. and Tosi, L. (2002) Interaction between climate changes, eustacy and land subsidence in the North Adriatic Region, Italy. Mar. Ecol., 23, 38–50. Cerca con Google

Carbognin, L., Teatini, P. and Tosi, L. (2004) Eustacy and land subsidence in the Venice Lagoon at the beginning of the new millennium. J. Marine Syst., 51, 345–353. doi:10.1016/j.jmarsys.2004.05.021. Cerca con Google

Carbognin, L., Teatini, P. and Tosi, L. (2005) Land subsidence in the Venetian area: known and recent aspects. Giorn. Geol. Appl., 1, 5–11. doi:10.1474/GGA.2005-01.0-01.0001. Cerca con Google

Carniello, L., Defina, A. and D’Alpaos, L. (2009) Morphological evolution of the Venice lagoon: Evidence from the past and trend for the future. J. Geophys. Res. – Earth Surface, 114, F04002. doi:10.1029/2008JF001157. Cerca con Google

Carniello, L., D’Alpaos, A. and Defina, A. (2011) Modeling wind waves and tidal flows in shallow micro-tidal basins. Estuar. Coast. Shelf Sci., 114, F04002. doi:10.1016/j.ecss.2011.01.001. Cerca con Google

Chapman, V.J. (1976) Coastal vegetation. 2nd ed., Pergamon Press, Oxford. Cerca con Google

Chmura, G.L., Anisfed, S.C., Cahoon, D.R. and Lynch, J.C. (2003) Global carbon sequestration in tidal, saline wetland soils. Global Biogeochem. Cy., 17, 1111. doi:10.1029/2002GB001917. Cerca con Google

Christiansen, T., Wiberg, P.L. and Milligan, T.G. (2000) Flow and sediment transport on a tidal salt marsh surface. Estuar. Coast. Shelf Sci., 50, 315–331. doi:10.1006/ecss.2000.0548. Cerca con Google

Cola, S., Sanavia, L., Simonini, P. and Schrefler, B.A. (2008) Coupled thermohydromechanical analysis of venice lagoon salt marshes. Water resour. Res., 44, W00C05. doi:10.1029/2007WR006570. Cerca con Google

Costanza, R., d’Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., et al. (1997) The value of the world’s ecosystem services and natural capital. Nature, 387, 253–260. doi:10.1038/387253a0. Cerca con Google

Costanza, R., Pe´rez-Maqueo, O., Martinez, M.L., Sutton, P., Anderson, S.J. and Mulder, K. (2008) The value of coastal wetlands for hurricane protection. Ambio, 37, 241–248. Cerca con Google

Craft, C.B,, Seneca, E.D. and Broome, S.W. (1991) Loss on ignition and Kjeldahl digestion for estimating organic carbon and total nitrogen in estuarine marsh soils: Calibration with dry combustion. Estuaries, 14, 175–179. Cerca con Google

Cronk, J.K. and Fennessy, M.S. (2001) Wetland Plants: Biology and Ecology. CRC Press/Lewis Publishers, Boca Raton, FL, 440 pp. Cerca con Google

D’Alpaos, A. (2011) The mutual influence of biotic and abiotic components on the long-term ecomorphodynamic evolution of salt-marsh ecosystems. Geomorphology, 126, 269–278. Cerca con Google

D’Alpaos, L. (2010a) Fatti e misfatti di idraulica lagunare. La laguna di Venezia dalla diversione dei fiumi alle nuove opere alle bocche di porto. Istituto Veneto di Scienze, Lettere ed Arti, Venezia, 329 pp. Cerca con Google

D’Alpaos, L. (2010b) L’evoluzione morfologica della Laguna di Venezia attraverso la lettura di alcune mappe storiche e delle sue carte idrografiche. Europrint, Quinto di Treviso, 109 pp. Cerca con Google

D’Alpaos, A. and Marani, M. (2015) Reading the signatures of biologic-geomorphic feedbacks in salt-marsh landscapes. Adv. Water Resour. doi:10.1016/j.advwatres.2015.09.004. Cerca con Google

D’Alpaos, A., Lanzoni, S., Marani, M., Fagherazzi, S. and Rinaldo, A. (2005) Tidal network ontogeny: channel initiation and early development. J. Geophys. Res. – Earth Surface, 110, F02001. doi:10.1029/2004JF000182. Cerca con Google

D’Alpaos, A., Lanzoni, S., Marani, M. and Rinaldo, A. (2007) Landscape evolution in tidal embayments: Modeling the interplay of erosion, sedimentation, and vegetation dynamics. J. Geophys. Res., 112, F01008. doi:10.1029/2006JF000537. Cerca con Google

D'Alpaos, A., Lanzoni, S., Rinaldo, A. and Marani, M. (2009) Intertidal eco-geomorphological dynamics and hydrodynamic circulation. In: Perillo, G.M.R., Wolanski, E., Cahoon, D.R. and Brinson, M.M. (Eds.) Coastal Wetlands: An Integrated Ecosystem Approach. Elsevier, Oxford, UK Burlington, 159–184. Cerca con Google

D’Alpaos, A., Mudd, S.M. and Carniello, L. (2011) Dynamic response of marshes to perturbations in suspended sediment concentrations and rates of relative sea level rise. J. Geophys. Res., 116, F04020. doi:10.1029/2011JF002093. Cerca con Google

D’Alpaos, A., Da Lio, C. and Marani, M. (2012) Biogeomorphology of tidal landforms: physical and biological processes shaping the tidal landscape. Ecohydrology, 5, 550–562. Cerca con Google

D’Alpaos, A., Carniello, L. and Rinaldo, A. (2013) Statistical mechanics of wind wave-induced erosion in shallow tidal basins: Inferences from the Venice Lagoon. Geophys. Res. Lett., 40, 3402–3407. doi:10.1002/grl.50666. Cerca con Google

D’Odorico, P., Laio, F., Porporato, A., Ridolfi, L., Rinaldo, A. and Rodriguez-Iturbe, I. (2010). Ecohydrology of terrestrial ecosystems. Bioscience, 60(11), 898–907. doi:10.1525/bio.2010.60.11.6. Cerca con Google

Da Lio, C., D'Alpaos, A. and Marani, M. (2013) The secret gardener: vegetation and the emergence of biogeomorphic patterns in tidal environments. Phil. Trans. R. Soc. A, 371, 20120367. doi:10.1098/rsta.2012.0367. Cerca con Google

Dadey, K.A., Janecek, T. and Klaus, A. (1992) Dry-bulk density: its use and determination. In: Taylor, B., Fujioka, K., et al. (Eds.) Proceeding of the Ocean Drilling Program, Scientific Results. College Station, TX (Ocean Drilling Program), 126, 551–554. doi:10.2973/odp.proc.sr.126.157.1992. Cerca con Google

Dankers, N. and Laane, R. (1983) A comparison of wet oxidation and loss on ignition of organic material in suspended matter. Environ. Technol. Lett., 4, 283–290. Cerca con Google

Davy, A., Figueroa, E. and Bakker, J. (2009) Human modification European salt marshes. In: Silliman, B.R., Grosholz, T. and Bertness, M.D. (Eds.) Human impacts on salt marshes: a global perspective. University of California Press, Los Angeles, CA, USA, 311–336. Cerca con Google

Day, J.W., Rismondo, A., Scarton, F., Are, D. and Cecconi, G. (1998a) Relative sea level rise and Venice lagoon wetlands. J. Coastal Conserv., 4, 27–34. Cerca con Google

Day, J.W., Scarton, F., Rismondo, A. and Are, D. (1998b) Rapid deterioration of a salt marsh in Venice lagoon, Italy. J. Coastal Res., 14(2), 583–590. Cerca con Google

Day, J.W., Rybczyk, J., Scarton, F., Rismondo, A., Are, D. and Cecconi, G. (1999) Soil Accretionary Dynamics, Sea-level Rise and the Survival of Wetlands in Venice Lagoon: A Field and Modelling Approach. Estuar. Coast. Shelf Sci., 49, 607–628. Cerca con Google

Day, J.W., Shaffer, G.P., Britsch, L.D., Reed, D.J., Hawes, S.R. and Cahoon, D. (2000) Pattern and process of land loss in the Mississippi Delta: A spatial and temporal analysis of wetland habitat change. Estuaries, 23, 425–438. Cerca con Google

Day, J.W., Christian, R.R., Boesch, D.M., Yáñez-Arancibia, A., Morris, J., Twilley, R.R., et al. (2008) Consequences of climate change on the ecomorphology of coastal wetlands. Estuar. Coast., 31, 477–491. doi:10.1007/s12237-008-9047-6. Cerca con Google

Day, J.W., Cable, J.E., Cowan, J.H., Delaune, R.D., de Mutsert, K., Fry, B., et al. (2009) The Impact of Pulsed Reintroduction of River Water on a Mississippi Delta Coastal Basin. J. Coastal Res., 54, 225–243. Cerca con Google

Delaune, R.D. and Pezeshki, S.R. (2003) The role of soil organic carbon in maintaining surface elevation in rapidly subsiding U.S. Gulf of Mexico coastal marshes. Water Air Soil Poll., 3, 167–179. Cerca con Google

Dietrich, W.E. and Perron, J.T. (2006) The search for a topographic signature of life. Nature, 439, 411–418. doi:10.1038/nature04452. Cerca con Google

Donkin, M.J. (1991) Loss-on-ignition as an estimator of soil organic carbon in A-horizon forestry soils. Commun. Soil Sci. Plan., 22, 233–241. Cerca con Google

Dorigo, W. (1983) Venezia. Origini, ipotesi e ricerche sulla formazione della città. Electa Fantoni Grafica di Venezia, Venezia, vol. 1–2–3. Cerca con Google

Dorigo, W. (1994) Venezie sepolte nella terra del Piave: Duemila anni fa fra il doce e il salso. Viella, Roma, 440 pp. Cerca con Google

Duarte, C.M., Middelburg, J.J. and Caraco, N. (2005) Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences, 2, 1–8. Cerca con Google

Duarte, C.M., Losada, I.J., Hendriks, I.E., Mazarrasa, I. and Marbà, N. (2013) The role of coastal plant communities for climate change mitigation and adaption. Nat. Clim. Change, 3, 961–968. doi:10.1038/nclimate1970. Cerca con Google

Fagherazzi, S., Carniello, L., D’Alpaos, L. and Defina, A. (2006) Critical bifurcation of shallow microtidal landforms in tidal flats and salt marshes. P. Natl. Acad. Sci. USA, 103(22), 8337-8341. doi:10.1073/pnas.0508379103. Cerca con Google

Fagherazzi, S., Kirwan, M.L., Mudd, S.M., Guntenspergen, G.R., Temmerman, S., D’Alpaos, A., et al. (2012) Numerical models of salt marsh evolution: ecological, geomorphic, and climatic factors. Rev. Geophys., 50, RG1002. doi:10.1029/2011RG000359. Cerca con Google

Favero, V. (1985) Evoluzione della laguna di Venezia ed effetti indotti da interventi antropici sulla rete fluviale circumlagunare. In: Ministero dei LL. PP. – Magistrato delle Acque – Laguna, fiumi, lidi; cinque secoli di gestione delle acque nelle Venezie. Atti del Convegno indetto dal Magistrato delle Acque, Venezia, 10-12 giugno 1983, 402–409. Cerca con Google

Favero, V. and Serandrei Barbero, R. (1978) La sedimentazione olocenica nella piana costiera tra Brenta e Adige. Atti 69° Congresso Soc. Geol. It., 67–75. Cerca con Google

Favero, V. and Serandrei Barbero, R. (1980) Origine ed evoluzione della Laguna di Venezia – Bacino meridionale. Lavori Soc. Ven. Sc. Nat., 5, 49–71. Cerca con Google

Favero, V., Parolini, R. and Scattolin M. (1988) Morfologia storica della laguna di Venezia. Comune di Venezia, Assessorato all’Ecologia. Arsenale Editrice, Venezia, 79 pp. Cerca con Google

Fedi, M.E., Cartocci, A., Manetti, M., Taccetti, F. and Mandò, P.A. (2007) The 14C AMS facility at LABEC, Florence. Nucl. Instrum. Meth. B, 259, 18–22. Cerca con Google

Fontana, A., Mozzi, P. and Bondesan, A. (2004) L’evoluzione geomorfologica della pianura veneto-friulana. In: Bondesan, A. and Meneghel, M. (Eds.) Geomorfologia della provincia di Venezia. Esedra editrice, Padova, 113–138. Cerca con Google

Francalanci, S., Bendoni, M., Rinaldi, M. and Solari, L. (2013) Ecomorphodynamic evolution of salt marshes: Experimental observations of bank retreat processes. Geomorphology, 195, 53–65. doi:10.1016/j.geomorph.2013.04.026. Cerca con Google

Frangipane, G., Pistolato, M., Molinaroli, E., Guerzoni, S. and Tagliapietra, D. (2009) Comparison of loss on ignition and thermal analysis stepwise methods for determination of sedimentary organic matter. Aquat. Conserv., 19, 24–33. Cerca con Google

French, J.R., Spencer, T., Murray, A.L. and Arnold, N.S. (1995) Geostatistical analysis of sediment deposition in two small tidal wetlands, Norfolk, United Kingdom. J. Coastal Res., 11, 308–321. Cerca con Google

Frignani, M. and Langone, L. (1991) Accumulation rates and 137Cs distributions in sediments off the Po River delta and the Emilia-Romagna coast (northwestern Adriatic Sea, Italy). Cont. Shelf Res., 6, 525–542. Cerca con Google

Gatto, P. and Carbognin, L. (1981) The lagoon of Venice: Natural environmental trend and man-induced modification. Hydrol. Sci. Bull., 26, 379–391. Cerca con Google

Gedan, K.B. and Silliman, B.R. (2009) Patterns of salt marsh loss within coastal regions of North America: pre-settlement to present. In: Silliman, B.R., Grosholz E.D. and Bertness, M.D. (Eds.) Human impacts on salt marshes: a global perspective. University of California Press, Los Angeles, CA, USA, 253–265. Cerca con Google

Gedan, K.B., Silliman, B.R. and Bertness, M.D. (2009) Centuries of human-driven change in salt marsh ecosystems. Annu. Rev. Mater. Sci., 1, 117–141. Cerca con Google

Gedan, K.B., Kirwan, M.L., Wolanski, E., Barbier, E.B. and Silliman, B.R. (2011) The present and future role of coastal wetland vegetation in protecting shorelines: answering recent challenges to the paradigm. Clim. Change, 106(1), 7–29. doi:10.1007/s10584-010-0003-7. Cerca con Google

Gee, G.W and Bauder, J.W. (1986) Particle-size analysis. In: Klute, A. (Ed.) Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods. Agronomy Monograph No. 9, 2nd ed. American Society of Agronomy/Soil Science Society of America, Madison, WI, 383–411. Cerca con Google

Gray, A.B., Pasternack, G.B. and Watson, E.B. (2010) Hydrogen peroxide treatment effects on the particle size distribution of alluvial and marsh sediments. The Holocene, 20, 293–301. Cerca con Google

Heiri, O., Lotter, A.F. and Lemcke, G. (2001) Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J. Paleolimnol., 25, 101–110. Cerca con Google

Horne, J.C., Ferm, J.C., Caruccio, F.T. and Baganz, B.P. (1978) Depositional models in coal exploration and mine planning in Appalachian region. Am. Assoc. Petr. Geol. Bull., 62, 2379–2411. Cerca con Google

Howard, P.J.A. and Howard, D.M. (1990) Use of organic carbon and loss-on-ignition to estimate soil organic matter in different soil types and horizons. Biol. Fert. Soils, 9, 306–310. Cerca con Google

Howes, N.C., FitzGerald, D.M., Hughes, Z.J., Georgiou, I.Y., Kulp, M.A., Miner, M.D., et al. (2010) Hurricane-induced failure of low salinity wetlands. P. Natl. Acad. Sci. USA, 107, 14014–14019. doi:10.1073/pnas.0914582107. Cerca con Google

Hu, Z., van Belzen, J., van der Wal, D., Balke, T., Wang, Z.B., Stive, M., et al. (2015) Windows of opportunity for salt marsh vegetation establishment on bare tidal flats: The importance of temporal and spatial variability in hydrodynamic forcing. J. Geophys. Res.-Biogeo., 120, 1450–1469, doi:10.1002/2014JG002870. Cerca con Google

Hupp, C.R., Osterkamp, W.R. and Howard, A.D. (1995) Biogeomorphology – Terrestrial and freshwater systems. Elsevier, Amsterdam, The Netherlands, 347 pp. Cerca con Google

Jenkins, R. and De Vries, J.L. (1970) Practical X-ray Spectrometry. Macmillan, London. Cerca con Google

Jones, C., Lawton, J. and Shachak, M. (1994) Organisms as ecosystem engineers. Oikos, 69, 373–386. Cerca con Google

Kirwan, M.L. and Guntenspergen, G.R. (2012) Feedbacks between inundation, root production, and shoot growth in a rapidly submerging brackish marsh. J. Ecol., 100, 764–770. Cerca con Google

Kirwan, M.L. and Mudd, S.M. (2012) Response of salt-marsh carbon accumulation to climate change. Nature, 489, 550–553. doi:10.1038/nature11440. Cerca con Google

Kirwan, M.L. and Murray, A.B. (2005) Response of an ecomorphodynamic model of tidal marshes to varying sea level rise rates. In: Parker, G. and García, M.H. (Eds.) River, Coastal and Estuarine Morphodynamics: RCEM 2005, Taylor and Francis Group, London, ISBN 0415392705, 629–634. Cerca con Google

Kirwan, M.L. and Murray, A.B. (2007) A coupled geomorphic and ecological model of tidal marsh evolution. P. Natl. Acad. Sci. USA, 104, 6118–6122. Cerca con Google

Kirwan, M.L. and Murray, A.B. (2008) Tidal marshes as disequilibrium landscapes? Lags between morphology and Holocene sea level changes. Geophys. Res. Lett., 35, L24401. doi:10.1029/2008GL036050. Cerca con Google

Kirwan, M.L. and Temmerman, S. (2009) Coastal marsh response to historical and future sea-level acceleration. Quat. Sci. Rev., 28, 1801–1808. doi:10.1016/j.quascirev.2009.02.022. Cerca con Google

Kirwan, M.L., Murray, A.B. and Boyd, W.S. (2008) Temporary vegetation disturbance as an explanation for permanent loss of tidal wetlands. Geophys. Res. Lett., 35, L05403. doi:10.1029/2007GL032681. Cerca con Google

Kirwan, M.L., Guntenspergen, G.R., D’Alpaos, A., Morris, J.T., Mudd, S.M. and Temmerman, S. (2010) Limits of the adaptability of coastal marshes to rising sea level. Geophys. Res. Lett., 37, L23401. doi:10.1029/2010GL045489. Cerca con Google

Kirwan, M.L., Murray, A.B., Donnelly, J.P. and Corbett, D.R. (2011) Rapid wetland expansion during European settlement and its implication for marsh survival under modern sediment delivery rates. Geology, 39(5), 507-510. doi:10.1130/G31789.1. Cerca con Google

Larsen, L.G., Moseman, S., Santoro, A.E., Hopfensperger, K. and Burgin, A. (2010) A complex-system approach to predicting effects of sea level rise and nitrogen loading on nitrogen cycling in coastal wetland ecosystem. In: Kemp, P.F. (Ed.) Eco-DAS VIII Symposium Proceedings. Waco, Tex, Assoc. Sci. Limnol. Oceanogr., 67–92. Cerca con Google

Leonard, L.A. and Croft, A.L. (2006) The effect of standing biomass on flow velocity and turbulence in Spartina alterniflora canopies. Estuar. Coast. Shelf Sci., 69, 325–336. Cerca con Google

Leonard, L.A. and Luther, M.E. (1995) Flow hydrodynamics in tidal marsh canopies. Limnol. Oceanogr., 40(8), 1474–1484. Cerca con Google

Li, H. and Yang, S.L. (2009) Trapping effect of tidal marsh vegetation on suspended sediment, Yangtze Delta. J. Coastal Res., 254, 915–924. doi:10.2112/08-1010.1. Cerca con Google

Lucchini, F., Frignani, M., Sammartino, I., Dinelli, E. and Bellucci, L.G. (2001) Composition of Venice Lagoon sediments: distribution, sources, setting and recent evolution. GeoActa, 1, 1–14. Cerca con Google

MacKenzie, R.A. and Dionne, M. (2008) Habitat heterogeneity: importance of salt marsh pools and high marsh surfaces to fish production in two Gulf of Maine salt marshes. Mar. Ecol.-Prog. Ser., 368, 217–230. Cerca con Google

Madricardo, F. and Donnici, S. (2014) Mapping past and recent landscape modifications in the Lagoon of Venice through geophysical surveys and historical maps. Anthropocene, 6, 86–96. doi:10.1016/j.ancene.2014.11.001. Cerca con Google

Madricardo, F., Donnici, S., Lezziero, A., De Carli, F., Buogo, S., Calicchia, P., et al. (2007) Palaeoenvironment reconstruction in the Lagoon of Venice through wide-area acoustic surveys and core sampling. Estuar. Coast. Shelf Sci., 75, 205–213. doi:10.1016/j.ecss.2007.02.031. Cerca con Google

Marani, M., Belluco, E., D’Alpaos, A., Defina, A., Lanzoni, S. and Rinaldo, A. (2003) On the drainage density of tidal networks. Water Resour. Res., 39, 1040. doi:10.1029/2001WR001051. Cerca con Google

Marani, M., Belluco, E., Ferrari, S., Silvestri, S., D'Alpaos, A., Lanzoni, S., et al. (2006) Analysis, synthesis and modelling of high-resolution observations of saltmarsh ecogeomorphological patterns in the Venice lagoon. Estuar. Coast. Shelf Sci., 69(3–4), 414–426. doi:10.1016/j.ecss.2006.05.021. Cerca con Google

Marani, M., D’Alpaos, A., Lanzoni, S., Carniello, L., Rinaldo, A. (2007) Biologically-controlled multiple equilibria of tidal landforms and the fate of the Venice Lagoon. Geophys. Res. Lett., 34, L11402. doi:10.1029/2007GL030178. Cerca con Google

Marani, M., D'Alpaos, A., Lanzoni, S., Carniello, L. and Rinaldo, A. (2010) The importance of being coupled: Stable states and catastrophic shifts in tidal biomorphodynamics. J. Geophys. Res., 115, F04004. doi:10.1029/2009JF001600. Cerca con Google

Marani, M., D'Alpaos, A., Lanzoni, S. and Santalucia, M. (2011) Understanding and predicting wave erosion of marsh edges. Geophys. Res. Lett., 38, L21401. doi:10.1029/2011GL048995. Cerca con Google

Marani, M., Da Lio, C. and D’Alpaos, A. (2013) Vegetation engineers marsh morphology through multiple competing stable states. P. Natl. Acad. Sci. USA, 110(9), 3259–3263. doi:10.1073/pnas.1218327110. Cerca con Google

Mariotti, G. and Carr, J. (2014) Dual role of salt marsh retreat: Long-term loss and short-term resilience. Water Resour. Res., 50(4), 2963–2974. doi:10.1002/2013WR014676. Cerca con Google

Mariotti, G. and Fagherazzi, S. (2010) A numerical model for the coupled long-term evolution of salt marshes and tidal flats. J. Geophys. Res., 115, F01004. doi:10.1029/2009JF001326. Cerca con Google

Mariotti, G. and Fagherazzi, S. (2013) Critical width of tidal flats triggers marsh collapse in the absence of sea-level rise. P. Natl. Acad. Sci. USA, 110(14), 5353–5356. doi:10.1073/pnas.1219600110. Cerca con Google

Mayor, J. and Hicks, C. (2009) Potential impacts of elevated CO2 on plant interactions, sustained growth, and carbon cycling in salt marsh ecosystems. In: Silliman, B.R., Grosholz, T. and Bertness, M.D. (Eds.) Human impacts on salt marshes: a global perspective. University of California Press, Berkeley, California, USA, 207–230. Cerca con Google

McClennen, C.E. and Housley, R.A. (2006) Late-Holocene channel meander migration and mudflat accumulation rates, Lagoon of Venice, Italy. J. Coastal Res., 22(4), 930–945. Cerca con Google

Mcleod, E., Chmura, G.L., Bouillon, S., Salm, R., Björk, M., Duarte, C.M., et al. (2011) A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front. Ecol. Environ., 9(10), 552–560. doi:10.1890/110004. Cerca con Google

Mendelsshon, I.A., McKee, K.L. and Patrick, W.H. (1981) Oxygen Deficiency in Spartina alterniflora roots: Metabolic Adaptation to Anoxia. Science, 214, 439–441. Cerca con Google

MichczyÒski, A. (2007) Is it possible to find a good point estimate of a calibrated radiocarbon date? Radiocarbon, 49, 393–401. Cerca con Google

Mikutta, R., Kleber, M., Kaiser, K. and Jahn, R. (2005) Review: Organic matter removal from soils using hydrogen peroxide, sodium hypochlorite, and disodium peroxodisulfate. Soil Sci. Soc. Am. J., 69, 120–135. Cerca con Google

Mitsch, W.J. and Gosselink, J.G. (2000) Wetlands. 3rd edition, John Wiley, New York, USA Cerca con Google

Moffett, K.B., Robinson, D.A. and Gorelick, S.M. (2010) Relationship of salt marsh vegetation zonation to spatial patterns in soil moisture, salinity, and topography. Ecosystems, 13, 1287–1302. Cerca con Google

Möller, I., Spencer, T., French, J.R., Leggett, D. and Dixon, M. (1999) Wave transformation over salt marshes: A field and numerical modelling study from North Norfolk, England. Estuar. Coast. Shelf Sci., 49, 411–426. doi:10.1006/ecss.1999.0509. Cerca con Google

Möller, I., Kudella, M., Rupprecht, F., Spencer, T., Paul, M., van Wesenbeeck, B.K., et al. (2014) Wave attenuation over coastal salt marshes under storm surge conditions. Nat. Geosci., 7, 727–731. doi:10.1038/NGEO2251. Cerca con Google

Mook, D.H. and Hoskin, C.M. (1982) Organic determination by ignition, caution advised. Estuar. Coast. Shelf Sci., 15, 697–699. Cerca con Google

Morgan, P.A., Burdick, D.M. and Short, F.T. (2009) The functions and values of fringing salt marshes in Northern New England, USA. Estuaries Coasts, 32, 483–495. Cerca con Google

Morris, J.T., Sundareshwar, P.V., Nietch, C.T., Kjerfve, B. and Cahoon, D.R. (2002) Responses of coastal wetlands to rising sea level. Ecology, 83, 2869–2877. Cerca con Google

Mozzi, P., Furlanetto, P. and Primon, S. (2004) Tra Naviglio Brenta e Bacchiglione. In: Bondesan, A. and Meneghel, M. (Eds.) Geomorfologia della provincia di Venezia. Esedra editrice, Padova, 269–298. Cerca con Google

Mudd, S.M. (2011) The life and death of salt marshes in response to anthropogenic disturbance of sediment supply. Geology, 39, 511–512. doi:10.1130/focus052011.1. Cerca con Google

Mudd, S.M., Fagherazzi, S., Morris, J.T. and Furbish, D.J. (2004) Flow, sedimentation, and biomass production on a vegetated salt marsh in South Carolina: Toward a predictive model of marsh morphologic and ecologic evolution. In: Fagherazzi, S., Marani, M. and Blum, L.K. (Eds.) The Ecogeomorphology of Salt Marshes. Coast. Estuar. Stud., Am. Geophys. Un., Washington, DC, 59, 165–188. Cerca con Google

Mudd, S.M., Howell, S. and Morris, J.T. (2009) Impact of dynamic feed-backs between sedimentation, sea-level rise, and biomass production on near surface marsh stratigraphy and carbon accumulation. Estuar. Coast. Shelf Sci., 82, 377–389. Cerca con Google

Mudd, S.M., D’Alpaos, A. and Morris, J.T. (2010) How does vegetation affect sedimentation on tidal marshes? Investigating particle capture and hydrodynamic controls on biologically mediated sedimentation. J. Geophys. Res., 115, F03029. doi:10.1029/2009JF001566. Cerca con Google

Murray, A.B., Knaapen, M.A.F., Tal, M. and Kirwan, M.L. (2008) Biomorphodynamics: physical-biological feedbacks that shape landscapes. Water Resour. Res., 44(11), W11301. doi:10.1029/2007WR006410. Cerca con Google

Murray, B.C., Pendleton, L., Jenkins, W.A. and Sifleet, S. (2011) Green Payments for Blue Carbon. Economic Incentives for protecting Threatened Coastal habitats. Duke Nicholas Institute Report, NI R 11-04. Cerca con Google

Nellemann, C., Corcoran, E., Duarte, C.M., Valdés, L., De Young, C., Fonseca, L., et al. (2009) Blue Carbon. The role of healthy oceans in binding carbon. A rapid response assessment. GRID-Arendal, United Nations Environment Programme. ISBN:978-82-7701-060-1. Cerca con Google

Neubauer, S.C. (2008) Contributions of mineral and organic components to tidal freshwater marsh accretion. Estuar. Coast. Shelf Sci., 78, 78–88. Cerca con Google

Ninfo, A., Fontana, A., Mozzi, P. and Ferrarese, F. (2009) The map of Altinum, ancestor of Venice. Science, 325, 577–577. Cerca con Google

Nyman, J.A., Walters, R.J., Delaune, R.D. and Patrick, W.H. (2006) Marsh vertical accretion via vegetative growth. Estuar. Coast. Shelf Sci., 69, 370–380. Cerca con Google

Pendleton, L., Donato, D.C., Murray, B.C., Crooks, S., Jenkins, W.A., Sifleet, S., et al. (2012) Estimating global “Blue Carbon” emissions from conversion and degradation of vegetated coastal ecosystem. PLoS ONE, 7(9), e43542. doi:10.1371/journal.pone.0043542. Cerca con Google

Pennings, S.C., Grant, M. and Bertness, M.D. (2005) Plant zonation in low-latitudes salt marshes: Disentangling the roles of flooding, salinity and competition. J. Ecol., 93, 159–167. Cerca con Google

Perillo, G.M.E., Wolanski, E., Cahoon, D.R. and Brinson, M.M. (2009) Coastal Wetlands: An Integrated Ecosystem Approach. Elsevier, Oxford, UK Burlington. Cerca con Google

Primon, S. and Furlanetto P. (2004) La laguna sud. In: Bondesan, A. and Meneghel, M. (Eds.) Geomorfologia della provincia di Venezia. Esedra editrice, Padova, 307–326. Cerca con Google

Protocol of Simon Fraser University Soil Science Lab, compiled by Robertson, S. (2011) Direct estimation of organic matter by loss on ignition: Methods. Property of SFU Soil Science Lab. Cerca con Google

Ratliff, K., Braswell, A. and Marani, M. (2015) Spatial response of coastal marshes to increased atmospheric CO2, P. Natl. Acad. Sci. USA, 112(51), 15580–15584. doi:10.1073/pnas.1516286112. Cerca con Google

Ravera, O. (2000) The Lagoon of Venice: the result of both natural factors and human influence. J. Limnol., 59(1), 19–30. Cerca con Google

Reed, D.J. (2002) Sea-level rise and coastal marsh sustainability: geological and ecological factors in the Mississippi delta plain. Geomorphology, 48, 233–243. Cerca con Google

Reed, D.J., Spencer, T., Murray, A.L., French, J.R. and Leonard, L. (1999) Marsh surface sediment deposition and the role of tidal creeks: Implications for created and managed coastal marshes. J. Coastal Conserv., 5, 81–90. doi:10.1007/BF02802742. Cerca con Google

Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., et al. (2009) IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon, 51, 1111–1150. Cerca con Google

Reinhardt, L., Jerolmack, D., Cardinale, B.J., Vanacker, V. and Wright, J. (2010) Dynamic interactions of life and its landscape: feedbacks at the interface of geomorphology and ecology. Earth Surf. Proc. Land., 35(1), 78–101. doi:10.1002/esp.1912. Cerca con Google

Richter, T.O., Van Der Gaast, S., Koster, B., Vaars, A., Gieles, R., De Stigter, H.C., et al. (2006) The Avaatech XRF Core Scanner: technical description and application to NE Atlantic sediments. In: Rothwell, R.G. (Ed.) New Techniques in Sediment Core Analysis, Geological Society, London, 39–50. Cerca con Google

Rizzetto, F. and Tosi, L. (2011) Aptitude of modern salt marshes to counteract relative sea-level rise, Venice Lagoon (Italy). Geology, 39(8), 755–758. doi:10.1130/G31736.1. Cerca con Google

Sanchez-Cabeza, J.A., Masqué, P., Radakovitch, O., Heussner, S., Brand, T., Lindsay, F., et al. (1994) Data quality assurance in Euromarge-NB: 210Pb intercomparison exercises. In: First Workshop of the Mediterranean Targeted Project, Barcelona, Spain, November 21st–23rd , 1994. Cerca con Google

Santisteban, J.I., Mediavilla, R., López-Pamo, E., Dabrio, C.J., Ruiz Zapata, M.B., Gil García, M.J., et al. (2004) Loss on ignition: a qualitative or quantitative method for organic matter and carbonate mineral content in sediments? J. Paleolimnol., 32, 287–299. Cerca con Google

Sfriso, A., Favaretto, M., Ceoldo, S., Facca, C. and Marcomini, A. (2005) Organic carbon changes in the surface sediments of the Venice lagoon. Environ. Int., 31, 1002–1010. doi:10.1016/j.envint.2005.05.010. Cerca con Google

Sheehan, M.R. and Ellison, J.C. (2014) Intertidal morphology change following Spartina anglica introduction, Tamar Estuary, Tasmania. Estuar. Coast. Shelf Sci., 149, 24–37. Cerca con Google

Sifleet, S., Pendleton, L. and Murray, B.C. (2011) State of the Science on Coastal Blue Carbon. A summary for Policy Makers. Duke Nicholas Institute Report, NI R 11-06. Cerca con Google

Silliman, B., Bertness, M. and Grosholz, E. (2009) Human Impacts on Salt Marshes: A Global Perspective. University Presses of California, Columbia and Princeton, University of California Press. Cerca con Google

Silvestri, S. and Marani, M. (2004) Salt-marsh vegetation and morphology: Basic physiology, modelling and remote sensing observations. In: Fagherazzi, S., Marani, M. and Blum, L.K. (Eds.) Coastal and Estuarine Studies. The Ecogeomorphology of tidal marshes, AGU, Washington, D.C., 59, 5–26. Cerca con Google

Silvestri, S., Marani, M. and Marani, A. (2003) Hyperspectral remote sensing of salt marsh vegetation, morphology and soil topography. Phys. Chem. Earth, 28, 15–25. Cerca con Google

Silvestri, S., Defina, A. and Marani, M. (2005) Tidal regime, salinity and salt marsh plant zonation. Estuar. Coast. Shelf Sci., 62, 119–130. Cerca con Google

Southerland, R.A. (1998) Loss-on-ignition estimates of organic matter and relationships to organic carbon in fluvial bed sediments. Hydrobiologia, 389, 153–167. Cerca con Google

Strozzi, T., Teatini, P., Tosi, L., Wegmüller, U. and Werner, C. (2013) Land subsidence of natural transitional environments by satellite radar interferometry on artificial reflectors. J. Geophys. Res., 118, 1177–1191. doi:10.1002/jgrf.20082. Cerca con Google

Surian, N. and Cisotto, A. (2007) Channel adjustments, bedload transport and sediment sources in a gravel-bed river, Brenta River, Italy. Earth Surf. Process. Landforms, 32, 1641–1656. doi:10.1002/esp.1591. Cerca con Google

Surian, N., Ziliani, L., Comiti, F., Lenzi, M.A. and Mao, L. (2009) Channel adjustments and alteration of sediment fluxes in gravel-bed rivers of north-eastern Italy: potentials and limitations for channel recovery. River Res. Applic., 25, 551-567. doi:10.1002/rra.1231. Cerca con Google

Teatini, P., Tosi, L., Strozzi, T., Carbognin, L., Wegmüller, U. and Rizzetto, F. (2005) Mapping regional land displacements in the Venice coastland by an integrated monitoring system. Remote Sens. Environ., 98, 403–413. doi:10.1016/j.rse.2005.08.002. Cerca con Google

Teatini, P., Tosi, L., Strozzi, T., Carbognin, L., Cecconi, G., Rosselli, R., et al. (2012) Resolving land subsidence within the Venice Lagoon by persistent scatterer SAR interferometry. Phys. Chem. Earth Pts. A/B/C, 40–41, 72–79. doi:10.1016/j.pce.2010.01.002. Cerca con Google

Temmerman, S., Govers, G., Meire, P. and Wartel, S. (2003) Modelling long-term tidal marsh growth under changing tidal conditions and suspended sediment concentration, Scheldt estuary, Belgium. Mar. Geol., 193, 151–169. doi:10.1016/S0025-3227(02)00642-4. Cerca con Google

Temmerman, S., Govers, G., Meire, P. and Wartel, S. (2004) Simulating the long-term development of levee-basin topography on tidal marshes. Geomorphology, 63, 39–55. doi:10.1016/j.geomorph.2004.03.004. Cerca con Google

Temmerman, S., Bouma, T.J., Van de Koppel, J., Van der Wal, D., De Vries, M.B. and Herman, P.M.J. (2007) Vegetation causes channel erosion in a tidal landscape. Geology, 35, 631–634. doi:10.1130/G23502A.1. Cerca con Google

Temmerman, S., Meire, P., Bouma, T.J., Herman, P.M.J., Ysebaret, T. and De Vriend, H.J. (2013) Ecosystem-based coastal defence in the face of global change. Nature, 504, 79–83. doi:10.1038/nature12859. Cerca con Google

Tosi, L., Carbognin, L., Teatini, P., Strozzi, T. and Wegmüller, U. (2002) Evidence of the present relative land stability of Venice, Italy, from land, sea, and space observations. Geophys. Res. Lett., 29(12), 1562. doi:10.1029/2001GL013211. Cerca con Google

Tosi, L., Rizzetto, F., Bonardi, M., Donnici, S., Serandrei-Barbero, R. and Toffoletto, F. (2007a) Note illustrative della Carta geologicad’Italia alla scala 1:50.000. 128 – Venezia. APAT, Dipartimento Difesa del suolo, Servizio Geologico d’Italia, Casa Editrice SystemCart, Roma, 164 pp., 2 allegati cartografici. Cerca con Google

Tosi, L., Rizzetto, F., Bonardi, M., Donnici, S., Serandrei-Barbero, R. and Toffoletto, F. (2007b) Note illustrative della Carta geologicad’Italia alla scala 1:50.000. 148-149 – Chioggia-Malamocco. APAT, Dipartimento Difesa del suolo, Servizio Geologico d’Italia, Casa Editrice SystemCart, Roma, 164 pp., 2 allegati cartografici. Cerca con Google

Tosi, L., Rizzetto, F., Zecchin, M., Brancolini, G. and Baradello, L. (2009a) Morphostratigraphic framework of the Venice Lagoon (Italy) by very shallow water VHRS surveys: Evidence of radical changes triggered by human-induced river diversions. Geophys. Res. Lett., 36 (9), L09406. doi:10.1029/2008GL037136. Cerca con Google

Tosi, L., Teatini, P., Carbognin, L. and Brancolini, G. (2009b) Using high resolution data to reveal depht-dependent mechanisms that drive land subsidence: The Venice coast, Italy. Tectonophysics, 474, 271–284. doi:10.1016/j.tecto.2009.02.026. Cerca con Google

Viles, H. (1988) Biogeomorphology. Basil Blackwell, Oxford. Cerca con Google

Weliky, K., Suess, E., Ungerer, C.A., Müller, P.J. and Fischer, K. (1983) Problems with accurate carbon measurements in marine sediments and particulate organic matter in sea water: a new approach. Limnol. Oceanogr., 28, 1252–1259. Cerca con Google

Woodwell, G.M., Rich, P.H. and– Mall, C.S.A. (1973) Carbon in estuaries. In: Woodwell, G.M. and Pecari, E.V. (Eds.) Carbon in the biosphere, U.S. AEC, 221–240. Cerca con Google

Yang, S.L. (1998) The role of Scirpus marsh in attenuation of hydrodynamics and retention of fine sediment in the Yangtze Estuary. Estuar. Coast. Shelf Sci., 47, 227–233. doi:10.1006/ecss.1998.0348. Cerca con Google

Zecchin, M., Baradello, L., Brancolini, G., Donda, F., Rizzetto, F. and Tosi, L. (2008) Sequence stratigraphy based on high-resolution seismic profiles in the late Pleistocene and Holocene deposits of the Venice area. Mar. Geol., 253, 185–198. doi:10.1016/j.margeo.2008.05.010. Cerca con Google

Zecchin, M., Brancolini, G., Tosi, L., Rizzetto, F., Caffau, M. and Baradello, L. (2009) Anatomy of the Holocene succession of the southern Venice lagoon revealed by very high-resolution seismic data. Contin. Shelf Res., 29, 1343–1359. doi:10.1016/j.csr.2009.03.006. Cerca con Google

Zecchin, M., Caffau, M. and Tosi, L. (2011) Relationship between peat bed formation and climate changes during the last glacial in the Venice area. Sediment. Geol., 238, 172–180. doi:10.1016/j.sedgeo.2011.04.011. Cerca con Google

Zecchin, M., Tosi, L., Caffau, M., Baradello, L. and Donnici, S. (2014) Sequence stratigraphic significance of tidal channel system in a shallow lagoon (Venice, Italy). The Holocene, 1–13. doi:10.1177/0959683614526903. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record