Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Bergamaschi, Matteo (2016) Volatile Organic Compounds in cheese production chain (VOCheese). [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
4Mb

Abstract (inglese)

In recent years, consumers have become increasingly interested in the quality aspects of food. Food quality, in turn, is strongly related to the sensory characteristics such as the flavor. Several scientific studies have shown that the Volatile Organic Compounds (VOCs) released by the food are related to the flavor and can be considered as assistive markers in the production chain.
Today, the analysis of VOCs requires fast, non-invasive, and solvent free devices. It has been shown that the VOCs can be extracted, identified, and measured with a Gas Chromatography-Mass Spectrometry (GC-MS) without any pre-concentration or pre-treatment of the food.
The main objective of this PhD thesis was to investigate the presence of volatile compounds in dairy products. More precisely, this study aimed in i) qualifying and quantifying VOCs in dairy products, ii) examining their formation and iii) integrating knowledge on VOCs by tracking their release during the whole production process from the raw materials till the final dairy product. In addition, statistical analysis was applied to link VOCs with the genetic characterization of animals, dairy system and individual cow-factors (e.g. stage of lactation, order of parity and milk yield). The identification and quantification of VOCs were performed using fast and non-invasive analytical approaches (Solid Phase Micro Extraction/Gas Chromatography-Mass Spectrometry SPME/GC-MS and Proton Transfer Reaction-Time of Flight-Mass Spectrometry PTR-ToF-MS) that can monitor the evolution of VOCs. To achieve the overall goal, the research was partitioned in four interrelated subparts as described below.
The aim of the first chapter was to study the VOCs presence in the headspace of cheese. To this purpose, 150 cheeses ripened for two months were used. The cheeses were obtained through an individual model cheese-making approach using milk from individual Brown Swiss cows. Animals reared in 30 herds belonging to different dairy systems, from traditional (typical of the mountainous area) to modern ones. The study identified 55 VOCs classified in the chemical families of free fatty acids, esters, alcohols, aldehydes, ketones, lactones, terpenes, and pyrazines. We found that dairy system and individual cow characteristics (lactation stage, order of parity and daily milk yield) influenced the volatile compounds. In order, to test the instrument reproducibility and the model cheese-making procedure; data of GC analysis, order of injection of the sample into instrument, and vat were included in the statistical model. In many cases, these analytical factors did not affect the amount of VOCs released by cheese.
In the second chapter, the potential of a new spectrometric technique (PTR-ToF-MS) was investigated to study cheese quality traits on a large scale. The PTR-ToF-MS allows direct injection of the sample headspace without extraction or pre-concentration steps, has a shorter analysis time (only a few seconds per sample) and greater sensitivity that permit to monitor on-line the evolution of volatile compounds. The resulting spectral information can provide a very detailed description of samples, which is useful for characterizing food quality and typicality. In particular, we analyzed the volatile fingerprint of 1,075 model cheeses produced using individual milk of Brown Swiss cows reared in 72 herds of different dairy systems. The output of PTR (spectrum) was characterized by more than 600 spectrometric peaks (variables). After removing interfering ions and background noise a set of 240 peaks was selected. Further, based on the results of the first contribution and literature, 61 peaks were identified. These peaks represent the major part of the cheese flavor. To summarize the amount of information, a multivariate analysis (PCA) was applied associating principal components (PC) with the 240 spectrometric peaks. Following, we tried to characterize the PCs through the correlations between PCs and the spectrometric peaks. The effects of dairy system, herd within dairy system, individual cows characteristics (lactation stage, order of parity and milk yield), and vat used for the cheese-making on the PCs and on the 240 peaks were analyzed. Dairy system was correlated with PC and 57 spectrometric peaks, especially when the herds were using Total Mixer Ration (TMR) as feeding technique, including or not maize silage in the diets. Regarding the individual animal characteristics, the most significant effect was the stage of lactation (139 peaks), followed by milk yield and parity, with 31 and 21 peaks, respectively. Finally, the vat used for the cheese-making was not found to be significant, confirming the good reproducibility of the model cheese-making procedure used to study cheese quality aspects.
In the third chapter, the effect of cows’ genetics to the VOCs of ripened cheeses was assessed. Principal components and the 240 spectrometric peaks (as described above in the second contribution) were used fitting an animal model in a Bayesian framework. On average, heritability (h2) of 7% for PCs was found, which is similar to h2 of somatic cell count and much lower than the h2 of milk fat content and daily milk yield. It is interesting to note that only a small proportion of peaks showed very low h2 (<7%). The major part of them showed values similar to those found for PCs, while forty peaks presented heritability similar to that of milk yield and other milk quality traits. The variability attributed to the herd was different for the various PC. Results suggest a potential of improvement for several cheese VOCs through genetic selection in dairy cow breeding programs.
The aim of the fourth chapter was to study the effect of summer transhumance on the quality traits of dairy products. Due to the extended work, this contribution was further splitted into two parts. In the first part, the evolution of milk and cheese quality characteristics were studied, while in the second part the evolution of VOC content of dairy products was analyzed.
For the first part, chemical characteristics and technological properties of 11 dairy products obtained during summer transhumance of cows to Alpine pastures (Malga) were analyzed. Dairy products obtained throughout this period are known to give origin to high-value, healthier products, and extra tasty,. Bulk milk from 148 dairy cows reared day and night on Alpine pasture (1,860 m a.s.l.) was used. We performed 7 experimental cheese-making according to traditional mountain techniques, one every two weeks, using milk produced during the summer transhumance (from June to September). For each cheese-making we collected: milk from the evening milking (day before the cheese-making), the same milk the following morning (after natural creaming), the cream separated, the whole milk from the morning milking, the milk in vat obtained mixing the creamed evening milk with the whole morning milk, the fresh curd, the whey, the ricotta obtained from whey, and the residual scotta. Moreover, the curd was used to produce typical “Malga” cheese that was ripened for 6 and 12 months. The chemical characteristics were measured with infrared technology. Results highlighted variation in milk yield, milk chemical composition, cheese yield and curd recoveries and/or loss of nutrients in the traditional cheese-making. In particular, a reduction of milk yield, fat, protein and lactose contents of milk during summer transhumance was observed. Nevertheless, the return to lowland farming systems of the cows at the end of grazing season, positively affected milk yield and milk chemical composition. The average of cheese yield was 14.2%, while recoveries of fat, protein, total solids and energy were 85.1%, 77.8%, 49.4% and 58.1%, respectively. These results were in accordance to those found in the literature.
For the second part of this chapter, the VOCs content of sample headspace was measured through SPME/GC-MS. Forth nine VOCs belonging to the chemical families of alcohols, aldehydes, free fatty acids, ketones, esters, lactones, terpenes, phenolic, and sulphur compounds were detected. In addition, the evolution of VOCs and their chemical family across the cheese- and ricotta-making processing as well as during the cheese ripening period was tracked. The comparison between VOCs concentration of 4 types of milk (whole evening, creaming milk, whole morning, milk in vat) showed that the creaming process significantly affected about half of all the volatile organic compounds analyzed, followed by the effects of milking (evening milking vs. morning milking) and the mixing (creamed milk mixed with whole morning milk). In general, the cream, in contrast to curd and ricotta, showed higher content of free fatty acids, sulphurs and terpenes compounds. Moreover, in ricotta a higher VOC concentration was observed compared to the curd, probably due to the high temperature required during the ricotta process. The effect of the progressive nutrient depletion of milk was investigated by contrasts between VOC concentration of milk in the vat, whey, and scotta. Although milk contains a greater amount of nutrients, whey and scotta have shown a higher concentration of VOCs with the exceptions of esters, sulphurs, terpenes and phenolic compounds. Finally, the effect of ripening was tested by comparing the quantity of VOCs of curd and of aged cheeses (6 and 12 months). The release of volatile compounds increased with increasing ripening period in relation with the enzymatic and microbiological activity of cheese.
In summary, the spectrometric techniques (SPME/GC-MS and PTR-ToF-MS) used in this work demonstrated to be very efficient to characterize the volatile organic compounds of dairy products. The dairy system, and cow related factors affected the volatile fingerprint of ripened cheeses. Particularly, concerning the individual animal source of variation, lactation stage was the most important effect followed by the cow’s parity and the milk yield.
On the basis of phenotypes used in this work, the traits collected offered the potential for a genetic analysis to be carried out. The genetic analysis demonstrated the existence of an exploitable genetic variability of the volatile profile of cheese that might be useful for an (in)direct selection of dairy cows for cheese quality traits in breeding programs. Nevertheless, further research is needed in this area. In the era of genomics for e.g., it might be interesting to associate genomic regions to specific VOCs. This information might be useful for genomic breeding programs.
The evolution of volatile compounds across the production chain depends on specific technological aspects, such as the process of natural creaming, the temperature of coagulation, and the ripening period. The monitoring of volatile fingerprint permits to obtain dairy products with specific organoleptic characteristics useful to differentiate them on the market and to improve the supply chain efficiency on the basis of quality aspects.

Abstract (italiano)

Negli ultimi anni, il consumatore è diventato sempre più sensibile agli aspetti qualitativi degli alimenti, i quali sono fortemente influenzati dalle caratteristiche sensoriali come l’aroma. Diversi lavori scientifici hanno dimostrato che i composti volatili (VOCs) rilasciati dall’alimento sono correlati con il suo aroma e possono essere considerati come traccianti delle filiere alimentari.
Oggi, l’analisi dei VOCs richiede strumenti rapidi, sensibili, non invasivi e che abbiano bisogno dell’impiego di pochi solventi durante la preparazione del campione. E’ stato dimostrato che i VOCs possono essere estratti, misurati e identificati con la Gas Cromatografia di Massa (GC-MS) senza pre-concentrazioni o pre-trattamenti dell’alimento da analizzare.
Gli obiettivi principali della tesi di dottorato erano di studiare la presenza di composti volatili nei prodotti lattiero-caseari. Più precisamente, questo studio aveva come obiettivi di i) qualificare e quantificare i VOCs nei prodotti lattiero-caseari, ii) esaminare la loro formazione e iii) integrare le conoscenze acquisite su questi composti attraverso tutta la filiera di produzione dalla materia prima fino al prodotto finito. Inoltre, analisi statistiche sono state utilizzate per collegare i VOCs con la caratterizzazione genetica degli animali, il sistema di allevamento e le caratteristiche individuali delle vacche (es. stadio di lattazione, ordine di parto e produzione giornaliera di latte).
L’identificazione e la quantificazione dei VOCs sono state fatte utilizzando tecniche analitiche precise, veloci e non invasive (Solid Phase Micro Extraction/Gas Chromatography-Mass Spectrometry SPME/GC-MS and Proton Transfer Reaction-Time of Flight-Mass Spectrometry PTR-ToF-MS). Per rispondere agli obiettivi generali della tesi, l’attività di ricerca è stata divisa in cinque parti connesse tra di loro.
L’obiettivo nel primo capitolo era di studiare i composti volatili presenti nello spazio di testa di campioni di formaggio. Per questo scopo, sono stati analizzati 150 formaggi stagionati per due mesi. I formaggi sono stati prodotti utilizzando una metodica di caseificazione individuale usando latte individuale di vacche di razza Bruna. Gli animali sono stati allevati in 30 aziende appartenenti a diversi sistemi di allevamento, da tradizionale (tipico della realtà montana) a moderno. In questo studio sono stati identificati 55 VOCs per ogni formaggio, classificati in diverse famiglie chimiche: acidi grassi, esteri, alcoli, aldeidi, chetoni, lattoni, terpeni e pirazine. Dai risultati emerge che il sistema di allevamento e le caratteristiche individuali delle vacche (stadio di lattazione, ordine di parto e produzione giornaliera di latte) influenzano i composti volatili. Inoltre, per testare la riproducibilità dello strumento e della metodica di caseificazione; la data di analisi cromatografica, l’ordine d’iniezione del campione nello strumento (GC), e la caldaia di caseificazione erano inclusi nel modello statistico. In molti casi, questi fattori analitici/strumentali non influenzano la quantità di VOCs rilasciata dai formaggi.
Nel secondo capitolo, il potenziale di una nuova tecnica analitica (PTR-ToF-MS) è stato approfondito per studiare, su larga scala, le caratteristiche qualitative del formaggio. Il PTR-ToF-MS dal punto di vista analitico, permette un’iniezione diretta del campione senza estrazione o pre-concentrazione, ha un breve tempo di analisi (solo pochi secondi per campione) e grande sensibilità consentendo di monitorare in tempo reale l’evoluzione dei composti volatili. L’analisi produce uno spettro molto dettagliato che può essere utile per la caratterizzazione delle qualità e della tipicità dell’alimento. In particolare, è stata analizzata l’impronta aromatica di 1,075 formaggi prodotti utilizzando latte individuale di vacche di razza Bruna allevate in 72 aziende appartenenti a diversi sistemi di allevamento. L’impronta aromatica (spettro) era caratterizzata da più di 600 picchi (variabili) per ogni formaggio. Gli spettri sono stati analizzati e dopo la rimozione degli ioni interferenti e del rumore di fondo è stato selezionato un data set costituito da 240 picchi per ogni formaggio. In seguito, basandosi sui risultati del primo contributo e sulla letteratura sono stati identificati i picchi più importanti (61) in termini quantitativi e qualitativi. Per sintetizzare la quantità di informazioni ovvero estrarre delle componenti principali (PC) è stata fatta un’analisi multivariata (PCA) a partire dai 240 picchi spettrometrici. In seguito, le PCs sono state caratterizzate sulla base delle loro correlazioni con i 240 picchi spettrometrici. Sono stati analizzati gli effetti del sistema di allevamento, dell’azienda entro sistema di allevamento, le caratteristiche individuali delle vacche (stadio di lattazione, ordine di parto e produzione di latte), e caldaia di caseificazione sulle PCs e sui 240 picchi. Dai risultati emerge che il sistema di allevamento è correlato con le PC e 57 picchi, specialmente quando le aziende come tecnica di alimentazione utilizzano il carro miscelatore (TMR) con e senza insilati nella dieta. Considerando le caratteristiche individuali delle vacche, l’effetto più significativo è lo stadio di lattazione (139 picchi), seguito dalla produzione di latte e dall’ordine di parto, con 31 e 21 picchi, rispettivamente. Infine, la caldaia di caseificazione è un effetto spesso non significativo, confermando la buona riproducibilità della micro-caseificazione utilizzata anche per lo studio di aspetti qualitativi del formaggio.
Nel terzo capitolo è stato studiato l’effetto della genetica dell’animale sui composti volatili dei formaggi. A tale scopo, sono state analizzate le componenti principali (estratte come discusso sopra nel secondo contributo) e i 240 picchi spettrometrici (PTR-ToF-MS) utilizzando un modello animale con un approccio Baesiano. Dai risultati emerge in media un’ereditabilità (h2) del 7 % per le componenti principali, la quale è simile all’h2 trovata per le cellule somatiche e leggermente più bassa di quella del contenuto di grasso nel latte e della produzione giornaliera di latte stimate in precedenza sugli stessi animali. E’ interessante osservare che solo una piccola quantità di picchi ha una bassa h2 (<7%). La maggior parte di essi presenta valori simili a quelli trovati per le PCs, mentre 40 picchi presentano ereditabilità simile a quella trovata per la produzione giornaliera di latte e ad altre caratteristiche qualitative del latte. La variabilità attribuita all'azienda è risultata diversa per le PCs. Questi risultati dimostrano che esiste un’interessante variabilità genetica di alcuni VOCs che potrebbe essere potenzialmente utilizzata nei programmi di miglioramento genetico.
L’obiettivo nel quarto capitolo era di studiare l’effetto della transumanza sulle caratteristiche qualitative di prodotti lattiero-caseari. Vista la grande mole di dati, questo contributo è stato diviso in due parti tra loro connesse. Nella prima parte è stata studiata l’evoluzione della qualità del latte e del formaggio, mentre nella seconda parte è stata analizzata l’evoluzione dei composti volatili dei prodotti lattiero-caseari nel processo di caseificazione.
Nella prima parte, sono state analizzate le proprietà fisiche, chimiche e tecnologiche di 11 prodotti lattiero-caseari raccolti durante la transumanza al pascolo Alpino (Malga) di vacche da latte. E’ risaputo che i prodotti ottenuti durante il periodo di alpeggio possono avere un valore aggiunto dovuto alle elevate proprietà nutrizionali, salutistiche e aromatiche. Per approfondire le conoscenze finora acquisite, è stata fatta questa prova in cui è stato utilizzato il latte di massa prodotto da 148 vacche allevate giorno e notte al pascolo (1,860 m s.l.m.). Durante l’esperimento, sono state fatte 7 caseificazioni seguendo tecniche tradizionali, una ogni 2 settimane, utilizzando il latte prodotto durante la transumanza (da giugno a settembre). Sono stati raccolti per ogni caseificazione: il latte della mungitura della sera (giorno prima della caseificazione), lo stesso latte il mattino successivo (dopo il processo di scrematura naturale), la panna di affioramento, il latte della mungitura del mattino, il latte in caldaia ottenuta dalla miscela tra il latte scremato della mungitura della sera con il latte della mungitura del mattino, la cagliata, il siero, la ricotta ottenuta dal siero e il residuo della lavorazione ossia la scotta. Inoltre, la cagliata è stata usata per produrre formaggi di “Malga” che sono stati stagionati per 6 e 12 mesi. Le caratteristiche chimico-fisiche sono state misurate con una tecnologia a infrarosso. I risultati dimostrano una variazione della produzione giornaliera e composizione chimica del latte, resa in formaggio e recupero/o perdita di nutrienti nel processo di caseificazione tradizionale. In particolare, si è osservata una riduzione della produzione giornaliera di latte, grasso, proteine e lattosio del latte durante la transumanza estiva. Tuttavia, si è anche osservato un effetto positivo sulla produzione e la composizione chimica del latte del ritorno delle vacche nelle aziende di fondo valle alla fine della stagione dell’alpeggio. La resa media di formaggio in questo lavoro è risultata del 14.2%, mentre i recuperi di grasso, proteine, solidi totali ed energia sono del 85.1%, 77.8%, 49.4% e 58.1%, rispettivamente. Questi risultati sono in linea con quelli trovato in letteratura.
Nella seconda parte di questo contributo, è stato misurato il contenuto di composti volatili nello spazio di testa dei campioni con la tecnica SPME/GC-MS. Dopo l’analisi, sono stati identificati 49 VOCs appartenenti alle famiglie chimiche degli alcoli, aldeidi, acidi grassi, chetoni, esteri, lattoni, terpeni e composti solforati e fenolici. Inoltre, è stata studiata l’evoluzione dei VOCs e delle loro famiglie chimiche attraverso i processi di caseificazione, di produzione della ricotta e di stagionatura del formaggio. Il confronto tra la concentrazione dei VOCs dei 4 tipi di latte (intero e scremato della sera, intero del mattino, caldaia) ha dimostrato che il processo di scrematura influenza la concentrazione di metà dei composti volatili analizzati, seguito dall’effetto della mungitura (intero della sera vs. intero del mattino) e dall’effetto del mescolamento (latte scremato della sera mescolato in parti uguali con il latte del mattino). In generale, la panna, rispetto a cagliata e ricotta, ha un maggiore contenuto di acidi grassi, terpeni e composti solforati. Inoltre, la ricotta rispetto alla cagliata ha un’elevata concentrazione di VOC, probabilmente dovuta alla maggiore temperatura utilizzata durante il processo di produzione. L’effetto del progressivo depauperamento di nutriente del latte è stato studiato attraverso il confronto tra latte in caldaia, siero e scotta. Sebbene il latte abbia un maggiore contenuto di nutrienti, il siero e la scotta hanno una maggiore concentrazione di VOC ad eccezione delle famiglie chimiche degli esteri, terpeni, composti solforati e fenolici. Infine, l’effetto della maturazione è stato valutato attraverso il confronto tra le quantità di VOC della cagliata e dei formaggi stagionati (6 e 12 mesi). Il rilascio dei composti volatili incrementa con l’aumento del periodo di maturazione probabilmente dovuto a una maggiore attività enzimatica e microbiologica nel formaggio.
In conclusione, le tecniche analitiche di spettrometria di massa utilizzate in questo lavoro (SPME/GC-MS e PTR-ToF-MS) hanno permesso di caratterizzare i composti volatili dei prodotti lattiero-caseari in maniera efficiente. Il sistema di allevamento, le caratteristiche individuali delle vacche hanno influenzato l’impronta aromatica di formaggi individuali stagionati. In particolare, riguardo alle caratteristiche individuali degli animali il principale effetto era lo stadio di lattazione seguito da ordine di parto e produzione giornaliera di latte.
Sulla base dei fenotipi raccolti in questo lavoro è stato possibile effettuare un’analisi genetica, la quale ha dimostrato l’esistenza di un’interessante variabilità genetica connessa ai composti volatili del formaggio che potrebbe essere utile per una selezione (in)diretta delle vacche da latte sulla base di aspetti qualitativi in programmi di miglioramento genetico. Tuttavia sono necessarie altre ricerche in quest’area per esempio, nell’era della genomica, sarebbe interessante associare qualche regione specifica del genoma ai composti volatili.
L’evoluzione dei composti volatile attraverso la filiera di produzione dipende da specifici aspetti tecnologici, come l’affioramento della panna, la temperatura di coagulazione e il periodo di stagionatura. Il monitoraggio dell’impronta aromatica permette di ottenere prodotti lattiero-caseari con delle specifiche caratteristiche organolettiche utili a differenziare il prodotto sul mercato e a migliorare l’efficienza dell’intera filiera produttiva sulla base di aspetti qualitativi.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Bittante, Giovanni
Dottorato (corsi e scuole):Ciclo 28 > Scuole 28 > SCIENZE ANIMALI E AGROALIMENTARI > PRODUZIONI AGROALIMENTARI
Data di deposito della tesi:31 Gennaio 2016
Anno di Pubblicazione:31 Gennaio 2016
Parole chiave (italiano / inglese):cheese quality; flavor; volatile organic compound; SPME/GC-MS; PTR-ToF-MS.
Settori scientifico-disciplinari MIUR:Area 07 - Scienze agrarie e veterinarie > AGR/17 Zootecnica generale e miglioramento genetico
Struttura di riferimento:Dipartimenti > Dipartimento di Agronomia Animali Alimenti Risorse Naturali e Ambiente
Codice ID:9458
Depositato il:21 Ott 2016 10:49
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Abilleira, E., H. Schlichtherle-Cerny, M. Virto, M. de Renobales and L. J. R Barron. 2010. Volatile composition and aroma-active compounds of farmhouse Idiazabal cheese made in winter and spring. Int. Dairy J. 20:537-544. Cerca con Google

Abilleira, E., M. Virto, A. I.Najera, M. Albisu, F. J. Perez-Elortondo, J. C. Ruiz de Gordoa, M. de Renobales, and L. J. R. Barron. 2011. Effects of seasonal changes in feeding management under part-time grazing on terpene concentrations of ewes' milk. J. Dairy Res. 78:129-135. Cerca con Google

Acree, T., and A. Arn. 2004. Flavornet and human odour space. Jan. 15, 2014. http://www.flavornet.org. Vai! Cerca con Google

Agabriel, C., A. Cornu, C. Journal, C. Sibra, P. Grolier, and B. Martin. 2007. Tanker milk variability according to farm feeding practices: vitamins A and E, carotenoids, color, and terpenoids. J. Dairy Sci. 90:4884-4896. Cerca con Google

Agabriel, C., B. Martin, C. Sibra, J. C. Bonnefoy, M. C. Montel, R. Didienne, et al. 2004. Effect of dairy production system on the sensory characteristics of Cantal cheeses: a plant-scale study. Animal Research, 53:221-234. Cerca con Google

Agabriel, C., J. B. Coulon, C. Journal, C. Sibra, and H. Albouy. 1999. Variabilité des caractéristiques des fromages saint-nectaire fermiers: relations avec la composition du lait et les conditions de production. Lait. 79:291-302. Cerca con Google

Ali, A. K. A., and G. E. Shook. 1980. An optimum transformation for somatic cell concentration in milk. J. Dairy Sci. 63:487-490. Cerca con Google

AOAC, 2000. Official methods of analysis. 17th edition. AOAC, Arlington, Virginia, USA. Cerca con Google

Aprea, E, F. Biasioli, F. Gasperi, D. Motta, F. Marini, and T. D. Märk. 2007. Assessment of Trentingrana cheese ageing by proton transfer reaction-mass spectrometry and chemometrics. Int. Dairy J. 17:226-234. Cerca con Google

Aprea, E., M. L. Corollaro, E. Betta, I. Endrizzi, M. L. Dematte, F. Biasioli, and F. Gasperi. 2012. Sensory and instrumental profiling of 18 apple cultivars to investigate the relation between perceived quality and odour and flavour. Food Res. Int. 49:677-686. Cerca con Google

Auldist, M. J., S. Coats, B. J. Sutherland, J. J. Mayes, G. H. McDowell, and G. Rogers. 1996. Effects of somatic cell count and stage of lactation on raw milk composition and the yield and quality of Cheddar cheese. J. Dairy Res. 63:269-280. Cerca con Google

Barbano, D. M., and J. M. Lynch. 2006. Major advances in testing of dairy products: milk component and dairy product attribute testing. J. Dairy Sci. 89:1189-1194. Cerca con Google

Barbieri, G., L. Bolzoni, M. Careri, A. Mangia, G. Parolari, S. Spagnoli, and R. Virgili. 1994. Study of the volatile fraction of Parmesan cheese. J. Agric. Food Chem. 42:1170-1176. Cerca con Google

Barrefors, P., K. Granelli, L. Appelquist, and L. Bjoerck. 1995. Chemical characterization of raw milk samples with and without oxidative off flavor. J. Dairy Sci. 78:2691-2699. Cerca con Google

Battaglini, L., S. Bovolenta, F. Gusmeroli, S. Salvador, and E. Sturaro. 2014. Environmental sustainability of Alpine livestock farms. Ital. J. Anim. Sci. 13:3155. Cerca con Google

Bellesia, F., A. Pinetti, U. Pagnoni, R. Rinaldi, C. Zucchi, L. Caglioti, and G. Palyi. 2003. Volatile components of Grana Parmigiano-Reggiano type hard cheese. Food Chem. 83:55-61. Cerca con Google

Bendall, J. G. 2001. Aroma compounds of fresh milk from New Zealand cows fed different diets. J. Agricul. Food Chem. 49:4825-4832. Cerca con Google

Berard, J., F. Bianchi, M. Careri, A. Chatel, A. Mangia, and M. Musci. 2007. Characterization of the volatile fraction and of free fatty acids of "Fontina Valle d'Aosta", a protected designation of origin Italian cheese. Food Chem. 105:293-300. Cerca con Google

Bergamaschi, M., C. Cipolat-Gotet, G. Stocco, C. Valorz, I. Bazzoli, E. Sturaro, M. Ramanzin, and G. Bittante. 2016. Cheese-making in the temporary farms during summer transhumance to highland pastures: milk technological properties, cream, cheese and ricotta yields, milk nutrients recovery, and products composition. Submitted. Cerca con Google

Bergamaschi, M., E. Aprea, E. Betta, F. Biasioli, C. Cipolat-Gotet, A. Cecchinato, G. Bittante, and F. Gasperi. 2015a. Effects of the dairy system, herd and individual cow characteristics on the volatile organic compound profile of ripened model cheeses. J. Dairy Sci. 98: 2183-2196. Cerca con Google

Bergamaschi, M., F. Biasioli, A. Cecchinato, C. Cipolat-Gotet, A. Cornu, F. Gasperi, B. Martin, and G. Bittante. 2015b. Proton transfer reaction-time of flight-mass spectrometry: A high-throughput and innovative method to study the influence of dairy system and cow characteristics on the volatile compound fingerprint of cheeses. 98:8414-8427. Cerca con Google

Bertoni, G., L. Calamari, and M. G. Maianti. 2001. Producing specific milk for specialty cheeses. Proc. Nutr. Soc. 60:231-246. Cerca con Google

Bertoni, G., L. Calamari, M. G. Maianti, and B. Battistotti. 2005. Milk for Protected Denomination of Origin (PDO) cheeses: I. The main required features. Pages 217-228 in Indicators of milk and beef quality. J. F. Hocquette and S. Gigli ed. EAAP Publication 112. Wageningen Academic Publishers, Wageningen, the Netherlands. Cerca con Google

Biasioli, F., F. Gasperi, C. Yeretzian, and T. D. Märk. 2011. PTR-MS monitoring of VOCs and BVOCs in food science and technology. TrAC Trends in Analy. Chem. 30:968-977. Cerca con Google

Biasioli, F., F. Gasperi, E. Aprea, I. Endrizzi, V. Framondino, F. Marini, D. Mott, and T. D. Märk. 2006. Correlation of PTR-MS spectral fingerprints with sensory characterisation of flavor and odor profile of ‘‘Trentingrana’’ cheese. Food Qual. Prefer. 17:63-75. Cerca con Google

Bittante, G. 2011. Modeling rennet coagulation time and curd firmness of milk. J. Dairy Sci. 94:5821-5832. Cerca con Google

Bittante, G., A. Cecchinato, N. Cologna, M. Penasa, F. Tiezzi, and M. De Marchi. 2011a. Factors affecting the incidence of first-quality wheels of Trentingrana cheese. J. Dairy Sci. 94:3700-3707. Cerca con Google

Bittante, G., A. Ferragina, C. Cipolat-Gotet, and A. Cecchinato. 2014. Comparison between genetic parameters of cheese yield and nutrient recovery or whey loss traits measured from individual model cheese-making methods or predicted from unprocessed bovine milk samples using Fourier-transform infrared spectroscopy. J. Dairy Sci. 97:6560-6572. Cerca con Google

Bittante, G., B. Contiero, and A. Cecchinato. 2013. Prolonged observation and modelling of milk coagulation, curd firming, and syneresis. Int. Dairy J. 29:115-123. Cerca con Google

Bittante, G., C. Cipolat-Gotet, and A. Cecchinato. 2013. Genetic parameters of different measures of cheese yield and milk nutrient recovery from an individual model cheese-manufacturing process. J. Dairy Sci. 96:7966-7979. Cerca con Google

Bittante, G., C. Cipolat-Gotet, F. Malchiodi, E. Sturaro, F. Tagliapietra, S. Schiavon, and A. Cecchinato. 2015. Effect of dairy farming system, herd, season, parity and days in milk on modeling of the coagulation, curd firming and syneresis of bovine milk. J. Dairy Sci. 98:2759-2774. Cerca con Google

Bittante, G., M. Penasa, and A. Cecchinato. 2012. Invited review: Genetics and modeling of milk coagulation properties. J. Dairy Sci. 95:6843-6870. Cerca con Google

Bittante, G., N. Cologna, A. Cecchinato, M. De Marchi, M. Penasa, F. Tiezzi, I. Endrizzi, and F. Gasperi. 2011b. Monitoring of sensory attributes used in the quality payment system of Trentingrana cheese. J. Dairy Sci. 94:5699-5709. Cerca con Google

Borreani, G., M. Coppa, A. Ravello-Chion, L. Comino, D. Giaccone, A. Ferlay, and E. Tabacco. 2013. Effect of different feeding strategies in intensive dairy farming systems on milk fatty acid profiles, and implications on feeding costs in Italy. J. Dairy Sci. 96:6840-6855. Cerca con Google

Bovolenta, S., A. Romanzin, M. Corazzin, M. Spanghero, E. Aprea, F. Gasperi and E. Piasentier 2014. Volatile compounds and sensory properties of Montasio cheese made from the milk of Simmental cows grazing on alpine pastures. J. Dairy Sci. 97:7373-7385. Cerca con Google

Bovolenta, S., E. Saccà, W. Ventura, and E Piasentier. 2002. Effect of type and level of supplement on performance of dairy cows grazing on alpine pasture. Ital. J. Anim. Sci. 1:255-263. Cerca con Google

Bovolenta, S., L. A. Volpelli, W. Ventura, F. Gasperi, and G. Gaiarin. 2001. Alpine pasture milk and cheese: Effect of supplement and comparison with stable production. In: Recent progress in animal production science 2: proceedings of the ASPA XIV congress: 207-209. Cerca con Google

Bovolenta, S., M. Corazzin, E. Saccà, F. Gasperi, F. Biasioli, and W. Ventura. 2009. Performance and cheese quality of Brown cows grazing on mountain pastures fed two different levels of supplementation. Livest. Sci. 124:58-65. Cerca con Google

Bovolenta, S., W. Ventura, E. Piasentier, and F. Malossini. 1998. Supplementation of dairy cows grazing an alpine pasture: Effect of concentrate level on milk production, body condition and rennet coagulation properties. Ann. Zootech. 47:169-178. Cerca con Google

Buchin, S., B. Martin, and A. Hauwuy. 2006. Pasture and cheese diversity in French Northern Alps. In Livestock farming systems. Product quality based on local resources leading to improved sustainability. EAAP publication. 118:155-130. Cerca con Google

Buchin, S., B. Martin, D. Dupont, A. Bornard, and C. Achilleos. 1999. Influence of the composition of Alpine highland pasture on the chemical, rheological and sensory properties of cheese. J. Dairy Res. 66:579-588. Cerca con Google

Burbank, H., and M. C. Qian. 2008. Development of volatile sulfur compounds in heat-shocked and pasteurized milk cheese. Int. Dairy J. 18:811-818. Cerca con Google

Caccamo, M., R. F. Veerkamp, G. Licitra, R. Petriglieri, F. La Terra, A. Pozzebon, and J. D. Ferguson. 2012. Association of total-mixed ration chemical composition with milk, fat, and protein yield lactation curves at individual level. J. Dairy Sci. 95:6171-6183. Cerca con Google

Cadwallader, K. R., and T. K. Singh. 2009. Flavors and off-flavors in milk and dairy products. Adv. Dairy Chem. 3:631-690. Cerca con Google

Calamari, L., G. Bertoni, M. G. Maianti, and B. Battistotti. 2005. Milk for Protected Denomination of Origin (PDO) cheeses: II. The evaluation techniques of milk suitability. Pages 229-244 in Indicators of milk and beef quality. J. F. Hocquette and S. Gigli ed. EAAP publication 112. Wageningen Academic Publishers, Wageningen, the Netherlands. Cerca con Google

Calderon, F., B. Chauveau-Duriot, P. Pradel, B. Martin, B. Graulet, M. Doreau, and P. Nozière. 2007. Variations in carotenoids, vitamins A and E, and color in cow’s plasma and milk following a shift from hay diet to diets containing increasing levels of carotenoids and vitamin E. J. Dairy Sci. 90:5651-5664. Cerca con Google

Caplan, Z., C. Melilli, and D. M. Barbano. 2013. Gravity separation of fat, somatic cells, and bacteria in raw and pasteurized milks. J. Dairy Sci. 96:2011-2019. Cerca con Google

Cappellin, L., E. Aprea, P. Granitto, R. Wehrens, C. Soukoulis, R. Viola, T. D. Märk, F. Gasperi, and F. Biasioli. 2012a. Linking GC-MS and PTR-TOF-MS fingerprints of food samples. Chemometr. Intell. Lab. Syst. 118:301-307. Cerca con Google

Cappellin, L., F. Biasioli, E. Schuhfried, C. Soukoulis, T. D. Märk, and F. Gasperi. 2011. Extending the dynamic range of proton transfer reaction time of flight mass spectrometers by a novel dead time correction. Rapid Commun. Mass Spectrom. 25:179-183. Cerca con Google

Cappellin, L., T. Karl, M. Probst, O. Ismailova, P. M. Winkler, C. Soukoulis, E. Aprea, T. D. Märk, F. Gasperi, and F. Biasioli. 2012. On quantitative determination of volatile organic compound concentrations using proton transfer reaction time of flight mass spectrometry. Environ. Sci. Technol. 46:2283-2290. Cerca con Google

Capuano, E., R. Gravink, R. Boerrigter-Eenling, and S. M. van Ruth. 2015. Fatty acid and triglycerides profiling of retail organic, conventional and pasture milk: Implications for health and authenticity. Int Dairy J. 42:58-63. Cerca con Google

Carbonell, M., M. Nunez, and E. Fernandez-Garcıa. 2002. Seasonal variation of volatile compounds in ewes raw milk La Serena cheese. Lait. 82:699-711. Cerca con Google

Carpino S., S. Mallia, S. La Terra, C. Melìlli, G. Licitra, T. E. Acree, D. M. Barbano, and P. J. Van Soest. 2004. Composition and aroma compounds of Ragusano cheese: Native pasture and total mixed rations. J. Dairy Sci. 87:816-830. Cerca con Google

Carunchia Whetstine, M. E., M. A. Drake, B. K. Nelson, and D. Barbano. 2006. Flavor profiles of full fat, reduced fat and cheese fat made from aged Cheddar with the fat removed using a novel process. J. Dairy Sci. 89:505-17. Cerca con Google

Cecchinato, A., A. Albera, C. Cipolat-Gotet, A. Ferragina, and G. Bittante. 2015. Genetic parameters of cheese yield and curd nutrient recovery traits predicted using Fourier-transform infrared spectroscopy (FTIR) of samples collected during milk recording on Holstein, Brown Swiss and Simmental dairy cows. J. Dairy Sci. 98:4914-4927. Cerca con Google

Cecchinato, A., and G. Bittante. 2015. Genetic, herd, and environmental relationships of different measures of individual cheese yield and curd nutrients recovery/whey loss and coagulation properties of bovine milk. J. Dairy Sci. Accepted. Cerca con Google

Cecchinato, A., C. Cipolat-Gotet, J. Casellas, M. Penasa, A. Rossoni, and G. Bittante. 2013. Genetic analysis of rennet coagulation time, curd-firming rate, and curd firmness assessed over an extended testing period using mechanical and near-infrared instruments. J. Dairy Sci. 96:50-62. Cerca con Google

Cecchinato, A., C. Ribeca, S. Chessa, C. Cipolat-Gotet, F. Maretto, J. Casellas, and G. Bittante. 2014. Candidate gene association analysis for milk yield, composition, urea nitrogen and somatic cell scores in Brown Swiss cows. Anim. 8:1062-1070. Cerca con Google

Cecchinato, A., S. Chessa, C. Ribeca, C. Cipolat-Gotet, T. Bobbo, J. Casellas, and G. Bittante. 2015b. Genetic variation and effects of candidate-gene polymorphisms on coagulation properties, curd firmness modeling and acidity in milk from Brown Swiss cows. Anim. 9:1104-1112. Cerca con Google

Childs, J. L., and M. A. Drake. 2009. Consumer perception of fat reduction in cheeses. J. Sens. Stud. 24:902-921. Cerca con Google

Chilliard, Y., A. Ferlay, J. Rouel, and G. Lamberet. 2003. A review of nutritional and physiological factors affecting goat milk lipid synthesis and lipolysis. J. Dairy Sci. 86:1751-1770. Cerca con Google

Cipolat-Gotet, C., A. Cecchinato, M. De Marchi, and G. Bittante. 2013. Factors affecting variation of different measures of cheese yield and milk nutrient recovery from an individual model cheese-manufacturing process. J. Dairy Sci. 96:7952-7965. Cerca con Google

Cipolat-Gotet, C., A. Cecchinato, M. De Marchi, M. Penasa, and G. Bittante. 2012. Comparison between mechanical and near-infrared methods for assessing coagulation properties of bovine milk. J. Dairy Sci. 95:6806-6819. Cerca con Google

Cipolat-Gotet, C., G. Bittante, and A. Cecchinato. 2014. Phenotypic analysis of cheese yields and nutrient recoveries in the curd of buffalo milk, as measured with an individual model cheese-manufacturing process. J. Dairy Sci. 98:1-13. Cerca con Google

Collomb, M., U. Bütikofer, R. Sieber, B. Jeangros, and J. O. Bosset. 2002. Correlations between fatty acids in cows’ milk fat produced in the lowland, mountain and highlands of Switzerland and botanical composition of the fodder. Int. Dairy J. 12:661-666. Cerca con Google

Contarini, G. and M. Povolo. 2002. Volatile fraction of milk: Comparison between purge and trap and solid phase microextraction techniques. J. Agr. Food Chem. 50:7350-7355. Cerca con Google

Coppa, M., A. Ferlay, F. Monsallier, I. Verdier-Metz, P. Pradel, R. Didienne, A. Farruggia M. C. Montel, and B. Martin. 2011. Milk fatty acid composition and cheese texture and appearance from cows fed hay or different grazing systems on upland pastures. J. Dairy Sci. 94:1132-1145. Cerca con Google

Coppa, M., I. Verdier-Metz, A. Ferlay, P. Pradel, R. Didienne, A. Farruggia, M. C. Montel, and B. Martin. 2011. Effect of different grazing systems on upland pastures compared with hay diet on cheese sensory properties evaluated at different ripening times. Int. Dairy J. 21:815-822. Cerca con Google

Cornu, A., N. Kondjoyan, B. Martin, I. Verdier‐Metz, P. Pradel, J. L.Berdagué, and J. B. Coulon. 2005. Terpene profiles in Cantal and Saint‐Nectaire‐type cheese made from raw or pasteurised milk. J. Sci. Food Agric. 85:2040-2046. Cerca con Google

Cornu, A., N. Rabiau, N. Kondjoyan, I. Verdier-Metz, P. Pradel, P. Tournayre, J. L. Berdagué, and B. Martin. 2009. Odour-active compound profiles in Cantal-type cheese: Effect of cow diet, milk pasteurization and cheese ripening. Int. Dairy J. 19:588-594. Cerca con Google

Coulon, J. B., A. Delacroix-Buchet, B. Martin, and A. Pirisi. 2004. Relationships between ruminant management and sensory characteristics of cheeses: A review. Lait 84:221-241. Cerca con Google

Couvreur, S., C. Hurtaud, P. G. Marnet, P. Faverdin, and J. L. Peyraud. 2007. Composition of milk fat from cows selected for milk fat globule size and offered either fresh pasture or a corn silage-based diet. J. Dairy Sci. 90:392-403. Cerca con Google

Curioni, P. M. G., and J. O. Bosset. 2002. Key odorants in various cheese types as determined by gas chromatography–olfactometry. Int. Dairy J. 12:959-984. Cerca con Google

De Noni, I., and G. Battelli. 2008. Terpenes and fatty acid profiles of milk fat and ‘‘Bitto” cheese as affected by transhumance of cows on different mountain pastures. Food Chem. 109:299-309. Cerca con Google

Delgado, F., J. González-Crespo, R. Cava, and R. Ramírez. 2011. Formation of the aroma of a raw goat milk cheese during maturation analysed by SPME-GC-MS. Food Chem. 129:1156-1163. Cerca con Google

Dewhurst, R. J., K. J. Shingfield, M. R. F. Lee, and N. D. Scollan. 2006. Increasing the concentrations of beneficial polyunsaturated fatty acids in milk produced by dairy cows in high-forage systems. J. Anim. Sci. Technol. 131:168-206. Cerca con Google

Drake, M. A. 2007. Invited review: Sensory analysis of dairy foods. J. Dairy Sci. 90:4925-4937. Cerca con Google

Drake, M. A., R. E. Miracle, and D. J. McMahon. 2010. Impact of fat reduction on flavor and flavor chemistry of Cheddar cheeses. J. Dairy Sci. 93:5069-5081. Cerca con Google

Drake, S. L., P. D. Gerard, and M. A. Drake. 2008. Consumer preferences for mild Cheddar cheese flavors. J. Food Sci. 73:S449-455. Cerca con Google

Endrizzi, I., A. Fabris, F. Biasioli, E. Aprea, E. Franciosi, E. Poznanski, A. Cavazza, and F. Gasperi. 2012. The effect of milk collection and storage conditions on the final quality of Trentingrana cheese: sensory and instrumental evaluation. Int. Dairy J. 23:105-114. Cerca con Google

Endrizzi, I., E. Aprea, F. Biasioli, M. L. Corollaro, M. L. Demattè, M. Penasa, and G. Bittante. 2013. Implementing sensory analysis principles in the quality control of PDO products: a critical evaluation of a real-world case study. J. Sensory Studies. 28:14-24. Cerca con Google

Engels, W. J. M., R. Dekker, C. de Jong, R. Neeter, and S. A. Visser. 1997. A comparative study of volatile compounds in the water soluble fraction of various types of ripened cheese. Int. Dairy J. 7:255-263. Cerca con Google

Erdem, H., S. Atasever, and E. Kul. 2010. Relationships of milk ability traits to udder characteristics, milk yield and somatic cell count in Jersey cows. J. Appl. Anim. Res. 37:43-47. Cerca con Google

Fabris, A., F. Biasioli, P. M. Granitto, E. Aprea, L. Cappellin, E. Schuhfried, C. Soukoulis, T. D. Märk, F. Gasperi, and I. Endrizzi. 2010. PTR-TOF-MS and data-mining methods for rapid characterization of agro-industrial samples: Influence of milk storage conditions on the volatile compounds profile of Trentingrana cheese. J. Mass Spectrom. 45:1065-1074. Cerca con Google

Farès, K., P. Landy, R. Guilard, and A. Voilley. 1998. Physico-chemical interactions between aroma compounds and milk proteins: Effect of water and protein modification. J. Dairy Sci. 81:82-91. Cerca con Google

Farruggia, A., D. Pomiès, M. Coppa, A. Ferlay, I. Verdier-Metz, A. Le Morvan, A. Bethier, F. Pompanon, O. Troquier, and B. Martin. 2014. Animal performances, pasture biodiversity and dairy product quality: How it works in contrasted mountain grazing systems. Agriculture, Ecosystems and Environment. 185:231-244. Cerca con Google

Favaro, G., F. Magno, A. Boaretto, L. Bailoni, and R. Mantovani. 2005. Traceability of Asiago mountain cheese: A rapid, low-cost analytical procedure for its identification based on solid-phase microextraction. J. Dairy Sci. 88:3426-3434. Cerca con Google

Fedele, V., R. Rubino, S. Claps, L. Sepe, and G. Morone. 2005. Seasonal evolution of volatile compounds content and aromatic profile in milk and cheese from grazing goat. Small Rumin. Res. 59:273-279. Cerca con Google

Feligni, M., E. Brambati, S. Panelli, M. Ghitti, R. Sacchi, E. Capelli, and C. Bonacina. 2014. One-year investigation of Clostridium spp. occurrence in raw milk and curd of Grana Padano cheese by the automated ribosomial intergenic spacer analysis. Food Contr. 42:71-77. Cerca con Google

Ferlay, A., B. Martin, Ph. Pradel, J. B. Coulon, and Y. Chilliard. 2006. Influence of grass-based diets on milk fatty acid composition and milk lipolytic system in Tarentaise and Montbeliarde cow breeds. J. Dairy Sci. 89:4026-4041. Cerca con Google

Ferragina, A., C. Cipolat-Gotet, A. Cecchinato, and G. Bittante. 2013. The use of Fourier-transform infrared spectroscopy to predict cheese yield and nutrient recovery or whey loss traits from unprocessed bovine milk samples. J. Dairy Sci. 96:7980-7990. Cerca con Google

Ferragina, A., G. de los Campos, A. I. Vazquez, A. Cecchinato, and G. Bittante. 2015. Bayesian regression models outperform partial least squares methods for predicting milk components and technological properties using infrared spectral data. J. Dairy Sci. 98:8133-8151. Cerca con Google

Fox, P. F., P. L. H. McSweeney, T. M. Cogan, and T. P. Guinee. 2004. Cheese: Chemistry, Physics and Microbiology. Vol. 1. General Aspects. 3rd ed. Elsevier/Academic Press, London, UK. Cerca con Google

Frank, D. C., C. M. Owen, and J. Patterson. 2004. Solid phase microextraction (SPME) combined with gas-chromatography and olfactometry-mass spectrometry for characterization of cheese aroma compounds. Lebenson Wiss Technol. 37:139-154. Cerca con Google

Frøst, M. B., G. Dijksterhuis, and M. Martens. 2001. Sensory perception of fat in milk. Food Qual. Prefer. 12:327-336. Cerca con Google

Gallardo-Escamilla, F. J., A. L. Kelly, and C. M. Delahunty. 2005. Sensory characteristics and related flavor compound profiles of different types of whey. J. Dairy Sci. 88:2689-2699. Cerca con Google

Galle, S. A., A. Koot, C. Soukoulis, L. Cappellin, F. Biasioli, M. Alewijn, and S. M. van Ruth. 2011. Typicality and geographical origin markers of protected origin cheese from the Netherlands revealed by PTR-MS. J. Agric. Food Chem. 59:2554-2563. Cerca con Google

Gatti, M., B. Bottari, C. Lazzi, E. Neviani, and G. Mucchetti. 2014. Invited review: Microbial evolution in raw-milk, long-ripened cheeses produced using undefined natural whey starters. J. Dairy Sci. 97:573-591. Cerca con Google

Gelfand, A., and A. F. M. Smith. 1990. Sampling based approaches to calculating marginal densities. J. Am. Stat. Assoc. 85:398-409. Cerca con Google

Gelman, A., and D. B. Rubin. 1992. Inference from iterative simulation using multiple sequences. Stat. Sci. 7:457-511. Cerca con Google

Geweke, J. 1992. Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments (with discussion). Pages 164-193 in Bayesian Statistics. J. O. Berger, J. M. Bernardo, A. P. Dawid, and A. F. M. Smith, ed. Oxford University Press, Oxford, UK. Cerca con Google

Geyer, C. J. 1992. Practical Markov chain Monte Carlo. Stat. Sci. 7:473-483. Cerca con Google

Gioacchini, A. M., M. De Santi, M. Guescini, G. Brandi, and V. Stocchi. 2010. Characterization of the volatile organic compounds of Italian ‘Fossa’cheese by solid‐phase microextraction gas chromatography/mass spectrometry. Rapid Commun Mass Spectrom. 24:3405-3412. Cerca con Google

Gobbetti, M., P. F. Fox, and L. Stepaniak. 1996. Esterolytic and lipolytic activities of mesophilic and thermophilic lactobacilli. Ital. J. Food Sci. 8:127-137. Cerca con Google

Gorlier, A., M. Lonati, M. Renna, C. Lussiana, G. Lombardi, and L. M. Battaglini. 2012. Changes in pasture and cow milk compositions during a summer transhumance in the western Italian Alps. J. Appl. Bot. Food Qual. 85:216-223. Cerca con Google

Goubet, I., J. L. Le Quere, and A. J. Voilley. 1998. Retention of aroma compounds by carbohydrates: Influence of their physicochemical characteristics and of their physical state. A review. J. Agric. Food Chem. 46:1981-1990. Cerca con Google

Haddaway, N. R., D. Styles, and A. S. Pullin. 2013. Environmental impacts of farm land abandonment in high altitude/mountain regions: a systematic map of the evidence. Environ. Evidence. 2:18. Cerca con Google

Hand, K. J., A. Godkin, and D. F. Kelton. 2012. Milk production and somatic cell counts: A cow-level analysis. J. Dairy Sci. 95:1358-1362. Cerca con Google

Horne, J., S. Carpino, L. Tuminello, T. Rapisarda, L. Corallo and G. Licitra. 2005. Differences in volatiles, and chemical, microbial and sensory characteristics between artisanal and industrial Piacentinu Ennese cheeses. Int. Dairy J. 15:605-617. Cerca con Google

Hurtaud, C., B. Martin, J. B. Coulon, and J. L. Peyraud. 2004. Dairy cows feeding changes the biochemical compositions and the sensory proprieties of the dairy products, butter and cheese. International Society for Animal Hygiène, Saint-Malo. Cerca con Google

Hurtaud, C., J. L. Peyraud, G. Michel, D. Berthelot, and L. Delaby. 2009. Winter feeding systems and dairy cow breed have an impact on milk composition and flavour of two Protected Designation of Origin French cheeses. Anim. 3:1327-1338. Cerca con Google

Ikonen, T., S. Morri, A-M. Tyrisevä, O. Ruottinen, and M. Ojala. 2004. Genetic and phenotypic correlations between milk coagulation properties, milk production traits, somatic cell count, casein content, and pH of milk. J. Dairy Sci. 87:458-467. Cerca con Google

Imhof, R., and J. O. Bosset. 1994. Relationships between micro-organisms and formation of aroma compounds in fermented dairy products. Z Lebensm Unters Forsch. 198:267-276. Cerca con Google

Izco, J. M., and P. Torre. 2000. Characterisation of volatile flavour compounds in Roncal cheese extracted by the purge and trap method and analysed by GC–MS. Food Chemistry. 70:409-417. Cerca con Google

Kalač, P. 2011. The effects of silage feeding on some sensory and health attributes of cow’s milk: A review. Food Chemistry. 125:307-317. Cerca con Google

Kim, M. K., S. L. Drake, and M. A. Drake. 2011. Evaluation of key flavor compounds in reduced- and full-fat Cheddar cheeses using sensory studies on model systems. J. Sens. Stud. 26:278-290. Cerca con Google

Kroeker, E. M., K. F. Ng-Kwai-Hang, J. F. Hayes, and J. E. Moxley. 1985. Effects of environmental factors and milk protein polymorphism on composition of casein fraction in bovine milk. J. Dairy Sci. 68:1752-1757. Cerca con Google

Le Berre, E., N. Béno, A. Ishii, C. Chabanet, P. Etiévant, and T. Thomas-Danguin. 2008. Perceptual processing strategy and exposure influence the perception of odor mixtures. Chem. Senses. 33:193-199. Cerca con Google

Le Quéré, J. L. 2004. Le Cheese flavour: Instrumental techniques, pages 489-510 in: P. F. Fox, P. L. H. McSweeney, T. M. Cogan, T. P. Guinee (Eds.), Cheese: Chemistry, physics and microbiology, General Aspects (3rd ed.), Vol. 1, Elsevier Science, Amsterdam (The Netherlands). Cerca con Google

Le Quéré, J. L. 2011. Cheese | Cheese Flavor. Encyclopedia of Dairy Sciences (Second Edition). Pages 675-684. Cerca con Google

Leiber, F., M. Kreuzer, H. Leuenberger, and H-R Wettstein. 2006. Contribution of diet type and pasture conditions to the influence of high altitude grazing on intake, performance and composition and renneting properties of the milk of cows. Anim. Res. 55:37-53. Cerca con Google

Liaw, I., H. Eshpari, P. S. Tong, and M. A. Drake. 2010. The impact of antioxidant addition on flavor of Cheddar and Mozzarella whey and Cheddar whey protein concentrate. Journal of Food Science. 75:559-569. Cerca con Google

Liggett, R. E., M. A. Drake, and J. F. Delwiche. 2008. Impact of flavor attributes on consumer liking of Swiss cheese. J Dairy Sci. 91:466-76. Cerca con Google

Lindinger, W., A. Hansel, and A. Jordan. 1998. On-line monitoring of volatile organic compounds at pptv levels by means of proton transfer reaction-mass spectrometry (PTR-MS) medical applications, food control and environmental research. Int. J. Mass Spectrom. Ion Process. 173:191-241. Cerca con Google

Liu, S. Q., R. Holland, and V. L. Crow. 2004. Esters and their biosynthesis in fermented dairy prod-ucts: A review. Int. Dairy J. 14:923-945. Cerca con Google

Lucas, A., C. Agabriel, B. Martin, A. Ferlay, I. Verdier-Metz, J. B. Coulon, and E. Rock. 2006. Relationships between the conditions of cow’s milk production and the contents of components of nutritional interest in raw milk farmhouse cheese. Lait. 86:177-202. Cerca con Google

Mahajan, S. S, L. Goddick, and M. C. Qian. 2004. Aroma compounds in sweet whey powder. J. Dairy Sci. 87:4057-4063. Cerca con Google

Mallia, S., E. Fernandez Garcia, and J. O. Bosset. 2005. Comparison of purge and trap and solid phase microextraction techniques for studying the volatile aroma compounds of three European PDO hard cheeses. Int. Dairy J. 15:741-758. Cerca con Google

Marilley, L and M. G. Casey. 2004. Flavors of cheese products: metabolic pathways, analytical tools and identification of producing strains. Int J Food Microbiol. 90:139-159. Cerca con Google

Marino, R., T. Considine, A. Sevi, P. L. H. McSweeney, and A. L Kelly. 2005. Contribution of proteolytic activity associated with somatic cells in milk to cheese ripening. Int. Dairy J. 15:1026-1033. Cerca con Google

Marsili, R. T. 1999. SPME-MS-MVA as an electronic nose for the study of off-flavors in milk. J. Agric. Food Chem. 47:648-654. Cerca con Google

Martin, B., and J. B. Coulon. 1995a. Milk production and cheese characteristics. I. Influence of milk production conditions on coagulability of bulk milk. Lait. 75:61-80. Cerca con Google

Martin, B., and J. B. Coulon. 1995b. Facteurs de production du lait et caractéristiques des fromages. II. Influence des caractéristiques des laits de troupeaux et des pratiques fromagères sur les caractéristiques du reblochon de Savoie fermier. Lait. 75:133-149. Cerca con Google

Martin, B., D. Pomiès, P. Pradel, I. Verdier-Metz, and B. Rémond. 2009. Yield and sensory properties of cheese made with milk from Holstein or Montbéliarde cows milked twice or once daily. J. Dairy Sci. 92:4730-4737. Cerca con Google

Martin, B., I. Verdier-Metz, S. Buchin, C. Hurtaud and J. B. Coulon. 2005. How do the nature of forages and pasture diversity influence the sensory quality of dairy livestock products? Animal Sci. 81:205-212. Cerca con Google

Martin, B., I. Verdier-Metz, S. Hulin, A. Ferlay, P. Pradel, and J. B. Coulon. 2004. Combined influence of cow diet and pasteurization of the milk on sensory properties of French PDO Cantal cheese. Page 5 in Proc. 6th Int. Mtg. on Mountain Cheese, Cheese Art. CoRFILaC, Ragusa, Italy. Cerca con Google

Mazal, G., P. C. B. Vianna, M. V. Santos, and M. L. Gigante. 2007. Effect of somatic cell count on Prato cheese composition. J. Dairy Sci. 90:630-636. Cerca con Google

McBeth, L. R., N. R. St-Pierre, D. E. Shoemaker, and W. P. Weiss. 2013. Effects of transient changes in silage dry matter concentration on lactating dairy cows. J. Dairy Sci. 96:3924-3935. Cerca con Google

McMahon, D. J., and R. J. Brown. 1982. Evaluation of Formagraph for comparing rennet solutions. J. Dairy Sci. 65:1639-1642. Cerca con Google

McSweeney, P. L. H., and M. J. Sousa. 2000. Biochemical pathways for the production of flavor compounds in cheeses during ripening: A review. Lait. 80:293-324. Cerca con Google

Moio, L., J. Dekimpe, P. X. Etievant, and F. Addeo. 1993. Comparison of the neutral volatile compounds in Mozzarella cheese made from bovine and water buffalo milk. J Food Sci. 3:215-226. Cerca con Google

Molimard, P., and H. E. Spinnler. 1996. Review: Compounds involved in the flavor of surface mold-ripened cheeses: Origins and properties. J. Dairy Sci. 79:169-184. Cerca con Google

Noni, I. D., and G. Battelli. 2008. Terpenes and fatty acid profiles of milk fat and “Bitto” cheese as affected by transhumance of cows on different mountain pastures. Food Chem. 109:299-309. Cerca con Google

NRC. 2001. Nutrient requirements of dairy cattle. 7th rev. ed. Natl. Acad. Sci., Washington, DC USA: National Academic Press. Cerca con Google

Nudda, A., M. A. McGuire, G. Battacone, and G. Pulina. 2005. Seasonal variation in conjugated linoleic acid and vaccenic acid in milk fat of sheep and its transfer to cheese and ricotta. J. Dairy Sci. 88:1311-1319. Cerca con Google

Orlandi, D., F. Clementel, F. Scartezzini, and A. Floris. 2000. Caratterizzazione e cartografia dei pascoli di una malga alpina (Malga Juribello - Trento). Comunicazioni di Ricerca ISAFA. 1: 1-24. Cerca con Google

Ostersen, S., J. Foldager, and J. E. Hermansen. 1997. Effects of stage of lactation, milk protein and body condition at calving on protein composition and renneting properties of bovine milk. J. Dairy Res. 64:207-219. Cerca con Google

Othmane, M. H., J. A. Carriedo, F. San Primitivo, and L. D. L. Fuente. 2002. Genetic parameters for lactation traits of milking ewes: protein content and composition, fat, somatic cells and individual laboratory cheese yield. Genet. Sel. Evol. 34:581-596. Cerca con Google

Padilla, B., C. Belloch, J. J. López-Díez, M. Flores, and P. Manzanares. 2014. Potential impact of dairy yeasts on the typical flavour of traditional ewes’ and goats’ cheeses. Int. Dairy J. 35:122-129. Cerca con Google

Pegolo, S., A. Cecchinato, J. Casellas, G. Conte, M. Mele, S. Schiavon, and G. Bittante. 2015. Genetic and environmental relationships of detailed milk fatty acids profile determined by gas chromatography in Brown Swiss cows. J. Dairy Sci. 99:1315-1330. Cerca con Google

Penati, C., P. B. M. Berentsen, A. Tamburini, A. Sandrucci, and I. J. M. de Boer. 2011. Effect of abandoning highland grazing on nutrient balances and economic performance of Italian Alpine dairy farms. Livest. Sci. 139:142-149. Cerca con Google

Perna, A., A. Simonetti , I. Intaglietta , and E. Gambacorta. 2014. Effects of genetic type, stage of lactation, and ripening time on Caciocavallo cheese proteolysis. J. Dairy Sci. 97:1909-1917. Cerca con Google

Phillips, L. G., M. L. McGiff, D. M. Barbano, and H. T. Lawless. 1995. The influence of fat on the sensory properties, viscosity, and color of low fat milk. J. Dairy Sci. 78:1258-1266. Cerca con Google

Pintado, M. E., A. C. Macedo, and F. X. Malcata. 2001. Review: Technology, chemistry and microbiology of whey cheeses. Food Sci. Technol. Int. 7:105-116. Cerca con Google

Politis, I, and K. F. Ng-Kwai-Hang. 1988. Effects of Somatic Cell Count and Milk Composition on Cheese Composition and Cheese Making Efficiency. J. Dairy Sci. 71:1711-1719. Cerca con Google

Povolo, M. and G. Contarini. 2003. Comparison of solid-phasemicroextraction and purge-and-trap methods for the analysis of the volatile fraction of butter. J. Chromatogr. A. 985:117-125. Cerca con Google

Relkin, P., M. Fabre, and E. Guichard. 2004. Effect of fat nature and aroma compound hydrophobicity on flavor release from complex food emulsions. J. Agric. Food Chem. 52:6257-6263. Cerca con Google

Rodriguez-Saona, L. E., N. Koca, W. J. Harper, and V. B. Alvarez. 2006. Rapid determination of Swiss cheese composition by Fourier transform infrared/attenuated total reflectance spectroscopy. J. Dairy Sci. 89:1407-1412. Cerca con Google

Romanzin A., M. Corazzin, E. Piasentier and S. Bovolenta. 2013. Effect of rearing system (mountain pasture vs. indoor) of Simmental cows on milk composition and Montasio cheese characteristics. J. Dairy Res. 80:390-399. Cerca con Google

Rosati, A., L.D. Van Vleck. 2002. Estimation of genetic parameters for milk, fat, protein and mozzarella cheese production for the Italian river buffalo Bubalus bubalis population. Livest. Prod. Sci. 74:185-190. Cerca con Google

Rychlik, M., and J. O. Bosset. 2001. Flavour and off-flavor compounds of Swiss Gruyere cheese. Identification of key odorants by quantitative instrumental and sensory studies. Int. Dairy J. 11:903-910. Cerca con Google

San Román, I., M. L. Alonso, L. Bartolome, R. M Alonso, and R. Faňanás. 2014. Analytical strategies based on multiple headspace extraction for the quantitative analysis of aroma components in mushrooms. Talanta. 123:207-217. Cerca con Google

Sánchez-Macías, D., A. Morales-delaNuez, A. Torres, L. E. Hernández-Castellano, R. Jiménez-Flores, N. Castro, and A. Argüello. 2013. Effects of addition of somatic cells to caprine milk on cheese quality. Int. Dairy J. 29:61-67. Cerca con Google

Shepard, L., R. E. Miracle, P. Leksrisompong , and M. A. Drake. 2013. Relating sensory and chemical properties of sour cream to consumer acceptance. J. Dairy Sci. 96:5435-5454. Cerca con Google

Singh, T. K., M. A. Drake, and K. R. Cadwallader. 2003. Flavor of Cheddar cheese: A chemical and sensory perspective. Compr. Rev. Food Sci. Food Safety 2:139-162. Cerca con Google

Smacchi, E., and E. Gobbetti. 1998. Peptides from several Italian cheeses inhibitory to proteolytic enzymes of lactic acid bacteria, Pseudomonas fluorescens ATCC 948 and to the angiotensin I-converting enzyme. Enzyme Microb. Technol. 22:687-694. Cerca con Google

Smit, G., B. A. Smit, and W. J. M. Engels. 2005. Flavor formation by lactic acid bacteria and biochemical flavor profiling of cheese products. FEMS Microbiol. Rev. 29:591-610. Cerca con Google

Sorensen, D., and D. Gianola. 2002. Likelihood, Bayesian, and MCMC Methods in Quantitative Genetics. Springer-Verlag, New York, NY. Cerca con Google

Soukoulis, C., E. Aprea, F. Biasioli, L. Cappellin, E. Schuhfried, T. D. Märk, and F. Gasperi. 2010. Proton transfer reaction time-of-flight mass spectrometry monitoring of the evolution of volatile compounds during lactic acid fermentation of milk. Rapid Commun. Mass Spectrom. 24:2127-2134. Cerca con Google

Stefanon, B., and G. Procida. 2004. Effects of including silage in the diet on volatile compound profiles in Montasio cheese and their modification during ripening. J. Dairy Res. 71:58-65. Cerca con Google

Stocco, G., C. Cipolat-Gotet, A. Cecchinato, L. Calamari, and G. Bittante. 2015. Milk skimming, heating, acidification, lysozyme, and rennet affect the pattern, repeatability, and predictability of milk coagulation properties and of curd-firming model parameters: A case study of Grana Padano. J. Dairy Sci. 98:5052-5067. Cerca con Google

Stoop, W. M., H. Bovenhuis, J. M. L. Heck , and J. A. M. van Arendonk. 2009. Effect of lactation stage and energy status on milk fat composition of Holstein-Friesian cows. J. Dairy Sci. 92:1469-1478. Cerca con Google

Sturaro, E., E. Marchiori, G. Cocca, M. Penasa, M. Ramanzin, and G. Bittante. 2013. Dairy systems in mountainous areas: farm animal biodiversity, milk production and destination, and land use. Livest. Sci. 158:157-168. Cerca con Google

Sturaro, E., G. Cocca, L. Gallo, M. Mrad, and M. Ramanzin. 2009. Livestock systems and farming styles in Eastern italian Alps: an on farm survey. Ital. J. Anim. Sci. 8:541-554. Cerca con Google

Sympoura, F., A. Cornu, P. Tournayre, T. Massouras, J. L. Berdagué, and B. Martin. 2009. Odor compounds in cheese made from the milk of cows supplemented with extruded linseed and α-tocopherol. J. Dairy Sci. 92:3040-3048. Cerca con Google

Tafaj, M., Q. Zebeli, Ch. Baes, H. Steingass, and W. Drochner. 2007. A meta-analysis examining effects of particle size of total mixed rations on intake, rumen digestion and milk production in high-yielding dairy cows in early lactation. Anim. Feed Sci. Technol. 138:137-161. Cerca con Google

Thomsen M., K. Gourrat, T. Thomas-Danguin, and E. Guichard. 2014. Multivariate approach to reveal relationships between sensory perception of cheeses and aroma profile obtained with different extraction methods. Food Res. Int. 62:561-571. Cerca con Google

Thomsen, M., C. Martin, F. Mercier, P. Tournayre, J. L. Berdagué, T. Thomas-Danguin, and E. Guichard. 2012. Investigating semi-hard cheese aroma: relationship between sensory profiles and gas chromatography-olfactometry data. Int. Dairy J. 26:41-49. Cerca con Google

Timmons, J. S., W. P. Weiss, D. L. Palmquist, and W. J. Harper. 2001. Relationships among dietary roasted soybeans, milk components, and spontaneous oxidized flavor of milk. J. Dairy Sci. 84:2440-2449. Cerca con Google

Tornambé, G., A. Cornu, I. Verdier-Metz, P. Pradel, N. Kondjoyan, G. Figueredo, S. Hulin, and B. Martin. 2008. Addition of pasture plant essential oil in milk: Influence on chemical and sensory properties of milk and cheese. J. Dairy Sci. 91:58-69. Cerca con Google

Tornambé, G., A. Cornu, P. Pradel, N. Kondjoyan, A. P. Carnat, M. Petit, and B. Martin. 2006. Changes in terpene content in milk from pasture-fed cows. J. Dairy Sci. 89:2309-2319. Cerca con Google

Tornambè, G., A. Lucas, I. Verdier-Metz, S. Hulin, C. Agabriel, and B. Martin. 2005. Effect of production systems on sensory characteristics of PDO Cantal cheese. Ital. J. Anim. Sci. 4(Suppl. 2):248-250. Cerca con Google

Toso, B., G. Procida, and B. Stefanon. 2002. Determination of volatile compounds in cows’ milk using headspace GC–MS. J. Dairy Res. 69:569-577. Cerca con Google

Tunick M. H., S. K. Iandola, and D. L. Van Hekken. 2013. Comparison of SPME methods for determining volatile compounds in milk, cheese, and whey powder. Foods. 2:534-543. Cerca con Google

Tunick, M. H. 2014. Analyzing volatile compounds in dairy products. J. Sci. Food Agric. 94:1701-1705. Cerca con Google

Tunick, M. H., M. Paul, E. R. Ingham, H. J., Karreman, and D. L. Van Hekken. 2015. Differences in milk characteristics between a cow herd transitioning to organic versus milk from a conventional dairy herd. Int. J. Dairy Tech. 68:511-518. Cerca con Google

Urbach, G. 1995. Contribution of lactic acid bacteria to flavour compound formation in dairy products. Int. Dairy J. 5:877-903. Cerca con Google

Urgeghe, P. P., C. Piga, M. Addis, R. Di Salvo, G. Piredda, M. F. Scintu, I. V. Wolf and G. Sanna. 2012. SPME/GC-MS characterization of the volatile fraction of an Italian PDO sheep cheese to prevalent lypolitic ripening: the case of Fiore Sardo. Food Anal. Methods. 5:723-730. Cerca con Google

Valdivielso, I., M. Albisu, M. D. Renobales, L. J. R. Barron. 2016. Changes in the volatile composition and sensory properties of cheeses made with milk from commercial sheep flocks managed indoors, part-time grazing in valley, and extensive mountain grazing. Int. Dairy J. 53:29-36. Cerca con Google

Van Soest, P. J., J. B. Robertson, and B. A. Lewis. 1991. Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccarides in relation to animal nutrition. J. Dairy Sci. 74:3583-3597. Cerca con Google

Verdier-Metz, I., J. B. Coulon, P. Pradel, J. L. Berdagué. 1995. Effect of forage type and cow breed on the characteristics of matured Saint-Nectaire cheeses. Lait. 75:523-533. Cerca con Google

Verdier-Metz I., J. B. Coulon, P. Pradel, C. Viallon, and J. L. Berdagué. 1998. Effect of forage conservation (hay or silage) and cow breed on the coagulation properties of milks and on the characteristics of ripened cheeses, J. Dairy Res. 65:9-21. Cerca con Google

Verdier-Metz, I., B. Martin, P. Pradel, H. Albouy, S. Hulin, M. C. Montel, and J. B. Coulon. 2005. Effect of grass-silage vs. hay diet on the characteristics of cheese: interactions with the cheese model. Lait. 85:469-480. Cerca con Google

Verdier-Metz, I., J. B. Coulon, and P. Pradel. 2001. Relationship between milk fat and protein contents and cheese yield. Anim. Res. 50:365-371. Cerca con Google

Viallon, C., B. Martin, I. Verdier-Metz, P. Pradel, J. P. Garel, J. B. Coulon, and J. L. Berdagué. 2000. Transfer of monoterpenes and sesquiterpenes from forages into milk fat. Lait. 80:635-64. Cerca con Google

Viallon, C., I. Verdier-Metz, C. Denoyer, P. Pradel, J. B. Coulon, and J. L. Berdague. 1999. Desorbed terpenes and sesquiterpenes from forages and cheeses. J. Dairy Res. 66:319-326. Cerca con Google

Villeneuve, M. P., Y. Lebeuf, R. Gervais, G. F. Tremblay, J. C. Vuillemard, J. Fortin, and P. Y. Chouinard. 2013. Milk volatile organic compounds and fatty acid profile in cows fed timothy as hay, pasture, or silage. J. Dairy Sci. 96:7181-7194. Cerca con Google

Whetstine, C., J. D. Parker, M. A. Drake, and D. K. Larick. 2003. Determining flavor and flavor variability in commercially produced liquid Cheddar whey. J. Dairy Sci. 86:439-448. Cerca con Google

Wong, N. P. and S. Patton. 1962. Identification of some volatile compounds related to the flavor of milk and cream. J Dairy Sci. 45:724-728. Cerca con Google

Zendri, F., E. Sturaro, and M. Ramanzin. 2013. Highland summer pastures play a fundamental role for dairy systems in Italian Alpine region. Agric. Conspectus Scient. 78: 295-299. Cerca con Google

Zendri, F., M. Ramanzin, C. Cipolat-Gotet, and E. Sturaro. 2016b. Variation of milk coagulation properties, cheese yield, and nutrients recovery in curd of cows of different breeds before, during and after transhumance to highland summer pastures. Submitted. Cerca con Google

Zendri, F., M. Ramanzin, G. Bittante, and E. Sturaro. 2016a. Transhumance of dairy cows to highland summer pastures interacts with breed to influence body condition, milk yield, and quality. Submitted. Cerca con Google

Zhang, C., H. Yang, F. Yang, and Y. Ma. 2009. Current progress on butyric acid production by fermentation. Curr. Microbiol. 59:656-663. Cerca con Google

Ziino, M., C. Condurso, V. Romeo, D. Giuffrida, and A. Verzera. 2005. Characterization of ‘‘Provola dei Nebrodi’’, a typical Sicilian cheese, by volatiles analysis using SPME-GC/MS. Int. Dairy J. 15:585-593. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record