Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Bortolozzi, Mario (2008) Calcium dynamics in inner ear health and disease. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
16Mb

Abstract (inglese)

Ca2+ acts as a fundamental signal transduction element in the inner ear, delivering information about sound acceleration and gravity through a small number of mechano-transduction channels in the hair cell stereocilia as far as to the ribbon synapse, where it drives neurotransmission. The genetic approach is proving fundamental in unravelling the molecular basis of Ca2+ function in the control of these key cellular processes. Ablation or missense mutations of the PMCA2 Ca2+-pump of stereocilia cause deafness and loss of balance. To investigate the physiological significance of these genetic defects, we studied PMCA2 Ca2+-extrusion in hair cells of utricle organotypic cultures from neonatal mice inner ear. Confocal Ca2+ imaging showed that the dissipation of stereociliary Ca2+ transients, induced by cytosolic photoliberation, was compromised by various degrees in PMCA2 knockout mice as well as in the mutant deafwaddler and Oblivion mice. Alteration of the intracellular Ca2+ concentration ( ) can trouble the finely tuned control mechanisms of signal transduction, thus resulting as a fundamental physiological parameter to be investigated in the comprehension of deafness mechanisms. By comparing our experimental fluorescence data with those derived from Monte Carlo numerical simulations, we provided a novel method to effectively deconvolve within cytoplasmic microdomains that would otherwise remain inaccessible to direct observation. Data analysis performed within this environment indicates that changes of hair cell basolateral during synaptic transmission are primarily controlled by the endogenous Ca2+ buffers at both short (< 1 micron) and long (tens of microns) distances from the presynaptic active zones. Furthermore, we provided quantitative estimates of concentration and kinetics of the endogenous Ca2+-buffers and Ca2+-ATPases in frog vestibular hair cells. We successfully applied mathematical models also in the study of channel permeability to second messengers of gap junctions, intercellular channels connecting supporting cells of the organ of Corti. In particular, it's known that defective permeation of cAMP or inositol 1,4,5-trisphosphate through gap junction channels is associated with peripheral neuropathies and deafness, respectively. Our model permits quantification of defects of metabolic coupling and can be used to investigate interdependence of intercellular diffusion and cross-talk between diverse signaling pathways.


Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Mammano, Fabio
Dottorato (corsi e scuole):Ciclo 20 > Scuole per il 20simo ciclo > BIOSCIENZE > NEUROBIOLOGIA
Data di deposito della tesi:31 Gennaio 2008
Anno di Pubblicazione:31 Gennaio 2008
Informazioni aggiuntive:-
Parole chiave (italiano / inglese):Calcium signaling, calcium ATPases, PMCA2 pumps, mutant mice, fluorescent ion indicators, flash photolysis, endogenous buffers, voltage dependent channels, reaction-diffusion equations, numerical simulations, gap junctions, single pore permeability
Settori scientifico-disciplinari MIUR:Area 05 - Scienze biologiche > BIO/11 Biologia molecolare
Struttura di riferimento:Dipartimenti > Dipartimento di Scienze Biomediche Sperimentali
Codice ID:949
Depositato il:25 Nov 2008
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. Birkenhager R, Aschendorff A, Schipper J, Laszig R. (2007) [Non-syndromic hereditary hearing impairment]. Laryngorhinootologie, 86, 299-309; quiz 310-3. Cerca con Google

2. Nance WE. (2003) The genetics of deafness. Ment Retard Dev Disabil Res Rev, 9, 109-19. Cerca con Google

3. Cuajungco MP, Grimm C, Heller S. (2007) TRP channels as candidates for hearing and balance abnormalities in vertebrates. Biochim Biophys Acta, 1772, 1022-7. Cerca con Google

4. Hudspeth AJ. (1989) How the ear's works work. Nature, 341, 397-404. Cerca con Google

5. Parsons TD. (2006) Neurobiology: auditory fidelity. Nature, 444, 1013-4. Cerca con Google

6. Lelli A, Perin P, Martini M, Ciubotaru CD, Prigioni I, Valli P, Rossi ML, Mammano F. (2003) Presynaptic calcium stores modulate afferent release in vestibular hair cells. J Neurosci, 23, 6894-903. Cerca con Google

7. Roberts WM. (1994) Localization of calcium signals by a mobile calcium buffer in frog saccular hair cells. J Neurosci, 14, 3246-62. Cerca con Google

8. Hill JK, Williams DE, LeMasurier M, Dumont RA, Strehler EE, Gillespie PG. (2006) Splice-site A choice targets plasma-membrane Ca2+-ATPase isoform 2 to hair bundles. J Neurosci, 26, 6172-80. Cerca con Google

9. Street VA, McKee-Johnson JW, Fonseca RC, Tempel BL, Noben-Trauth K. (1998) Mutations in a plasma membrane Ca2+-ATPase gene cause deafness in deafwaddler mice. Nat Genet, 19, 390-4. Cerca con Google

10. Ficarella R, Di Leva F, Bortolozzi M, Ortolano S, Donaudy F, Petrillo M, Melchionda S, Lelli A, Domi T, Fedrizzi L, Lim D, Shull GE, Gasparini P, Brini M, Mammano F, Carafoli E. (2007) A functional study of plasma-membrane calcium-pump isoform 2 mutants causing digenic deafness. Proc Natl Acad Sci U S A, 104, 1516-21. Cerca con Google

11. Brini M, Leva FD, Domi T, Fedrizzi L, Lim D, Carafoli E. (2007) Plasma-membrane calcium pumps and hereditary deafness. Biochem Soc Trans, 35, 913-8. Cerca con Google

12. Yamoah EN, Lumpkin EA, Dumont RA, Smith PJ, Hudspeth AJ, Gillespie PG. (1998) Plasma membrane Ca2+-ATPase extrudes Ca2+ from hair cell stereocilia. J Neurosci, 18, 610-24. Cerca con Google

13. Gillespie PG, Cyr JL. (2004) Myosin-1c, the hair cell's adaptation motor. Annu Rev Physiol, 66, 521-45. Cerca con Google

14. Fettiplace R, Ricci AJ. (2003) Adaptation in auditory hair cells. Curr Opin Neurobiol, 13, 446-51. Cerca con Google

15. Fettiplace R, Ricci AJ. (2006) Mechanoelectrical transduction in auditory hair cells. In: Vertebrate Hair Cells. Vol. 27 (eds. RA Eatock, RR Fay, AN Popper), pp 154-203. Springer Science Inc., New York. Cerca con Google

16. Wood JD, Muchinsky SJ, Filoteo AG, Penniston JT, Tempel BL. (2004) Low endolymph calcium concentrations in deafwaddler2J mice suggest that PMCA2 contributes to endolymph calcium maintenance. J Assoc Res Otolaryngol, 5, 99-110. Cerca con Google

17. Wood JD, Muchinsky SJ, Filoteo AG, Penniston JT, Tempel BL. (2004) Low Endolymph Calcium Concentrations in deafwaddler(2J) Mice Suggest that PMCA2 Contributes to Endolymph Calcium Maintenance. J Assoc Res Otolaryngol. Cerca con Google

18. Assad JA, Shepherd GM, Corey DP. (1991) Tip-link integrity and mechanical transduction in vertebrate hair cells. Neuron, 7, 985-94. Cerca con Google

19. Ohmori H. (1985) Mechano-electrical transduction currents in isolated vestibular hair cells of the chick. J Physiol, 359, 189-217. Cerca con Google

20. Corey DP, Hudspeth AJ. (1979) Ionic basis of the receptor potential in a vertebrate hair cell. Nature, 281, 675-7. Cerca con Google

21. Assad JA, Hacohen N, Corey DP. (1989) Voltage dependence of adaptation and active bundle movement in bullfrog saccular hair cells. Proc Natl Acad Sci U S A, 86, 2918-22. Cerca con Google

22. Ricci AJ, Fettiplace R. (1998) Calcium permeation of the turtle hair cell mechanotransducer channel and its relation to the composition of endolymph. J Physiol, 506 ( Pt 1), 159-73. Cerca con Google

23. Roux I, Safieddine S, Nouvian R, Grati M, Simmler MC, Bahloul A, Perfettini I, Le Gall M, Rostaing P, Hamard G, Triller A, Avan P, Moser T, Petit C. (2006) Otoferlin, defective in a human deafness form, is essential for exocytosis at the auditory ribbon synapse. Cell, 127, 277-89. Cerca con Google

24. Delmaghani S, del Castillo FJ, Michel V, Leibovici M, Aghaie A, Ron U, Van Laer L, Ben-Tal N, Van Camp G, Weil D, Langa F, Lathrop M, Avan P, Petit C. (2006) Mutations in the gene encoding pejvakin, a newly identified protein of the afferent auditory pathway, cause DFNB59 auditory neuropathy. Nat Genet, 38, 770-8. Cerca con Google

25. Lumpkin EA, Hudspeth AJ. (1998) Regulation of free Ca2+ concentration in hair-cell stereocilia. J Neurosci, 18, 6300-18. Cerca con Google

26. Edmonds B, Reyes R, Schwaller B, Roberts WM. (2000) Calretinin modifies presynaptic calcium signaling in frog saccular hair cells. Nat Neurosci, 3, 786-90. Cerca con Google

27. Heller S, Bell AM, Denis CS, Choe Y, Hudspeth AJ. (2002) Parvalbumin 3 is an abundant Ca2+ buffer in hair cells. J Assoc Res Otolaryngol, 3, 488-98. Cerca con Google

28. Baird RA, Steyger PS, Schuff NR. (1997) Intracellular distributions and putative functions of calcium-binding proteins in the bullfrog vestibular otolith organs. Hear Res, 103, 85-100. Cerca con Google

29. Rispoli G, Martini M, Rossi ML, Mammano F. (2001) Dynamics of intracellular calcium in hair cells isolated from the semicircular canal of the frog. Cell Calcium, 30, 131-40. Cerca con Google

30. Issa NP, Hudspeth AJ. (1994) Clustering of Ca2+ channels and Ca(2+)-activated K+ channels at fluorescently labeled presynaptic active zones of hair cells. Proc Natl Acad Sci U S A, 91, 7578-82. Cerca con Google

31. Tucker T, Fettiplace R. (1995) Confocal imaging of calcium microdomains and calcium extrusion in turtle hair cells. Neuron, 15, 1323-35. Cerca con Google

32. Saxton MJ. (1994) Anomalous diffusion due to obstacles: a Monte Carlo study. Biophys J, 66, 394-401. Cerca con Google

33. Saxton MJ. (1996) Anomalous diffusion due to binding: a Monte Carlo study. Biophys J, 70, 1250-62. Cerca con Google

34. Kruk PJ, Korn H, Faber DS. (1997) The effects of geometrical parameters on synaptic transmission: a Monte Carlo simulation study. Biophys J, 73, 2874-90. Cerca con Google

35. Gil A, Segura J, Pertusa JA, Soria B. (2000) Monte carlo simulation of 3-D buffered Ca(2+) diffusion in neuroendocrine cells. Biophys J, 78, 13-33. Cerca con Google

36. Bennett MR, Farnell L, Gibson WG. (2000) The probability of quantal secretion near a single calcium channel of an active zone. Biophys J, 78, 2201-21. Cerca con Google

37. Boettger T, Hubner CA, Maier H, Rust MB, Beck FX, Jentsch TJ. (2002) Deafness and renal tubular acidosis in mice lacking the K-Cl co-transporter Kcc4. Nature, 416, 874-8. Cerca con Google

38. Gerido DA, White TW. (2004) Connexin disorders of the ear, skin, and lens. Biochim Biophys Acta, 1662, 159-70. Cerca con Google

39. Harris AL. (2001) Emerging issues of connexin channels: biophysics fills the gap. Q Rev Biophys, 34, 325-472. Cerca con Google

40. Thomas D, Lipp P, Tovey SC, Berridge MJ, Li W, Tsien RY, Bootman MD. (2000) Microscopic properties of elementary Ca2+ release sites in non-excitable cells. Curr Biol, 10, 8-15. Cerca con Google

41. Saez JC, Connor JA, Spray DC, Bennett MV. (1989) Hepatocyte gap junctions are permeable to the second messenger, inositol 1,4,5-trisphosphate, and to calcium ions. Proc Natl Acad Sci U S A, 86, 2708-12. Cerca con Google

42. Kam Y, Kim DY, Koo SK, Joe CO. (1998) Transfer of second messengers through gap junction connexin 43 channels reconstituted in liposomes. Biochim Biophys Acta, 1372, 384-8. Cerca con Google

43. Niessen H, Willecke K. (2000) Strongly decreased gap junctional permeability to inositol 1,4, 5-trisphosphate in connexin32 deficient hepatocytes. FEBS Lett, 466, 112-4. Cerca con Google

44. Niessen H, Harz H, Bedner P, Kramer K, Willecke K. (2000) Selective permeability of different connexin channels to the second messenger inositol 1,4,5-trisphosphate. J Cell Sci, 113 ( Pt 8), 1365-72. Cerca con Google

45. Beltramello M, Piazza V, Bukauskas FF, Pozzan T, Mammano F. (2005) Impaired permeability to Ins(1,4,5)P3 in a mutant connexin underlies recessive hereditary deafness. Nat Cell Biol, 7, 63-9. Cerca con Google

46. Carafoli E, Penniston JT. (1985) The calcium signal. Sci Am, 253, 70-8. Cerca con Google

47. Williams RJP. (1999) Calcium:The developing role of its chemistry in biological evolution. In: Calcium as a Cellular Regulator (eds. E Carafoli, CE Klee), pp pages 3-27. Oxford University Press, New York. Cerca con Google

48. Denk W, Holt JR, Shepherd GM, Corey DP. (1995) Calcium imaging of single stereocilia in hair cells: localization of transduction channels at both ends of tip links. Neuron, 15, 1311-21. Cerca con Google

49. Elwess NL, Filoteo AG, Enyedi A, Penniston JT. (1997) Plasma membrane Ca2+ pump isoforms 2a and 2b are unusually responsive to calmodulin and Ca2+. J Biol Chem, 272, 17981-6. Cerca con Google

50. Walker RG, Hudspeth AJ, Gillespie PG. (1993) Calmodulin and calmodulin-binding proteins in hair bundles. Proc Natl Acad Sci U S A, 90, 2807-11. Cerca con Google

51. El-Amraoui A, Petit C. (2005) Usher I syndrome: unravelling the mechanisms that underlie the cohesion of the growing hair bundle in inner ear sensory cells. J Cell Sci, 118, 4593-603. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record