Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Vendramin, Veronica (2016) Whey valorisation by microbial fermentation. [Tesi di dottorato]

Full text disponibile come:

[img]Documento PDF - Versione sottomessa
Tesi non accessible fino a 27 Gennaio 2019 per motivi correlati alla proprietà intellettuale.
Visibile a: nessuno

3674Kb

Abstract (inglese)

Streptococcus thermophilus is a thermophilic lactic acid bacterium (LAB) of major importance in the dairy industry. This species is widely used as starter culture to produce fermented dairy products. It has been awarded the status of GRAS (Generally Recognized as Safe) in the USA and a Qualified Presumption of Safety (QPS) status in the European Union, due to its long history of safe use in food production. Increasing the number of starter available to producers by discovering new strains with desirable characters is important not only for identifying new properties that may better suited the needs of the industrial raising demand but also to preserve natural biodiversity, which is diminishing with the spread and overuse of commercial starters.
The progresses in high-throughput ‘omics’ technologies (‘Foodomics’) allows the development of more rational approaches aimed to improve fermentation processes both for the traditional foods productions and for new functional food products . Nevertheless, to date only few steps were made toward the in-depht analysis of the pan-genome and transcriptional regulation in species of food interest.
In this study the whole genome sequencing of eight S. thermophilus strains isolated from typical cheese-making processes in four Italian regions was performed using the Illumina platform. Genomic data were compared with the already available information in order to study the level of genetic biodiversity present within the species. In addition, some technological properties were analysed both genetically and phenotypically to integrate the knowledges at these two levels.
The applicative part of the study regarded the study of the strains during growth on milk whey, both from physiological and genetic (gene expression) standpoints. Particular effort was dedicated to production of vitamin, in particular folates. The obtained results, reported in this thesis, are interesting both from a scientific and applicative point of view.

Abstract (italiano)

Streptococcus thermophilus appartiene ai batteri lattici (LAB) termofili ed è un microrganismo di primaria importanza nel settore caseario. Questa specie è largamente usata come starter nella produzione di prodotti caseari fermentati. Grazie alla sua lunga storia nella produzione di alimenti, gli è stato conferito lo stato di GRAS (Generally Recognized as Safe) negli Stati Uniti d’America e di QPS (Qualified Presumption of Safety) nell’Unione Europea. Aumentare il numero di ceppi starter disponibili per i produttori caseari, scoprendo ceppi autoctoni che posseggano caratteri tecnologicamente rilevanti, è importante non solo per identificare nuove proprietà che possano rispondere maggiormente alla crescente domanda, ma anche per preservare la naturale biodiversità che sta diminuendo con il diffondere e il sempre maggiore degli starter commerciali.
I progressi attuali nelle tecnologie high throughput (‘Foodomics’) permettono lo sviluppo di approcci razionali per l’ottimizzazione del processo fermentativo sia nella tradizionale funzionalità alimentare sia nella nuova potenzialità dei prodotti nutraceutici. Tuttavia, non molti passi sono stati fatti verso l’analisi dettagliata della pan-genomica e della regolazione trascrizionale nelle specie di interesse alimentare.
In questo studio, è stato portato a termine il sequenziamento completo del genoma di otto ceppi di S. themophilus isolati da processi di caseificazione tradizionali in varie località italiane. I dati genomici sono stati comparati con l’informazione disponibile nei database pubblici nel tentativo di studiare il livello di biodiversità genetica presente all’interno della specie. Inoltre, alcune proprietà tecnologicamente rilevanti sono state analizzate sia geneticamente sia fenotipicamente in modo da integrare le conoscenze a questi due livelli
La parte applicativa dello studio ha riguardato lo studio dei ceppi durante la crescita in siero di latte, sia dal punto di vista fenotipico che dell’espressione genica, con particolare attenzione alla produzione di vitamine e specificamente di folati. I risultati ottenuti hanno prodotto informazioni interessanti sia dal punto di vista scientifico che, in prospettiva, da quello applicativo.

Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Giacomini, Alessio
Dottorato (corsi e scuole):Ciclo 28 > Scuole 28 > SCIENZE ANIMALI E AGROALIMENTARI > PRODUZIONI AGROALIMENTARI
Data di deposito della tesi:31 Gennaio 2016
Anno di Pubblicazione:31 Gennaio 2016
Parole chiave (italiano / inglese):whey, lactic acid bacteria, folate, nutraceuticals, next generation sequencing
Settori scientifico-disciplinari MIUR:Area 07 - Scienze agrarie e veterinarie > AGR/16 Microbiologia agraria
Struttura di riferimento:Dipartimenti > Dipartimento di Agronomia Animali Alimenti Risorse Naturali e Ambiente
Codice ID:9471
Depositato il:06 Ott 2016 14:58
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. Koller M, Bona R, Braunegg G, Hermann C, Horvat P, Kroutil M, Martinz J, Neto J, Pereira L, Varila P. 2005. Production of Polyhydroxyalkanoates from Agricultural Waste and Surplus Materials. Biomacromolecules 561–565. Cerca con Google

2. Baldasso C, Barros TC, Tessaro IC. 2011. Concentration and purification of whey proteins by ultrafiltration. Desalination 278:381–386. Cerca con Google

3. Panesar P, Kennedy J, Gandhi D, Bunko K. 2007. Bioutilisation of whey for lactic acid production. Food Chem. 105:1–14. Cerca con Google

4. Mollea C, Marmo L, Bosco F. 2013. Valorisation of Cheese Whey , a By-Product from the Dairy Industry, p. 549–588. In Food Industry.InTech. Cerca con Google

5. Carvalho F, Prazeres AR, Rivas J. 2013. Cheese whey wastewater: characterization and treatment. Sci. Total Environ. 445:385–96. Cerca con Google

6. Pintado M E MAC, Malcatal FX. Review?: Technology , Chemistry an «! Microbiology of Whey Cheese. Food Sci Technol Int 7:105-116 Cerca con Google

7. Kosikowski F V. 1979. Whey Utilization and Whey Products. J. Dairy Sci. 62:1149–1160. Cerca con Google

8. Pescuma M, Hébert EM, Mozzi F, Font de Valdez G. 2008. Whey fermentation by thermophilic lactic acid bacteria: evolution of carbohydrates and protein content. Food Microbiol. 25:442–51. Cerca con Google

9. Guimarães PMR, Teixeira J a, Domingues L. 2010. Fermentation of lactose to bio-ethanol by yeasts as part of integrated solutions for the valorisation of cheese whey. Biotechnol. Adv. 28:375–84. Cerca con Google

10. Povolo S, Toffano P, Basaglia M, Casella S. 2010. Polyhydroxyalkanoates production by engineered Cupriavidus necator from waste material containing lactose. Bioresour. Technol. 101:7902–7907. Cerca con Google

11. Schirru S, Favaro L, Mangia NP, Basaglia M, Casella S, Comunian R, Fancello F, De Melo Franco BDG, De Souza Oliveira RP, Todorov SD. 2014. Comparison of bacteriocins production from Enterococcus faecium strains in cheese whey and optimised commercial MRS medium. Ann. Microbiol. 64:321–331. Cerca con Google

12. deWit JN, Klarenbeek G. 1984. Effects of various heat treatments on structure and solubility of whey proteins. J. Dairy Sci. 67:2701–2710. Cerca con Google

13. Jeli I, Božani R, Tratnik L. 2008. Whey-based beverages- a new generation of diary products. Mljekarstvo 58:257–274. Cerca con Google

14. Shiby VK, Radhakrishna K, Bawa AS. 2013. Development of whey-fruit-based energy drink mixes using D-optimal mixture design. Int. J. Food Sci. Technol. 48:742–748. Cerca con Google

15. Saxena D, Chakraborty SK, Sabikhi L, Singh D. 2013. Process optimization for a nutritious low-calorie high-fiber whey-based ready-to-serve watermelon beverage. J. Food Sci. Technol. 52:960–967. Cerca con Google

16. Viljanen K, Kylli P, Hubbermann EM, Schwarz K, Heinonen M. 2005. Anthocyanin antioxidant activity and partition behavior in whey protein emulsion. J. Agric. Food Chem. 53:2022–2027. Cerca con Google

17. Assadi MM, Abdolmaleki F, Mokarrame RR. 2008. Application of whey in fermented beverage production using kefir starter culture. Nutr. Food Sci. 38:121–127. Cerca con Google

18. Magalh??es KT, Dragone G, De Melo Pereira G V., Oliveira JM, Domingues L, Teixeira JA, E Silva JBA, Schwan RF. 2011. Comparative study of the biochemical changes and volatile compound formations during the production of novel whey-based kefir beverages and traditional milk kefir. Food Chem. 126:249–253. Cerca con Google

19. Kurmann JA, Rasic JL, Kroger M. 1992. Encyclopedia of fermented fresh milk products: an international inventory of fermented milk, cream, buttermilk, whey, and related products. Van Nostrand Reinhold. Cerca con Google

20. Huth PJ, DiRienzo DB, Miller GD. 2006. Major Scientific Advances with Dairy Foods in Nutrition and Health. J. Dairy Sci. 89:1207–1221. Cerca con Google

21. Madureira AR, Pereira CI, Gomes AMP, Pintado ME, Xavier Malcata F. 2007. Bovine whey proteins – Overview on their main biological properties. Food Res. Int. 40:1197–1211. Cerca con Google

22. Pérez MD, Calvo M. 1995. Interaction of beta-lactoglobulin with retinol and fatty acids and its role as a possible biological function for this protein: a review. J. Dairy Sci. 78:978–988. Cerca con Google

23. Stanciuc NSTA, Râpeanu G. 2010. An overview of bovine a-lactalbumin structure and functionality. Food Technol. 34:82–93. Cerca con Google

24. Sharpe, S, Gamble, G, Sharpe N. 1994. Cholesterol-lowering of immune blood of immune milk. Am. J. Clin. Nutr. 59:929–934. Cerca con Google

25. González-Chávez S a, Arévalo-Gallegos S, Rascón-Cruz Q. 2009. Lactoferrin: structure, function and applications. Int. J. Antimicrob. Agents 33:301.e1–8. Cerca con Google

26. Seifu E, Buys EM, Donkin EF. 2005. Significance of the lactoperoxidase system in the dairy industry and its potential applications?: a review. Trend Food Sci Tech 16:137–154. Cerca con Google

27. Clement M, Tremblay J, Lange M, Thibodeau J, Belhumeur P. 2008. Purification and Identification of Bovine Cheese Whey Fatty Acids Exhibiting In Vitro Antifungal Activity. J. Dairy Sci. 91:2535–2544. Cerca con Google

28. Vandenplas Y. 2002. Oligosaccharides in infant formula. Br. J. Nutr. 87:S293–S296. Cerca con Google

29. Sundekilde UK, Barile D, Meyrand M, Poulsen N a., Larsen LB, Lebrilla CB, German JB, Bertram HC. 2012. Natural variability in bovine milk oligosaccharides from Danish Jersey and Holstein-Friesian breeds. J. Agric. Food Chem. 60:6188–6196. Cerca con Google

30. Eustache J-M. 1977. Extraction of glycoproteins and sialic acid fom whey. U.S. Pat. Cerca con Google

31. Salcedo J, Barbera R, Matencio E, Alegría a., Lagarda MJ. 2013. Gangliosides and sialic acid effects upon newborn pathogenic bacteria adhesion: An in vitro study. Food Chem. 136:726–734. Cerca con Google

32. Madureira AR, Tavares T, Gomes AMP, Pintado ME, Malcata FX. 2010. Invited review?: Physiological properties of bioactive peptides obtained from whey proteins. J. Dairy Sci. 93:437–455. Cerca con Google

33. Briczinski EP, Roberts RF. 2002. Production of an Exopolysaccharide-Containing Whey Protein Concentrate by Fermentation of Whey. J. Dairy Sci. 85:3189–3197. Cerca con Google

34. Badel S, Bernardi T, Michaud P. 2011. New perspectives for Lactobacilli exopolysaccharides. Biotechnol. Adv. 29:54–66. Cerca con Google

35. Nath A, Verasztó B, Basak S, Koris A. 2015. Synthesis of Lactose-Derived Nutraceuticals from Dairy Waste Whey — a Review. Food Bioprod Process 9:16-48. Cerca con Google

36. Kim YS, Park CS, Oh DK. 2006. Lactulose production from lactose and fructose by a thermostable???-galactosidase from Sulfolobus solfataricus. Enzyme Microb. Technol. 39:903–908. Cerca con Google

37. Virtanen T, Pihlanto A, Akkanen S, Korhonen H. 2007. Development of antioxidant activity in milk whey during fermentation with lactic acid bacteria. J. Appl. Microbiol. 102:106–115. Cerca con Google

38. Beaulieu J, Dupont C, Lemieux P. 2007. Anti-inflammatory potential of a malleable matrix composed of fermented whey proteins and lactic acid bacteria in an atopic dermatitis model. J. Inflamm. (Lond). 4:6. Cerca con Google

39. Kato-Mori Y, Orihashi T, Kanai Y, Sato M, Sera K, Hagiwara K. 2010. Fermentation Metabolites from Lactobacillus gasseri and Propionibacterium freudenreichii Exert Bacteriocidal Effects in Mice Yuko. J. Med. Food 13:1460–1467. Cerca con Google

40. Hernandez-Mendoza A, Robles VJ, Angulo JO, De La Cruz J, Garcia HS. 2007. Preparation of a whey-based probiotic product with Lactobacillus reuteri and Bifidobacterium bifidum. Food Technol. Biotechnol. 45:27–31. Cerca con Google

41. Maragkoudakis P, Vendramin V, Bovo B, Treu L, Corich V, Giacomini A. 2015. Potential use of scotta, the by-product of the ricotta cheese manufacturing process, for the production of fermented drinks. J. Dairy Res. 1–5. Cerca con Google

42. Madureira AR, Pereira CI, Truszkowska K, Gomes AM, Pintado ME, Malcata FX. 2005. Survival of probiotic bacteria in a whey cheese vector submitted to environmental conditions prevailing in the gastrointestinal tract. Int. Dairy J. 15:921–927. Cerca con Google

43. Leroy F, De Vuyst L. 2004. Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Sci. Technol. 15:67–78. Cerca con Google

44. Ayad EHE, Verheul A, Wouters JTM, Smit G. 2002. Antimicrobial-producing wild lactococci isolated from artisanal and non-dairy origins. Int. Dairy J. 12:145–150. Cerca con Google

45. Beresford TP, Fitszimons N a, Brennan NL, Cogan TM. 2001. Recent Advance in Cheese Microbiology. Int. Dairy J. 11:259–274. Cerca con Google

46. Garabal JI. 2007. Biodiversity and the survival of autochthonous fermented products. Int. Microbiol. 1–3. Cerca con Google

47. O’Sullivan L, Ross R., Hill C. 2002. Potential of bacteriocin-producing lactic acid bacteria for improvements in food safety and quality. Biochimie 84:593–604. Cerca con Google

48. Schnu J. 2005. Antifungal lactic acid bacteria as biopreservatives. Trends Food Sci. Technol. 16:70–78. Cerca con Google

49. Corsetti A, Gobbetti M, De Marco B, Balestrieri F, Paoletti F, Russi L, Rossi J. 2000. Combined effect of sourdough lactic acid bacteria and additives bread firmness and staling. J. Agric. Food Chem. 48:3044–3051. Cerca con Google

50. Dragone G, Mussatto SI, Oliveira JM, Teixeira JA. 2009. Characterisation of volatile compounds in an alcoholic beverage produced by whey fermentation. Food Chem. 112:929–935. Cerca con Google

51. Florou-paneri P, Christaki E, Bonos E. 2013. Lactic Acid Bacteria as Source of Functional IngredientsLactic Acid Bacteria in Research & Development for Food, Health and Livestock Purpose. InTech. Cerca con Google

52. Collins YF, McSweeney PLH, Wilkinson MG. 2003. Evidence of a relationship between autolysis of starter bacteria and lipolysis in Cheddar cheese during ripening. J. Dairy Res. 70:105–113. Cerca con Google

53. Wisselink H., Weusthuis R., Eggink G, Hugenholtz J, Grobben G. 2002. Mannitol production by lactic acid bacteria: a review. Int. Dairy J. 12:151–161. Cerca con Google

54. LeBlanc JG, Laino JE, Valle MJ, Vannini V, Sinderen D Van, Taranto MP, Font G, del Valle MJ, Vannini V, van Sinderen D, Taranto MP, Font de Valdez G, Savoy de Giori G, Sesma F, Laiño JE, del Valle MJ, Vannini V, van Sinderen D, Taranto MP, de Valdez GF, de Giori GS, Sesma F. 2011. B-Group vitamin production by lactic acid bacteria – current knowledge and potential applications. J. Appl. Microbiol. 111:1297–1309. Cerca con Google

55. Delorme C. 2008. Safety assessment of dairy microorganisms?: Streptococcus thermophilus. Int J Food Microbiol. 126:274–277. Cerca con Google

56. Giraffa G, Paris a, Valcavi L. 2001. Genotypic and phenotypic heterogeneity of Streptococcus thermophilus strains isolated from dairy products. J. Appl. Microbiol 91:937–43. Cerca con Google

57. Iyer R, Tomar SK, Maheswari TU, Singh R. 2010. Streptococcus thermophilus strains?: Multifunctional lactic acid bacteria. Int. Dairy J. 20:133–141. Cerca con Google

58. Erkus O, Okuklu B, Yenidunya AF, Harsa S. 2014. High genetic and phenotypic variability of Streptococcus thermophilus strains isolated from artisanal Yuruk yoghurts. LWT - Food Sci. Technol. 58:348–354. Cerca con Google

59. Morandi S, Brasca M. 2012. Safety aspects, genetic diversity and technological characterisation of wild-type Streptococcus thermophilus strains isolated from north Italian traditional cheeses. Food Control 23:203–209. Cerca con Google

60. ISTAT 2014. http://www.istat.it/ Vai! Cerca con Google

61. Andrighetto C, Borney F, Barmaz A, Stefanon B, Lombardi A. 2002. Genetic diversity of Streptococcus thermophilus strains isolated from Italian traditional cheeses. Int. Dairy J. 12:141–144. Cerca con Google

62. Marino M, Maifreni, M, Rondinini G. 2003. Microbiological characterization of artisanal Montasio cheese: Analysis of its indigenous lactic acid bacteria. FEMS Microbiol. Lett. 229:133–140. Cerca con Google

63. Hols P, Hancy F, Fontaine L, Grossiord B, Prozzi D, Leblond-bourget N, Decaris B, Bolotin A, Delorme C, Ehrlich SD, Guedon E, Monnet V, Renault P, Kleerebezem M. 2005. New insights in the molecular biology and physiology of Streptococcus thermophilus revealed by comparative genomics. FEMS Microbiol. Rev. 29:435–463. Cerca con Google

64. Dandoy D, Fremaux C, De Frahan MH, Horvath P, Boyaval P, Hols P, Fontaine L. 2011. The fast milk acidifying phenotype of Streptococcus thermophilus can be acquired by natural transformation of the genomic island encoding the cell-envelope proteinase PrtS, p. S21. In Microbial Cell Factories. BioMed Central Ltd. Cerca con Google

65. Neviani E, Giraffa G, Brizzi A, Carminati D. 1995. Amino acid requirements and peptidase activities of Streptococcus salivarius subsp. thermophilus. J. Appl. Microbiol. 79:302–307. Cerca con Google

66. Smit BA. 2004. Flavour formation from Amino Acids in fermented dairy product.PhD thesis. Wageningen University, Wageningen. Cerca con Google

67. Vin F De, Rådstro P, Herman L, Vuyst L De, Icrobiol APPLENM. 2005. Molecular and Biochemical Analysis of the Galactose Phenotype of Dairy Streptococcus thermophilus Strains Reveals Four Different Fermentation Profiles Appl. Environ. Microbiol.71:3659–3667. Cerca con Google

68. Wu Q, Christine KW, Shah NP. 2014. Towards galactose accumulation in dairy foods fermented by conventional starter cultures?: Challenges and strategies. Trends Food Sci. Technol. Cerca con Google

69. Bourgoin F, Pluvinet A, Gintz B, Decaris B, Guédon G. 1999. Are horizontal transfers involved in the evolution of the Streptococcus thermophilus exopolysaccharide synthesis loci? Gene 233:151–161. Cerca con Google

70. Brigidi P, Swennen E, Vitali B, Rossi M, Matteuzzi D. 2003. PCR detection of Bifidobacterium strains and Streptococcus thermophilus in feces of human subjects after oral bacteriotherapy and yogurt consumption. Int. J. Food Microbiol. 81:203–209. Cerca con Google

71. Yang S-Y, Lü F-X, Lu Z-X, Bie X-M, Jiao Y, Sun L-J, Yu B. 2008. Production of gamma-aminobutyric acid by Streptococcus salivarius subsp. thermophilus Y2 under submerged fermentation. Amino Acids 34:473–8. Cerca con Google

72. Siragusa S, De Angelis M, Di Cagno R, Rizzello CG, Coda R, Gobbetti M. 2007. Synthesis of gamma-aminobutyric acid by lactic acid bacteria isolated from a variety of Italian cheeses. Appl. Environ. Microbiol. 73:7283–90. Cerca con Google

73. Bank TW. 2012. Malnutrition and changing food systems, p. 13–25. In THe state of food and agriculture 2013. Cerca con Google

74. Stanton C, Ross RP, Fitzgerald GF, Sinderen D Van. 2005. Fermented functional foods based on probiotics and their biogenic metabolites. Curr. Opin. Biotechnol. 16:198–203. Cerca con Google

75. Iyer R, Tomar SK. 2012. Folate and Prevention of Neural Tube Disease. In Neural Tube Defects – Role of Folate, Prevention Strategies and Genetics. InTech. Cerca con Google

76. Juarez M, Laiño JEE, Giori GS De, Leblanc JGG, Juarez del Valle M, Laiño JEE, Savoy de Giori G, Leblanc JGG. 2014. Riboflavin producing lactic acid bacteria as a biotechnological strategy to obtain bio-enriched soymilk. Food Res. Int. 62:1015–1019. Cerca con Google

77. Sybesma W, Burgess C, Starrenburg M, Van Sinderen D, Hugenholtz J. 2004. Multivitamin production in Lactococcus lactis using metabolic engineering. Metab. Eng. 6:109–115. Cerca con Google

78. Ibrahim GA, Sayed HSE-, El-shafei K, Sharaf OM. 2015. Riboflavin and Folate Production in Different Media using Encapsulated Streptococcus Thermophilus and Lactobacillus Plantarum. Middle East J. Appl. Sci. 5:663–669. Cerca con Google

79. Rasmussen TB, Danielsen M, Valina Garrigues C, Johansen E, Pedersen MB, Valina O, Garrigues C, Johansen E, Pedersen MB. 2008. Streptococcus thermophilus core genome: comparative genome hybridization study of 47 strains. Appl. Environ. Microbiol. 74:4703. Cerca con Google

80. Bolotin A, Quinquis B, Renault P, Sorokin A, Ehrlich SD, Kulakauskas S, Lapidus A, Goltsman E, Mazur M, Pusch GD, Fonstein M, Overbeek R, Kyprides N, Purnelle B, Prozzi D, Ngui K, Masuy D, Hancy F, Burteau S, Boutry M, Delcour J, Goffeau A, Hols P. 2004. Complete sequence and comparative genome analysis of the dairy bacterium Streptococcus thermophilus. Nat. Biotechnol. 22:1554–1558. Cerca con Google

81. Shendure J, Ji H. 2008. Next-generation DNA sequencing. Nat. Biotechnol. 26:1135–1145. Cerca con Google

82. Treu L. 2012. A genomic and transcriptomic approach to characterize oenological Saccharomyces cerevisiae strains. PhD thesis. Padua University, Padua. Cerca con Google

83. Quail MA, Smith M, Coupland P, Otto TD, Harris SR, Connor TR, Bertoni A, Swerdlow HP, Gu Y. 2012. A tale of three next generation sequencing platforms?: comparison of Ion Torrent , Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics 13:1. Cerca con Google

84. Makarova K, Slesarev A, Wolf Y, Sorokin A, Mirkin B, Koonin E, Pavlov a, Pavlova N, Karamychev V, Polouchine N, Shakhova V, Grigoriev I, Lou Y, Rohksar D, Lucas S, Huang K, Goodstein DM, Hawkins T, Dosti B, Plengvidhya V, Welker D, Hughes J, Goh Y, Benson A, Baldwin K, Smeianov V, Wechter W, Barabote R, Lorca G, Altermann E, Barrangou R, Ganesan B, Xie Y, Rawsthorne H, Tamir D, Parker C, Breidt F, Broadbent J, Hutkins R, Steele J, Unlu G, Saier M, Klaenhammer T, Richardson P, Kozyavkin S, Weimer B, Mills D, Lee J-H, Díaz-Muñiz I, Dosti B, Smeianov V, Wechter W, Barabote R, Lorca G, Altermann E, Barrangou R, Ganesan B, Xie Y, Rawsthorne H, Tamir D, Parker C, Breidt F, Broadbent J, Hutkins R, O’Sullivan D, Steele J, Unlu G, Saier M, Klaenhammer T, Richardson P, Kozyavkin S, Weimer B, Mills D. 2006. Comparative genomics of the lactic acid bacteria. Proc. Natl. Acad. Sci. U. S. A. 103:15611–6. Cerca con Google

85. Delorme C, Bartholini C, Luraschi M, Pons N, Loux V, Almeida M, Guédon E, Gibrat J-F, Renault P. 2011. Complete genome sequence of the pigmented Streptococcus thermophilus strain JIM8232. J. Bacteriol. 193:5581–2. Cerca con Google

86. Sun Z, Chen X, Wang J, Zhao W, Shao Y, Wu L, Zhou Z, Sun T, Wang L, Meng H, Zhang H, Chen W. 2011. Complete genome sequence of Streptococcus thermophilus strain ND03. J. Bacteriol. 193:793–4. Cerca con Google

87. Kang X, Ling N, Sun G, Zhou Q, Zhang L, Sheng Q. 2012. Complete genome sequence of Streptococcus thermophilus strain MN-ZLW-002. J. Bacteriol. 194:4428–9. Cerca con Google

88. Wu Q, Tun HM, Leung FC, Shah NP. 2014. Genomic insights into high exopolysaccharide-producing dairy starter bacterium Streptococcus thermophilus ASCC 1275 Sci Rep 4: 17–21. Cerca con Google

89. Labrie SJ, Tremblay DM, Plante P, Wasserscheid J, Dewar K, Corbeil J, Moineau S. 2015. Complete Genome Sequence of Streptococcus thermophilus SMQ-301 , a Model Strain for Phage-Host Interactions. Genome Announc. 3:12–13. Cerca con Google

90. Shi Y, Chen Y, Li Z, Yang L, Chen W, Mu Z. 2015. Complete Genome Sequence of Streptococcus thermophilus MN-BM- A02 , a Rare Strain with a High Acid-Producing Rate and Low Post- Acidification Ability. Genome Announc.3:2–3. Cerca con Google

91. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJM. 2009. ABySS?: A parallel assembler for short read sequence data. Genome research 19: 1117–1123. Cerca con Google

92. Zerbino DR, Birney E. 2008. Velvet?: Algorithms for de novo short read assembly using de Bruijn graphs Genome research 18: 821–829. Cerca con Google

93. Rissman AI, Mau B, Biehl BS, Darling AE, Glasner JD, Perna NT. 2009. Reordering contigs of draft genomes using the Mauve Aligner. Bioinformatics 25:2071–2073. Cerca con Google

94. Aziz RK, Bartels D, Best AA, Dejongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, Mcneil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O. 2008. The RAST Server?: Rapid Annotations using Subsystems Technology. BMC Genomics 15:1–15. Cerca con Google

95. Aziz RK, Devoid S, Disz T, Edwards R a., Henry CS, Olsen GJ, Olson R, Overbeek R, Parrello B, Pusch GD, Stevens RL, Vonstein V, Xia F. 2012. SEED Servers: High-Performance Access to the SEED Genomes, Annotations, and Metabolic Models. PLoS One 7:e48053. Cerca con Google

96. Carver T, Harris SR, Berriman M, Parkhill J, McQuillan J a. 2012. Artemis: an integrated platform for visualization and analysis of high-throughput sequence-based experimental data. Bioinformatics 28:464–9. Cerca con Google

97. Tuimala J. A primer to phylogenetic analysis using the PHYLIP package. CSC—Scientific Computing Ltd.: Espoo, Finland. Cerca con Google

98. Segata N, Bornigen D, Xochitl M, Hutternhower C. 2013. PhyloPhlAn is a new method for improved phylogenetic and taxonomic placement of microbes. Nat. Commun. 18:2304. Cerca con Google

99. Vernikos G, Parkhill J. 2006. Genome analysis Interpolated variable order motifs for identification of horizontally acquired DNA?: revisiting the Salmonella pathogenicity islands. Bioinformatics 22:2196–2203. Cerca con Google

100. Bratlie MS, Johansen J, Sherman BT, Huang DW, Lempicki R a, Drabløs F. 2010. Gene duplications in prokaryotes can be associated with environmental adaptation. BMC Genomics 11:588. Cerca con Google

101. Tettelin H, Masignani V, Cieslewicz MJ, Donati C, Medini D, Ward NL, Angiuoli S V, Crabtree J, Jones AL, Durkin a S, Deboy RT, Davidsen TM, Mora M, Scarselli M, Margarit y Ros I, Peterson JD, Hauser CR, Sundaram JP, Nelson WC, Madupu R, Brinkac LM, Dodson RJ, Rosovitz MJ, Sullivan S a, Daugherty SC, Haft DH, Selengut J, Gwinn ML, Zhou L, Zafar N, Khouri H, Radune D, Dimitrov G, Watkins K, O’Connor KJB, Smith S, Utterback TR, White O, Rubens CE, Grandi G, Madoff LC, Kasper DL, Telford JL, Wessels MR, Rappuoli R, Fraser CM. 2005. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome”. Proc. Natl. Acad. Sci. U. S. A. 102:13950–5. Cerca con Google

102. Fu L, Niu B, Zhu Z, Wu S, Li W. 2012. BIOINFORMATICS APPLICATIONS NOTE Sequence analysis CD-HIT?: accelerated for clustering the next-generation sequencing data. Bioinformatics 28:3150–3152. Cerca con Google

103. Campanaro S, Treu L, Vendramin V, Bovo B, Giacomini A, Corich V. 2014. Metagenomic analysis of the microbial community in fermented grape marc reveals that Lactobacillus fabifermentans is one of the dominant species: Insights into its genome structure. Appl. Microbiol. Biotechnol. 98:6015–6037. Cerca con Google

104. Saeed, A, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiagarajan M, Sturn A, Snuffin M, Rezantsev A, Popov D, Ryltsov A, Kostukovich E, Borisovsky I, Liu Z, Vinsavich A, Trush V, Quackenbush J. 2003. TM4: a free, open-source system for microarray data management and analysis. Biotechniques 34:374–348. Cerca con Google

105. R Development Core Team R. 2008. Computational Many-Particle Physics. R Found. Stat. Comput. R Foundation for Statistical Computing. Cerca con Google

106. Brocchieri L. 2014. Phylogenetics & Evolutionary Biology The GC Content of Bacterial Genomes 2:2–4. Cerca con Google

107. Lassalle F, Périan S, Bataillon T, Nesme X, Duret L, Daubin V. 2015. GC-Content Evolution in Bacterial Genomes: The Biased Gene Conversion Hypothesis Expands. PLOS Genet. 11:e1004941. Cerca con Google

108. Makarova KS, Haft DH, Barrangou R, Brouns SJJ, Mojica FJM, Wolf YI, Yakunin AF, Oost J Van Der, Koonin E V. 2011. Evolution and classification of the CRISPR–Cas systems. Nat. Publ. Gr. 9:467–477. Cerca con Google

109. Makarova KS, Koonin E V. 2007. Evolutionary Genomics of Lactic Acid Bacteria. J. Bacteriol. 189:1199–1208. Cerca con Google

110. Nguyen TKC, Tran NP, Cavin J-F. 2011. Genetic and biochemical analysis of PadR-padC promoter interactions during the phenolic acid stress response in Bacillus subtilis 168. J. Bacteriol. 193:4180–91. Cerca con Google

111. Johansson P, Hederstedt L. 1999. Organization of genes for tetrapyrrole biosynthesis in Gram-positive bacteria. Microbiology, 145: 529–538. Cerca con Google

112. Sleator RD, Hill C. 2002. Bacterial osmoadaptation: the role of osmolytes in bacterial stress and virulence. FEMS Microbiol. Rev. 26:49–71. Cerca con Google

113. Serror P, Dervyn R, Ehrlich SD, Maguin E. 2003. csp -like genes of Lactobacillus delbrueckii ssp. bulgaricus and their response to cold shock. FEMS Microbiol. Lett. 226:323–330. Cerca con Google

114. Awad S, Hassan a N, Muthukumarappan K. 2005. Application of exopolysaccharide-producing cultures in reduced-fat Cheddar cheese: texture and melting properties. J. Dairy Sci. 88:4204–13. Cerca con Google

115. Vonk RJ, Reckman GAR, Harmsen HJM, Priebe MG. 2012. Probiotics and Lactose Intolerance, p. 149–160. In Probiotics. Cerca con Google

116. Vuyst L De, Weckx S, Ravyts F, Herman L, Leroy F. 2011. New insights into the exopolysaccharide production of Streptococcus thermophilus. Int. Dairy J. 21:586–591. Cerca con Google

117. Izawa N, Hanamizu T, Iizuka R, Sone T, Mizukoshi H, Kimura K, K C. 2009. Streptococcus thermophilus produces exopolysaccharides including hyaluronic acid. J. Biosci. Bioeng. 107:119–123. Cerca con Google

118. Pascuma M, Hebert EM, Mozzi F, Font De Valdez G, Pescuma M, Mozzi F, Valdez GF De. 2007. Hydrolysis of whey proteins by Lactobacillus acidophilus , Streptococcus thermophilus and Lactobacillus delbrueckii ssp . bulgaricus grown in a chemically defined medium. J. Appl. Microbiol. 103:1738–1746. Cerca con Google

119. Rossi F, Marzotto M, Cremonese S, Rizzotti L, Torriani S. 2013. Diversity of Streptococcus thermophilus in bacteriocin production?; inhibitory spectrum and occurrence of thermophilin genes. Food Microbiol. 35:27–33. Cerca con Google

120. Riley M a. 1998. Molecular mechanisms of bacteriocin evolution. Annu. Rev. Genet. 32:255–278. Cerca con Google

121. Zwietering MH, Jongenburger I, Rombouts FM, Van K. 1990. Modeling of the Bacterial Growth Curve Modeling of the Bacterial Growth Curve. Appl. Environ. Microbio. 56: 1875-1881. Cerca con Google

122. Baranyi J, Roberts T a. 1994. A dynamic approach to predicting bacterial growth in food. Int. J. Food Microbiol. 23:277–294. Cerca con Google

123. Huang L. 2008. Growth kinetics of Listeria monocytogenes in broth and beef frankfurters--determination of lag phase duration and exponential growth rate under isothermal conditions. J. Food Sci. 73:E235–42. Cerca con Google

124. Huang L. 2010. Growth kinetics of Escherichia coli O157:H7 in mechanically-tenderized beef. Int. J. Food Microbiol. 140:40–48. Cerca con Google

125. van den Bogaard PTC, Hols P, Kuipers OP, Kleerebezem M, de Vos WM. 2004. Sugar utilisation and conservation of the gal-lac gene cluster in Streptococcus thermophilus. Syst. Appl. Microbiol. 27:10–17. Cerca con Google

126. Tamura K, Stecher G, Peterson D, Filipski A, Kuman S. 2013. MEGA: Molecular Evolutionary Genetics Analysis version 6. Mol. Biol. Evol. 30:2725–2729. Cerca con Google

127. Morris LS, Evans J, Marchesi JR. 2012. A robust plate assay for detection of extracellular microbial protease activity in metagenomic screens and pure cultures. J. Microbiol. Methods 91:144–146. Cerca con Google

128. Maragkoudakis P a., Nardi T, Bovo B, D’Andrea M, Howell KS, Giacomini A, Corich V. 2013. Biodiversity, dynamics and ecology of bacterial community during grape marc storage for the production of grappa. Int. J. Food Microbiol. 162:143–151. Cerca con Google

129. van Heel a. J, de Jong a., Montalban-Lopez M, Kok J, Kuipers OP. 2013. BAGEL3: automated identification of genes encoding bacteriocins and (non-)bactericidal posttranslationally modified peptides. Nucleic Acids Res. 41:W448–W453. Cerca con Google

130. Letort C, Letort C, Juillard V, Juillard V. 2001. Development of a minimal chemically-defined medium for the exponential growth of Streptococcus thermophilus. J. Appl. Microbiol. 91:1023–1029. Cerca con Google

131. Linares DM, Kok J, Poolman B. 2010. Genome sequences of Lactococcus lactis MG1363 (revised) and NZ9000 and comparative physiological studies. J. Bacteriol. 192:5806–12. Cerca con Google

132. López S, Prieto M, Dijkstra J, Dhanoa MS, France J. 2004. Statistical evaluation of mathematical models for microbial growth. Int. J. Food Microbiol. 96:289–300. Cerca con Google

133. Vaillancourt K, Bédard N, Bart C, Tessier M, Robitaille G, Turgeon N, Frenette M, Moineau S, Vadeboncoeur C. 2008. Role of galK and galM in galactose metabolism by Streptococcus thermophilus. Appl. Environ. Microbiol. 74:1264–7. Cerca con Google

134. Ercolini D, Fusco V, Blaiotta G, Coppola S. 2005. Sequence heterogeneity in the lacSZ operon of Streptococcus thermophilus and its use in PCR systems for strain differentiation 156:161–172. Cerca con Google

135. Cochu a, Roy D, Vaillancourt K, Lemay JD, Casabon I, Frenette M, Moineau S, Vadeboncoeur C. 2005. The doubly phosphorylated form of HPr, HPr(Ser~P)(His-P), is abundant in exponentially growing cells of Streptococcus thermophilus and phosphorylates the lactose transporter LacS as efficiently as HPr(His~P). Appl Env. Microbiol 71:1364–1372. Cerca con Google

136. Vaughan EE, van den Bogaard PT, Catzeddu P, Kuipers OP, de Vos WM. 2001. Activation of silent gal genes in the lac-gal regulon of Streptococcus thermophilus. J. Bacteriol. 183:1184–94. Cerca con Google

137. Vaillancourt K, Moineau S, Frenette M, Lessard C, Vadeboncoeur C. 2002. Galactose and lactose genes from the galactose-positive bacterium Streptococcus salivarius and the phylogenetically related galactose-negative bacterium Streptococcus thermophilus: Organization, sequence, transcription, and activity of the gal gene produc. J. Bacteriol. 184:785–793. Cerca con Google

138. Stingele F, Neeser JR, Mollet B, Stingele F, Neeser J. 1996. Identification and characterization of the eps ( Exopolysaccharide ) gene cluster from Streptococcus thermophilus Sfi6 . Identification and Characterization of the eps ( Exopolysaccharide ) Gene Cluster from Streptococcus thermophilus Sfi6. J. Bacteriol. 178:1680. Cerca con Google

139. Arqués JL, Rodríguez E, Langa S, Landete JM, Medina M. 2015. Antimicrobial Activity of Lactic Acid Bacteria in Dairy Products and Gut: Effect on Pathogens. Biomed Res. Int. 2015:1–9. Cerca con Google

140. Willey JM, van der Donk W a. 2007. Lantibiotics: peptides of diverse structure and function. Annu. Rev. Microbiol. 61:477–501. Cerca con Google

141. Stoddard GW, Petzel JP, van Belkum MJ, Kok J, McKay LL. 1992. Molecular analysis of the lactococcin A gene cluster from Lactococcus lactis subsp. lactis biovar diacetylactis WM4. Appl. Environ. Microbiol. 58:1952–1961. Cerca con Google

142. Alting a. C, Engels WJM, Van Schalkwijk S, Exterkate F a. 1995. Purification and characterization of cystathionine???-lyase from Lactococcus lactis subsp. cremoris B78 and its possible role in flavor development in cheese. Appl. Environ. Microbiol. 61:4037–4042. Cerca con Google

143. Garault P, Letort C, Juillard V, Monnet V. 2000. Branched-chain amino acid biosynthesis is essential for optimal growth of Streptococcus thermophilus in milk. Appl Env. Microbiol 66:5128–5133. Cerca con Google

144. Chopin a. 1993. Organization and regulation of genes for amino acid biosynthesis in lactic acid bacteria. FEMS Microbiol. Rev 12:21–37. Cerca con Google

145. Van Kranenburg R, Kleerebezem M, Van Hylckama Vlieg J, Ursing BM, Boekhorst J, Smit B a., Ayad EHE, Smit G, Siezen RJ. 2002. Flavour formation from amino acids by lactic acid bacteria: Predictions from genome sequence analysis. Int. Dairy J. 12:111–121. Cerca con Google

146. Obeid R, Pietrzik K, Jr GPO, Kancherla V, Holzgreve W, Wieser S. 2015. Preventable Spina Bifida and Anencephaly in Europe. Birth Defects Res A Clin Mol Teratol 103: 1–9 Cerca con Google

147. Ohrvik VE, Witthoft CM. 2011. Human Folate Bioavailability. Nutrients 475–490. Cerca con Google

148. Wouters JTM, Ayad EHE, Hugenholtz J, Smit G. 2002. Microbes from raw milk for fermented dairy products. Int. Dairy J. 12:91–109. Cerca con Google

149. Sybesma W, Starrenburg M, Tijsseling L, Hoefnagel MHN, Hugenholtz J. 2003. Effects of Cultivation Conditions on Folate Production by Lactic Acid Bacteria. Metab. eng. 69:4542–4548. Cerca con Google

150. D RIP, D SKTP. 2011. Dietary effect of folate-rich fermented milk produced by Streptococcus thermophilus strains on hemoglobin level. Nutrition 27:994–997. Cerca con Google

151. Laiño JE, Leblanc JG, Giori GS De. 2012. Production of natural folates by lactic acid bacteria starter cultures isolated from artisanal Argentinean yogurts 588:581–588. Cerca con Google

152. Laino JE, del Valle MJ, Savoy De Giori G, Leblanc JGJ. 2013. Development of a high folate concentration yogurt naturally bio-enriched using selected lactic acid bacteria. LWT - Food Sci. Technol. 54:1–5. Cerca con Google

153. Hugenschmidt S, Schwenninger SM, Gnehm N, Lacroix C. 2010. Screening of a natural biodiversity of lactic and propionic acid bacteria for folate and vitamin B12 production in supplemented whey permeate. Int. Dairy J. 20:852–857. Cerca con Google

154. Mousavi SS, Moeini H, Mohamad R, Dinarvand M, Ariff A, Ling FH, Raha R. 2013. Effects of medium and culture conditions on folate production by Streptococcus thermophilus BAA-250. Res. Biotechnol. 4:21–29. Cerca con Google

155. Maeda H, Dudareva N. 2012. The Shikimate Pathway and Aromatic Amino Acid Biosynthesis in Plants. Annu. Rev. Plant Biol. 63:73–105. Cerca con Google

156. de Crécy-Lagard V, El Yacoubi B, de la Garza RD, Noiriel A, Hanson AD. 2007. Comparative genomics of bacterial and plant folate synthesis and salvage: predictions and validations. BMC Genomics 8:245. Cerca con Google

157. Matsui K, Wang H-C, Hirota T, Hirokazu M, Sabu K, Kunihiro S. 1982. Riboflavin production by roseoflavin-resistant strains of some bacteria. Agric. Biol. Chem. 48:2003–2008. Cerca con Google

158. Burgess C, O’Connell-Motherway M, Sybesma W, Hugenholtz J, Van Sinderen D. 2004. Ribo avin Production in. Appl. Environ. Microbiol. 70:5769–5777. Cerca con Google

159. Perkins JB, Sloma a, Hermann T, Theriault K, Zachgo E, Erdenberger T, Hannett N, Chatterjee NP, Williams II V, Jr GR, Hatch R, Pero J. 1999. Genetic engineering of Bacillus subtilis for the commercial production of riboflavin. J. Ind. Microbiol. Biotechnol. 22:8–18. Cerca con Google

160. Russo P, Capozzi V, Arena MP, Spadaccino G, Dueñas MT, López P, Fiocco D, Spano G. 2014. Riboflavin-overproducing strains of Lactobacillus fermentum for riboflavin-enriched bread. Appl. Microbiol. Biotechnol. 98:3691–3700. Cerca con Google

161. Juarez del Valle M, Laiño JE, Savoy de Giori G, LeBlanc JG. 2014. Riboflavin producing lactic acid bacteria as a biotechnological strategy to obtain bio-enriched soymilk. Food Res. Int. 62:1015–1019. Cerca con Google

162. Laiño JE, de Giori GS, LeBlanc JG. 2007. Folate production by lactic acid bacteria and other food-grade microorganisms, p. 329–339. In Communicating Current Research and Educational Topics and Trends in Applied Microbiology. A. Méndez-Vilas Cerca con Google

163. Horne DW, Patterson D. 1988. Lactobacillus casei microbiological assay of folic acid derivatives in 96-well microtiter plates. Clin. Chem. 34:2357–2359. Cerca con Google

164. Wegkamp A. 2003. Metabolic engineering of folate production in lactic acid bacteria. PhD thesis. Wageningen University, Wageningen. Cerca con Google

165. Divya JB, Nampoothiri KM. 2014. Folate fortification of skim milk by a probiotic Lactococcus lactis CM28 and evaluation of its stability in fermented milk on cold storage. J. Food Sci. Technol. 52:3513–3519. Cerca con Google

166. Padalino M, Perez-Conesa D, López-Nicolás R, Frontela-Saseta C, Ros-Berruezo G. 2012. Effect of fructooligosaccharides and galactooligosaccharides on the folate production of some folate-producing bacteria in media cultures or milk. Int. Dairy J. 27:27–33. Cerca con Google

167. Douillard FP, de Vos WM. 2014. Functional genomics of lactic acid bacteria: from food to health. Microb. Cell Fact. 13:S8. Cerca con Google

168. Alkema W, Boekhorst J, Wels M, van Hijum S a. FT. 2015. Microbial bioinformatics for food safety and production. Brief. Bioinform. 1–10. Cerca con Google

169. Leimena MM, Wels M, Bongers RS, Smid EJ, Zoetendal EG, Kleerebezem M. 2012. Comparative analysis of Lactobacillus plantarum WCFS1 transcriptomes by using DNA microarray and next-Generation sequencing technologies. Appl. Environ. Microbiol. 78:4141–4148. Cerca con Google

170. Bisanz JE, Macklaim JM, Gloor GB, Reid G. 2014. Bacterial metatranscriptome analysis of a probiotic yogurt using an RNA-Seq approach. Int. Dairy J. 39:284–292. Cerca con Google

171. Garber M, Grabherr MG, Guttman M, Trapnell C. 2011. Computational methods for transcriptome annotation and quantification using RNA-seq. Nat. Methods 8:469–477. Cerca con Google

172. Li B, Ruotti V, Stewart RM, Thomson JA, Dewey CN. 2010. RNA-Seq gene expression estimation with read mapping uncertainty. Bioinformatics 26:493–500. Cerca con Google

173. Creecy JP, Conway T. 2014. Quantitative bacterial transcriptomics with RNA-seq. Curr. Opin. Microbiol. 23C:133–140. Cerca con Google

174. Mortazavi A, Williams B, McCue K, Schaeffer L, Wold B. 2008. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5:621 – 628. Cerca con Google

175. Gientka I, Duszkiewicz-Reinhard W. 2009. Shikimate pathway in yeast cells: Enzymes, functioning, regulation - A review. Polish J. Food Nutr. Sci. 59:113–118. Cerca con Google

176. Plach MG, Löffler P, Merkl R, Sterner R. 2015. Conversion of anthranilate synthase into isochorismate synthase: implications for the evolution of chorismate-utilizing enzymes. Angew. Chem. Int. Ed. Engl. 54:11270–4. Cerca con Google

177. Barona-Gómez F, Hodgson D a. 2003. Occurrence of a putative ancient-like isomerase involved in histidine and tryptophan biosynthesis. EMBO Rep. 4:296–300. Cerca con Google

178. Ely B, Pittard J. 1979. Aromatic amino acid biosynthesis: regulation of shikimate kinase in Escherichia coli K-12. J Bacteriol 138:933–943. Cerca con Google

179. García-Cañas V, Simó C, Herrero M, Ibáñez E, Cifuentes A. 2012. Present and future challenges in food analysis: Foodomics. Anal. Chem. 84:10150–10159. Cerca con Google

180. Tavaria FK, Dahl S, Carballo FJ, Malcata FX. 2002. Amino Acid Catabolism and Generation of Volatiles by Lactic Acid Bacteria. J. Dairy Sci. 2462–2470. Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record