Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Coletti, Chiara (2016) BRICKTECH: Assessment for the use of waste in the brick production. Petrophysical characterization of new mix designs
and optimization of the firing conditions.
[Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
8Mb

Abstract (inglese)

Bricks are traditional building materials with ancient origin, but that can respond to the important challenges the industrial research is currently called to face, i.e. in reducing energy consumption, in lowering production costs and in improving physical properties and durability of the finished products. The growing demand for a sustainable production addressed research to obtain new materials designed to meet environmental issues and society welfare.
A possible way to achieve these goals and satisfy these different aspects is the optimisation of new mix design, re-using waste materials produced from industrial, urban and excavation activities.
The fulfilment of a sustainable production is twofold, determining a reduction in the exploitation of new geo-resources, and mitigating the problem of waste accumulation and management, reassessing residual materials as secondary sources for a new environmental-friendly material production.
Although numerous studies have been carried out in the last decades addressing waste reuse as a successful alternative resource in the production of bricks, their implementation in the industrial sector is still very limited. The main reasons are: i) sporadic partnership between academic research and industry in this technological area; ii) lack of specific standards for the evaluation of processes and finished products; and iii) limited public education on the possible sustainable frontiers.
Another important issue should be considered in the production of new materials: the maintenance of the aesthetic quality when substituting traditional materials. Bricks are building materials, and innovation should respect parameters such as the "cultural compatibility", understood as the recognition of the territorial identity of a community. This aspect has even of greater relevance when bricks are used as integration or replacement materials in the restoration of damaged historical buildings.
This work aims at filling the gap between academic research and industrial development, through a close collaboration between university and industry and the achievement of common objectives. This was possible with the support of a leader company in the production of traditional bricks, SanMarco-Terreal srl (Noale, Italy), which contributed offering technical support, raw materials and consolidate experience in the production of traditional bricks.
New mix designs have been developed according to the objectives of Horizon 2020, (https://ec.europa.eu/programmes/horizon2020/), particularly in the field of sustainable use of natural resources, optimization of firing conditions, recycling and gas emission control, in order to satisfy the goals related to the scientific excellence, the societal challenges and the industry leadership.
Therefore, the study focused on:
1) the relationship between chemical-mineralogical characteristics and mechanical properties and durability under different stress conditions of bricks already on the market, obtained by different clays and fired at different temperatures (600, 950, 980, 1050°C);
2) the characterisation of the pore system in commercial bricks using a multi-analytical approach, in order to fully understand and describe porosity through a parameterization of the morphological characteristics of pores. This study was also addressed to the optimization of the pore system in fired bricks obtained from different raw materials and fired at different temperatures (600, 950, 1050°C), providing hints for the optimisation of production strategies that can affect the pore system and the brick quality;
3) the study of new mix designs obtained by adding waste material from quarrying activities and industrial sludge for the production of new bricks based on the concepts of reuse and sustainable use of natural resources. The type of waste specifically adopted were: i) trachyte fragments from quarrying activity (Euganean Hills, Italy); ii) sludge resulting from the ceramic industry.
The study of the commercial bricks showed that the chemical-mineralogical and physical-mechanical properties, the porosity and the durability of the finished products are highly dependent on the raw material composition and the firing temperatures reached during the production process. The results obtained for the new experimental products demonstrated the real possibility to achieve new bricks reusing waste, maintaining the physical, mechanical and aesthetic features of the traditional materials and improving the quality of the finished product.
More in detail, commercial bricks fired at temperature of 1050°C showed considerable mineralogical transformations, with the growth of new phases and a higher vitrification process in the matrix, which determined improvement of the mechanical properties. On the contrary, brick fired at 600°C had good water behaviour, but resulted weaker during accelerated ageing tests. This behaviour is due to the low compactness determined by the absence of vitrification in the matrix and the low rate of new phase crystallisation. Moreover, it was observed how hausmannite (Mn3O4) used as a dye, caused changes not only in the aesthetic aspect of the finished product determining a dark grey colour, but also in its mechanical properties and in the porous system, since it promotes the melting process.
The detailed study of the porosity allowed knowing the pore system in each of the samples and assessing the influence of the raw materials and firing temperature on the development of the pore system. Bricks produced with carbonate clay showed higher porosity and pore interconnection due to the decomposition of the carbonate during the firing process. Moreover, in the bricks fired at higher temperatures (1050°C) changes in the morphology of pores occurred, which became larger and rounder due to the release of volatiles. On the contrary, in bricks obtained from the least carbonate clay and fired at 600°C, porosity displayed very different features, with less homogeneous and smaller pores.
In the study on the influence of the waste materials used in the production of new bricks, two different cases were considered: i) addition of stone waste from trachyte quarrying activity; ii) addition of ceramic sludge. These materials were added as temper; influence on the physical-mechanical properties and durability were investigated. Results were satisfactory, recognising their potentiality as possible sustainable additives in the brick industry.
It was observed that the alkali feldspars in trachyte act as fluxing agents and decrease the melting point. This effect was emphasized with different observations: textural and mineralogical analyses showed a considerable increase of the number of bridges among minerals and a wider recrystallization of the matrix, sonic data an overall increase in compactness, porometry a different evolution of the pores system upon firing. These changes developed not only at increasing temperature, but also at increasing trachyte content. Furthermore, the analysis of the thermal properties, carried out on infrared images showed that the increasing content of trachyte reduces heat transmittance. Only in one case (a brick with 15% of trachyte and fired at 1050°C) an increase in heat transmittance was observed, caused by the high degree of sintering achieved. In general, the good response to stress conditions (under freeze-thaw and salt crystallization cycles) and the relatively homogeneous features among the samples showed that trachyte can be considered as a valid alternative material to the currently used temper which also brings technical advantages. One important result is that the addition of a trachytic temper confers to bricks the same technical features of traditional ones already at a temperature as low as 900°C, opening the possibility to the reduction of production costs, in addition to that of exploitation and use of new geo-resources.
The use of sludge from ceramic industry also showed satisfactory results. Colorimetry proved that these bricks have aesthetic characteristics very similar to those of bricks already on the market, as well as mechanical properties determined by uniaxial compressive and ultrasonic tests. Nonetheless, differences arose when durability was evaluated. While during the salt crystallisation tests the experimental bricks preserve almost intact their original appearance and mechanical properties, they resulted to be particularly vulnerable to freeze-thaw cycles. This suggests that they may represent a valid substitute of commercial bricks, but caution should be taken when using in cold climates.
PhD thesis is an important starting point to address the improvement of the traditional bricks in a sustainable way, and the assessment of the characteristics for new materials derived from industrial wastes, evaluating quality and durability. Both case studies demonstrated that the reuse of industrial waste could indeed sustain the industrial sector of brick production, providing a reduction in the exploitation of geo-resources, energy consumption and costs.
The comprehension of the intrinsic relationships between mineralogical composition, textural features and physical properties resulted to be fundamental for the development of new products.

Abstract (italiano)

BRICKTECH:
Valutazione dell’utilizzo dei materiali di scarto nella produzione di laterizi. Caratterizzazione petrofisica di nuovi mix design e ottimizzazione delle condizioni di cottura.

RIASSUNTO
Il laterizio é un materiale della tradizione costruttiva dalle antiche origini, ma che può rispondere alle importanti sfide verso cui la ricerca in ambito industriale è attualmente rivolta, ossia il risparmio energetico, l’abbassamento di costi nella produzione e il miglioramento delle qualità del prodotto finito. Inoltre, la crescente domanda di una produzione sostenibile ha indirizzato la ricerca verso nuovi materiali che tengano conto della salvaguardia dell’ambiente e del benessere della società.
Una delle strade percorribili per il raggiungimenti di tali traguardi e che congiunge questi diversi aspetti è l’ottimizzazione di nuovi mix design, utilizzando materiali di scarto, risultato di attività industriali, urbane e di escavazione.
In questo modo il consolidamento di produzioni di tipo sostenibile ha un duplice valore in quanto non solo determina la diminuzione dell’utilizzo di nuove geo-risorse, ma si risolve anche il problema dell’accumulo e della gestione dei rifiuti, rivalutandoli come fonte secondaria di interesse per la realizzazione di nuovi materiali nel rispetto della tutela dell’ambiente.
Nonostante negli ultimi decenni siano stati numerosi gli studi effettuati per la realizzazione di mattoni con materiali di riuso come risorse alternative e questi abbiano dimostrato una vasta applicabilità nel settore del laterizio, l’implementazione in ambito industriale è ancora oggi molto limitata, a causa della mancanza della compartecipazione tra ricerca accademica e le reali necessità industriali, della scarsità di standard specifici di valutazione dei processi di lavorazione e dei prodotti finiti e della limitata educazione pubblica rispetto alle possibili frontiere sostenibili.
Un altro aspetto importante che deve essere considerato nella produzione di nuovi materiali è quello del mantenimento delle caratteristiche estetiche del materiale tradizionale. Il mattone, infatti, essendo un materiale da costruzione, deve rispondere a parametri di “compatibilità culturale”, intesa come riconoscimento della identità territoriale di una comunità. Questo aspetto ovviamente ha un valore ancor maggiore nel caso di materiali impiegati con funzione di integrazione o sostituzione per il ripristino e/o restauro di edifici storici danneggiati.
Questo lavoro è, pertanto, rivolto a colmare la lacuna di uno scarso dialogo tra ricerca accademica e sviluppo industriale, attraverso la stretta collaborazione tra università e industria e il raggiungimento di obiettivi condivisi. Questo è stato possibile grazie all’affiancamento di una ditta leader nel settore della produzione di laterizi tradizionali, la SanMarco-Terreal srl (Noale, Italia), che ha apportato il suo contributo mettendo a servizio strumentazioni, materie prime e la gran esperienza maturata in quest’ambito lavorativo. I prodotti sono stati sviluppati in linea con gli obiettivi di Horizon 2020 (https://ec.europa.eu/programmes/horizon2020/), soprattutto in termini di sfruttamento sostenibile delle risorse naturali, di miglioramento dei processi di trasformazione delle materie prime, di riciclaggio e della ottimizzazione delle condizioni di cottura, al fine di soddisfare i punti relativi all’eccellenza scientifica, alle sfide per la società e alla leadership industriale.
Pertanto, lo studio è stato rivolto a:
1) mettere in relazione le caratteristiche mineralogiche e chimiche con le proprietà meccaniche e la durabilità in diverse condizioni di stress di materiali già in commercio, ottenuti da differenti argille e cotti a diverse temperature (600, 950, 980, 1050°C);
2) analizzare il sistema poroso di materiali industriali al fine di ottenerne una conoscenza affidabile e completa come punto di partenza per definire un protocollo per la quantificazione e la parametrizzazione delle caratteristiche morfologiche dei pori attraverso l'uso combinato di metodi tradizionali e tecniche di elaborazione di immagine a seconda del tipo di materia prima utilizzata e le temperature di cottura raggiunte (600, 950, 1050°C);
3) sperimentare nuovi mix design ottenuti dall'aggiunta di rifiuti provenienti da attività di estrazione di materiale lapideo e industriali per la produzione di nuovi mattoni basata sui concetti di riciclo e di uso sostenibile delle risorse. Il tipo di materiali di ri-uso adottati nello specifico sono stati: i) lo scarto di escavazione di trachite della cava di Rovolon, Colli Euganei, Vicenza (Italia); ii) un fango refluo derivante dall’industria ceramica.
Lo studio dei mattoni commerciali ha confermato come le proprietà chimico-mineralogiche, fisico-petrografiche, di porosità e di durabilità dei prodotti finiti siano strettamente dipendenti dalla composizione delle materie prime e dalle temperature di cottura raggiunte durante il processo di produzione. I risultati conseguiti dalle analisi dei mix design sperimentali hanno dimostrato la possibilità di ottenere nuovi laterizi utilizzando materiale di scarto e di implementare strategie industriali con soluzioni sostenibili e compatibili.
Più in dettaglio, i mattoni commerciali (1) cotti a temperature superiori a 1050°C hanno mostrato una maggiore evoluzione mineralogica, con la crescita di nuove fasi, e fusione della matrice, con un conseguente miglioramento delle proprietà meccaniche. Al contrario il mattone cotto a 600°C si è distinto per un buon comportamento idrico, rilevandosi però il più debole durante i cicli di invecchiamento accelerato, a causa della bassa compattezza, a questa dovuta all’assenza di vetrificazione nella matrice e alla bassa evoluzione di nuove fasi a tale temperatura. Inoltre, è stato osservato come l’hausmannite (Mn3O4) utilizzata come colorante, comporti cambiamenti non solo sull’aspetto estetico del prodotto finito (determinando un colore grigio scuro), ma agisca anche nelle sue proprietà meccaniche e nel sistema poroso promuovendo il processo di fusione.
Lo studio dettagliato della porosità (2) conseguito attraverso l’uso di differenti metodologie di studio ha permesso da un lato di comprendere in maniera più approfondita i limiti di ogni tecnica, dall’altro di conoscere il sistema poroso di ogni campione nella sua complessità. I mattoni prodotti con argilla carbonatica han mostrato una maggiore porosità e interconnessione dei pori, che derivano dalla decomposizione del carbonato durante il processo di cottura. Nei mattoni cotti a temperature più alte (1050°C) è stato riscontrato lo sviluppo della morfologia dei pori, che diventano più grandi e rotondi. Al contrario nel mattone ottenuto con l’uso di una argilla meno carbonatica e cotto a 600°C, la porosità è molto diversa, i pori sono meno omogenei e più piccoli.
Nella valutazione dell’influenza dell’utilizzo di materiale di scarto (3) per la produzione di nuovi laterizi, in entrambi i casi di studio i) l’aggiunta di trachite di escavazione (5, 10, 15% in peso) e ii) l’aggiunta del fango ceramico (10% in peso) come inerte, i risultati sono stati soddisfacenti al fine di identificare possibili “alternative sostenibili” ai mattoni attualmente in commercio.
i) Si è visto come la presenza di feldspati alcalini nella trachite agiscono come agenti fondenti e diminuiscono il punto di fusione. Questo effetto è stato osservato sotto differenti punti di vista, dall’aumento della connessione tra i minerali, dalla crescente compattezza, dalla maggiore evoluzione della tessitura e del sistema dei pori, tutte caratteristiche che si sviluppano, non sono in corrispondenza dell’aumento della temperatura, ma anche dell’aumento del contenuto di trachite. Inoltre, lo studio delle proprietà termiche, condotto attraverso l’analisi di immagini infrarosse, ha evidenziato come il crescente contenuto di trachite riduca la capacità di trasmissione di calore. Solo nel caso del mattone con 15% di trachite e cotto alla temperatura di 1050°C è stata osservata una trasmissione di calore più rapida, per l’alto livello di sinterizzazione raggiunto. In generale la buona risposta alle condizioni di stress (gelo-disgelo e cristallizzazione di sali) e l’assenza di una forte differenza tra i campioni hanno dimostrato che la trachite può essere considerata un inerte alternativo a quello normalmente utilizzato che inoltre può recare vantaggi nella produzione, con risparmio di energia e di costi, dal momento che agisce come agente fondente. Il suo impiego permette, infatti, di ottenere mattoni cotti a 900°C (temperatura inferiore a quella attualmente utilizzata dalla ditta) e che contengano più del 10% di inerte, limitando lo sfruttamento e l’uso di nuove geo-risorse.
ii) Anche la miscela con l’aggiunta del fango di scarto dell’industria ceramica ha ottenuto risultati soddisfacenti. Le prove di colorimetria han dimostrato che il prodotto finito mantiene un aspetto molto simile ad un mattone di colore giallo già in commercio (ottenuto con la stessa argilla, ma con l’inerte standard) suggerendone la possibile sostituzione dal punto di vista estetico. Le prove di compressione uniassiale e l’analisi ad ultrasuoni hanno, inoltre, rilevato anche un comportamento meccanico molto simile a quello del mattone commerciale giallo, indice della sua compatibilità anche nella riposta al carico. Solo dal punto di vista della durabilità il mattone ottenuto con l’aggiunta del fango ha mostrato una risposta più debole. Mentre durante la cristallizzazione dei sali il suo aspetto originario è rimasto quasi intatti, a condizioni forzate di gelo e disgelo si è riscontrato il progressivo deterioramento dei campioni fino alla loro totale disgregazione alla fine della prova. Alla luce di quanto evidenziato questo nuovo mix design può essere a tutti gli effetti considerato un’alternativa sostenibile del mattone commerciale, in particolare per il mantenimento delle proprietà fisico-meccaniche e delle qualità estetiche, ma non può essere messo in opera in edifici situati in situazioni ambientali dove sono possibili cicli di gelo e disgelo.
Questa tesi di Dottorato rappresenta un punto di partenza fondamentale per affrontare la riqualificazione di mattoni tradizionali in chiave sostenibile e permettere la valutazione in termini di qualità e durabilità dei mix sperimentali ottenuti con materiali di riciclo, nel caso specifico consistenti in trachite di cava e in un fango ceramico. Entrambi i casi di studio hanno dimostrato di rappresentare una valida alternativa al fine di ottenere nuovi mattoni di interesse per il miglioramento del settore industriale del laterizio, in termini di risparmio di sfruttamento di geo-risorse, energia e costi.
Comprendere le relazioni intrinseche tra composizione mineralogica, caratteristiche tessiturali, la microstruttura e le proprietà fisiche del laterizio è la base di una consapevole conoscenza del materiale per lo sviluppo di nuovi mix design.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Mazzoli, Claudio - Cultrone, Giuseppe
Correlatore:Maritan, Lara
Dottorato (corsi e scuole):Ciclo 28 > Scuole 28 > SCIENZE DELLA TERRA
Data di deposito della tesi:31 Gennaio 2016
Anno di Pubblicazione:2016
Parole chiave (italiano / inglese):Brick; Clay materials; Waste; Durability; Physico-mechanical properties; Pore system.
Settori scientifico-disciplinari MIUR:Area 04 - Scienze della terra > GEO/09 Georisorse minerarie e applicazioni mineralogico- petrografiche per l'ambiente ed i beni culturali
Struttura di riferimento:Dipartimenti > Dipartimento di Geoscienze
Codice ID:9495
Depositato il:13 Ott 2016 11:41
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

References-Chapter 1-Introduction Cerca con Google

Aras A., 2004. The change of phase composition in kaolinite- and illite-rich clay-based ceramic bodies, Applied Clay Science, 24, 257-269. Cerca con Google

Asiedu Y. & Gu P., 1998. Product life cycle cost analysis: state of the art review, International Journal of Production Research 36, 4, 883-908 Cerca con Google

Bilgin N., Yeprem H.A., Arslan S., Bilgin A., Gunay E. , Mars Oglu M., 2012. Use of waste marble powder in brick industry, Construction and Building Materials 29, 449–457 Cerca con Google

Bories C., Borredon M.-E, Vedrenne E., Vilarem G., 2014. Development of eco-friendly porous fired clay bricks using pore-forming agents: A review, Journal of Environmental Management 143, 186-196 Cerca con Google

Chen Y., Zhang Y., Chen T., Zhao Y., Bao S., 2011. Preparation of eco-friendly construction bricks from hematite tailings, Construction and Building Materials 25, 2107-2111 Cerca con Google

Chiang K.-Y., Chou P.-H., Hua C.-R., Chien K.-L., Cheeseman C., 2009. Lightweight bricks manufactured from water treatment sludge and rice husks, Journal of Hazardous Materials 171, 76-82 Cerca con Google

Coletti C., Cultrone G., Mazzoli C., Maritan L., Evaluation of effects of adding industrial residual materials on final aesthetic qualities and physical properties of Ca-rich fired brick, submitted Cerca con Google

Cultrone G., Sebastián E., Elert K., de la Torre M.J., Cazalla O., Rodriguez-Navarro C., 2004. Influence of mineralogy and firing temperature in the porosity of bricks, Journal of the European Ceramic Society 34, 547-564 Cerca con Google

Cultrone G. & Sebastián E., 2009. Fly ash addition in clayey materials to improve the quality of solid bricks, Construction and Building Materials 23, 1178–1184 Cerca con Google

Cusidó J. A., Cremades L.V., 2012. Environmental effects of using clay bricks produces with sewage sludge: Leachability and toxicity studies, Waste Management 31, 1372-1380 Cerca con Google

Demir I., Baspinara M. S., Orhan M., 2005. Utilization of kraft pulp production residues in clay brick production, Building and Environment 40, 1533-1537 Cerca con Google

Demir I., 2006. An investigation on the production of construction brick with processed waste tea, Building and Environment 41, 1274-1278 Cerca con Google

Demir I., 2008. Effect of organic residues addition on the technological properties of clay bricks, Waste Management 28, 622-627 Cerca con Google

Dondi M., Marsigli M., Fabbri B., 1997a. Recycling of Industrial and Urban Wastes in Brick Production – A review, Tile Brick Int. 13, 218-225 Cerca con Google

Dondi M., Marsigli M., Fabbri B., 1997b. Recycling of Industrial and Urban Wastes in Brick Production – A review (Part 2), Tile Brick Int. 13, 302-309 Cerca con Google

Eliche-Quesada D., Corpas-Iglesias F.A., Pérez-Villarejo L., Iglesias-Godino F.J., 2012. Recycling of sawdust, spent earth from oil filtration, compost and marble residues for brick manufacturing, Construction and Building Materials 34, 275–284 Cerca con Google

Ercikdi B., Cihangir F., Kesimal A., Deveci H., Alp I., 2009. Utilization of industrial waste products as pozzolanic material in cemented paste backfill of high sulphide mill tailings, Journal of Hazardous Materials 168, 848–856 Cerca con Google

Haldar S. K., 2013. Mineral Exploration: Principles and Applications, Elsevier Science Publishing Co Inc, United States Cerca con Google

Koroneos C., Dompros A., Environmental assessment of brick production in Greece, Building and Environment 42, 2007, 2114–2123 Cerca con Google

López-Arce P., García-Guinea J., 2005. Weathering traces in ancients bricks from historic buildings, Building and Environment 40, 929-941. Cerca con Google

Muñoz Velasco P., Morales Ortíz M.P., Mendívil Giró M.A., Muñoz Velasco L., 2014a. Fired clay bricks manufactured by adding wastes as sustainable construction material – A review, Construction and Building Materials 63, 97–107 Cerca con Google

Muñoz Velasco P., Morales M.P., Mendívil M.A., Juárez M.C., Muñoz L., 2014b. Using of waste pomace from winery industry to improve thermal insulation of fired clay bricks. Eco-friendly way of building construction, Construction and Building Materials 7, 181-187 Cerca con Google

Neves Monteiro S., Fontes Vieira C. M., 2014. On the production of fired clay bricks from waste materials: A critical update, Construction and Building Materials 68, 599–610 Cerca con Google

Ortiz O., Castells F., Sonnemann G., 2009. Sustainability in the construction industry: A review of recent developments based on LCA, Construction and Building Materials 23, 28–39 Cerca con Google

Peris Mora E., 2007. Life cycle, sustainability and the transcendent quality of building materials, Building and Environment 42, 1329-1334 Cerca con Google

Rajput D., Bhagade S.S., Raut S.P., Ralegaonkar R.V., Mandavgane S. A., 2012. Reuse of cotton and recycle paper mill waste as building material, Construction and Building Materials 34, 470-475 Cerca con Google

Raut S.P., Ralegaonkar R.V, Mandavgane S.A., 2011. Development of sustainable construction material using industrial and agricultural solid waste: A review of waste-create bricks, Construction and Building Materials 25, 4037-4042 Cerca con Google

Riccardi M.P., Messiga B., Duminuco P., 1999. An approach to the dynamics of clay firing, Applied Clay Science 15, 393-409 Cerca con Google

Sutcu M., Akkurt S., 2009. The use of recycled paper processing residues in making porous brick with reduced thermal conductivity, Ceramics International 35, 2625-2631 Cerca con Google

Sutcu M., del Coz Diaz J. J., Alvarez Rabanal F.P., Gencel O., Akkurt S., 2014. Thermal performance optimization of hollow clay bricks made up of paper waste, Energy and Buildings 75, 96–108 Cerca con Google

Sutcu M., Alptekin H., Erdogmus E., Er Y., Gencel O., 2015. Characteristics of fired clay bricks with waste marble powder addition as building materials Construction and Building Materials 82, 1-8 Cerca con Google

Topçu I. B., Isidag B., 2007. Manufacture of high heat conductivity resistant clay bricks containing perlite, Building and Environment 42, 3540-3546 Cerca con Google

Yagüe A., Valls S., Vázquez E., Kuchinow V., 2002. Utilización de Iodo seco de depuradora de aguas residuales como adición en adoquines de hormigón prefabricado, Materiales de construcción 52, 267, 31-41 Cerca con Google

Weng C.-H., Lin D.-F., Chiang P.-C., 2003. Utilization of sludge as brick materials, Advances in Environmental Research 7, 679–685 Cerca con Google

Zhang L., Ahmari S., Zhang J., 2011. Synthesis and characterization of fly ash modified mine tailings-based geopolymers, Construction and Building Materials 25, 3773-3781 Cerca con Google

Zhang L., 2013. Production of bricks from waste materials – A review, Construction and Building Materials 47, 643-655 Cerca con Google

References-Chapter 2-Methods Cerca con Google

Agbogun H.M.D., Al T.A., Hussein E.M.A., 2013. Three dimensional imaging of porosity and tracer concentration distributions in a dolostone sample during diffusion experiments using X-ray micro-CT, Journal of Contaminant Hydrology 145, 44–53 Cerca con Google

Anovitz L.M., Cole D. R., 2015Characterization and Analysis of porosity and pore structure, Reviews in Mineralogy and Geochemistry, Vol. 80, 61-164, Cerca con Google

Chen, G., Wang, J., 1998. The preparation of marine geological certified reference materials -polymetallic nodule GSPN-1 and marine sediment GSMS-1 from the Central Pacific Ocean, Geostand. Geoanal. Res. 22, 119-125. Cerca con Google

Crawford E.C., Mortensen J.K., 2009. An ImageJ1 plugin for the rapid morphological characterization of separated particles and an initial application to placer gold analysis, Computers &Geosciences 35, 347-359 Cerca con Google

Cnudde V., Boone M.N., 2013. High-resolution X-ray computed tomography in geosciences: A review of the current technology and applications, Earth-Science Reviews 123, 1–17 Cerca con Google

Cultrone G., de la Torre M.J., Sebastian E. and Cazalla O., 2003. Evaluación de la durabilidad de ladrillos mediante tecnicas destructivas (TD) y no-destructivas (TND), Materiales de Construcción 53, 41-59. Cerca con Google

Grove C., Jerram D.J., 2011. jPOR: An ImageJ macro to quantify total optical porosity from blue-stained thin sections, Computers & Geosciences 37, 1850–1859 Cerca con Google

Guydader J., Denis A., 1986. Propagation des ondes dans les roches anisotropes sous contrainte évaluation de la qualité des schistes ardoisiers, Bull. Engineering Geololgy 33, 49-55. Cerca con Google

Noiriel C., 2015. Resolving Time-dependent Evolution of Pore-Scale Structure, Permeability and Reactivity using X-ray Microtomography, Reviews in Mineralogy & Geochemistry, Vol 80, 247-285, Cerca con Google

NORMAL 29/88, 1988. Misura dell’indice di asciugamento (drying index), CNR-ICR, Rome Cerca con Google

UNE EN 15886, 2011. Conservación del patrimonio cultural. Métodos de ensayo. Medición del color de superficies, A.E.N.O.R., Madrid Cerca con Google

UNI EN 11084, 2003. La norma indica le principali caratteristiche mineralogiche, fisiche e chimiche dei materiali ceramici determinabili in laboratorio, CNR-ICR, Rome. Cerca con Google

UNI EN 13755, 2008. Metodi di prova per pietre naturali - Determinazione dell'assorbimento d'acqua a pressione atmosferica, CNR-ICR, Rome. Cerca con Google

UNI EN 1925, 2000. Metodi di prova per pietre naturali - determinazione del coefficiente di assorbimento d'acqua per capillarità, CNR-ICR, Rome. Cerca con Google

UNI EN 1926, 2007. Metodo di prova per pietre naturali - determinazione della resistenza alla compressione uniassiale, ICNR-ICR, Rome. Cerca con Google

UNI EN 12371, 2010. Metodo di prova per pietre naturali - determinazione della resistenza al gelo, CNR-ICR, Rome. Cerca con Google

UNI EN 12370, 2001. Metodi di prova per pietre naturali - determinazione della resistenza alla cristallizzazione dei Sali, CNR-ICR, Rome. Cerca con Google

Pirard R., Alié C., Pirard J.-P., 2002. Characterization of porous texture of hyperporous materials by mercury porosimetry using densification equation, Powder Technology 128, 242-247 Cerca con Google

RILEM 1980. Recommended test to measure the deterioration of stone and to assess the differences of treatment methods, Mater. Struct. 13, 175-253. Cerca con Google

Scott V.D., Love G., 1983. Quantitative Electron Probe Microanalysis, John Wiley and Sons, New York. Cerca con Google

Sun W., Chen T., Chen C., Li J., 2007. A study on membrane morphology by digital image processing, Journal of Membrane Science 305, 93-102 Cerca con Google

References-Chapter 3-Results Cerca con Google

Anzani A., Binda L., Carpinteri A., Invernizzi S., 2010. A multilevel approach for the damage assessment of historic masonry towers, Journal of Cultural Heritage 11, 459-470. Cerca con Google

Aras A., 2004. The change of phase composition in kaolinite- and illite-rich clay-based ceramic bodies, Applied Clay Science, 24, 257-269. Cerca con Google

Benavente D., Martiñez-Verdú F., Bernabeu A., Viqueira V., Fort R., García del Cura M.A., Illueca C., Ordóñez S., 2003. Influence of surface roughness on color changes in building stones, Color Research and Application 28, 343-351. Cerca con Google

Benavente D., García del Cura M.A., Ordoñez S., 2003. Salt influence on evaporation from porous building rocks, Construction and Buildings Materials 17, 113-122. Cerca con Google

Benavente D., Linares-Fernández L., Cultrone G., Sebastián E., 2006. Influence of microstructure on the resistance to salt crystallization damage in bricks, Materials and Structures, 39, 105-113. Cerca con Google

Cardiano P., Ioppolo S., De Stefano C., Pettiganno A., Sergi S., Piraino P., 2004. Study and characterization of the ancient bricks of monastery of “San Filippo di Fragalà” in Frazzanò (Sicily), Analytical Chimica Acta 519, 103-111. Cerca con Google

Carretero M.I., Dondi M., Fabbri B., Raimondo M., 2002. The influence of shaping and firing technology on ceramic properties of calcareous and non-calcareous illitic–chloritic clays, Applied Clay Science 20, 301-306. Cerca con Google

Chen, G., Wang, J., 1998. The preparation of marine geological certified reference materials -polymetallic nodule GSPN-1 and marine sediment GSMS-1 from the Central Pacific Ocean, Geostand. Geoanal. Res. 22, 119-125. Cerca con Google

Cultrone G., Rodriguez-Navarro C., Sebastián E.M., Cazalla O., de la Torre M.J., 2001a. Carbonate and silicate phase reactions during ceramic firing, European Journal Mineralogy 13, 621-634. Cerca con Google

Cultrone G., Sebastián E., Cazalla O., Nechar M., Romero R., Bagur M.G., 2001b. Ultrasound and mechanical tests combined with ANOVA to evaluate brick quality, Ceramics International 27, 401-406. Cerca con Google

Cultrone G., de la Torre M.J., Sebastian E. and Cazalla O., 2003. Evaluación de la durabilidad de ladrillos mediante tecnicas destructivas (TD) y no-destructivas (TND), Materiales de Construcción 53, 41-59. Cerca con Google

Cultrone G., Sebastián E., Elert K., de la Torre M.J., Cazalla O., Rodriguez-Navarro C., 2004. Influence of mineralogy and firing temperature in the porosity of bricks, Journal of the European Ceramic Society 34, 547-564. Cerca con Google

Cultrone G., Sidraba I., Sebastián E., 2005a. Mineralogical and physical characterization of the bricks used in the construction of the “Triangul Bastion”, Riga (Latvia), Applied Clay Science 28, 295-308. Cerca con Google

Cultrone G., Sebastián E., de la Torre M.J., 2005b. Mineralogical and physical behaviours of solid bricks with additives, Construction and Building Materials 19, 39-48. Cerca con Google

Cultrone G., Sebastián E, Ortega Huertas M., 2007. Durability of masonry systems: a laboratory study, Construction and Building Materials 21, 40-51. Cerca con Google

Cultrone G., Sebastián E., 2009. Fly ash addition in clayey materials to improve the quality of solid bricks, Construction and Buildings Materials 23, 1174-1184. Cerca con Google

Cultrone G., Luque A., Sebastián E., 2012. Petrophysical and durability tests on sedimentary stones to evaluate their quality as building materials, Quarterly Journal of Engineering Geology and Hydrogeology 45, 415-422. Cerca con Google

Cultrone G., Molina E., Arizzi A., 2014. The combined use of petrographic, chemical and physical techniques to define the technological features of Iberian ceramics from the Canto Tortoso area (Granada, Spain), Ceramics International 40, 10803-10816. Cerca con Google

De Bonis A., Cultrone G., Grifa C., Langella A., Morra V., 2014. Clays from the Bay of Naples (Italy): New insight on ancient and traditional ceramics, Journal of the European Ceramic Society 34, 3229-3244. Cerca con Google

Dondi M., Ercolani G., Fabbri B., Marsigli M., 1998. An approach to the chemistry of pysrxenes formed during the firing of Ca-rich silicate ceramics, Clay Minerals 33, 443-452. Cerca con Google

Ducman V., Škapin S. A., Radeka M., Rnogajec J., 2011. Frost resistance of clay roofing titles: case study, Ceramics International 37, 85-91. Cerca con Google

Duminuco P., Messiga B., Riccardi M.P., 1998. Firinig process of natural clays. Some microtextures and related phase compositions, Termodicnamica Acta 321, 185-190. Cerca con Google

Elert K., Cultrone G., Rodriguez Navarro C., Sebastián Pardo E., 2003. Durability of bricks used in the conservation of historic buildings -influence of composition and microstructure, Journal of Cultural Heritage 4, 91-99. Cerca con Google

Eliche-Quesada d., Martínez-Martínez S., Pérez-Villarejo L., Iglesias-Godino F.J., Martínez-García C., 2012. Corpas-Iglesias F.A., Valorization of biodisel production residues in making porous clay brick, Fuel Processing Technology 103, 166-173. Cerca con Google

Fabbri B., Gualtieri S., Shoval S., 2014. The presence of calcite in archaeological ceramics, Journal of the European Ceramic Society 34, 1899-1911. Cerca con Google

Grossi C. M., Brimblecombe P., Esbert R.M., 2007. Francisco Javier Alonso, Color changes in architectural limestones from pollution and cleaning, Color Research and Application 32, 320-331. Cerca con Google

Guydader J., Denis A., 1986. Propagation des ondes dans les roches anisotropes sous contrainte évaluation de la qualité des schistes ardoisiers, Bull. Engineering Geololgy 33, 49-55. Cerca con Google

Ji, S., WAng Q., Salisbury M.H., 2009. Composition and tectonic evolution of the Chinese continental crust constrained by Poisson’s ratio, Tectonophysics, 463, 15-30. Cerca con Google

Jordan M.M., Montero M.A., Meseguer S., Sanfeliu T., 2008. Influence of firing temperature and mineralogical composition on bending strength and porosity of ceramic tile bodies, Applied Clay Science 42, 266-271. Cerca con Google

Larbi J.A., 2004. Microscopy applied to the diagnosis of the deterioration of brick masonry, Construction and Building Materials 18, 299-307. Cerca con Google

López-Arce P., García-Guinea J., Gracía M., Obis J., 2003. Bricks in historical buildings of Toledo City: characterisation and restoration, Materials Characterization 50, 59-68. Cerca con Google

López-Arce P., García-Guinea J., 2005. Weathering traces in ancients bricks from historic buildings, Building and Environment 40, 929-941. Cerca con Google

Maritan L., Mazzoli C., Nodari L., Russo U., 2005. Second Iron Age grey pottery from Este (northeastern Italy): study of provenance and technology, Applied Clay Science 29, 31-44. Cerca con Google

Maritan L., Nodari L., Mazzoli C., Milano A., Russo U., 2006. Influence of firing conditions in ceramic products: Experimental study on clay rich in organic matter, Applied Clay Science 31, 1-15. Cerca con Google

Miriello D., Crisci G. M., 2007. Mixing and provenance of raw materials in the bricks from the Svevian castle of Rocca Imperiale (North Calabria, Italy), European Journal Mineralogy 19, 137-144. Cerca con Google

Monteiro S. N., Fontes Vieria C.M., 2004. Influence of firing temperature on the ceramic properties of clays from Campos dos Goytacazes, Brazil, Applied Clay Science 27, 229-234. Cerca con Google

Monteiro S. N., Fontes Vieria C.M., 2014. On the production of fired clay bricks from waste materials: a critical update, Construction and Building Materials, 68, 599-310. Cerca con Google

Nodari L., Marcuz E., Maritan L., Mazzoli C., Russo U., 2007. Hematite nucleation and growth in the firing of carbonate-rich clay for pottery production, Journal of the European Ceramic Society 27, 4665-4673. Cerca con Google

Normal 29/88, 1988. Misura dell’indice di asciugamento (drying index), CNR-ICR, Rome. Cerca con Google

Özlaya Ö. A., Böke H, 2009. Properties of Roman bricks and mortars used in Serapis temple in the city of Pergamon, Materials Characterization 60, 995-1000. Cerca con Google

Riccardi M.P., Messiga B., Duminuco P., 1999. An approach to the dynamics of clay firing, Applied Clay Science 15, 393-409. Cerca con Google

RILEM 1980, Recommended test to measure the deterioration of stone and to assess the differences of treatment methods, Mater. Struct. 13, 175-253. Cerca con Google

Rodriguez-Navarro C., Doehne E., Sebastián E., 2000. How does sodium sulfate crystallize? Implications for the decay and testing of building materials, Cement and Concrete Research 30, 1527-1534. Cerca con Google

Scott V.D., Love G., 1983. Quantitative Electron Probe Microanalysis, John Wiley and Sons, New York. Cerca con Google

Setti M., Lanfranchi A., Cultrone G., Marinoni L., 2012. Archeometric investigation and evaluation of the decay of ceramic materials from the Church of Santa Maria del Carmine (Pavia, Italy), Material de Costrucción, Vol. 62, N° 305, 79-98. Cerca con Google

Steiger M., Asmussen S., 2008. Crystallization of sodium sulphate phases in porous materials: the phase diagram Na2SO4 - H2O and the generation of stress, Geochimica et Cosmochimica Acta 72, 4291-4306. Cerca con Google

Tsui N., Flatt R., Scherer G.W., 2003. Crystallization damage by sodium sulphate, Journal of Cultural Heritage 4, 109-115. Cerca con Google

UNE EN 15886, 2011. Conservación del patrimonio cultural. Métodos de ensayo. Medición del color de superficies, A.E.N.O.R., Madrid Cerca con Google

UNI EN 11084, 2003. La norma indica le principali caratteristiche mineralogiche, fisiche e chimice dei materiali ceramici determinabili in laboratorio, CNR-ICR, Rome. Cerca con Google

UNI EN 13755, 2008. Metodi di prova per pietre naturali - Determinazione dell'assorbimento d'acqua a pressione atmosferica, CNR-ICR, Rome. Cerca con Google

UNI EN 1925, 2000. Metodi di prova per pietre naturali - determinazione del coefficiente di assorbimento d'acqua per capillarità, CNR-ICR, Rome. Cerca con Google

UNI EN 1926, 2007. Metodo di prova per pietre naturali - determinazione della resistenza alla compressione uniassiale, ICNR-ICR, Rome. Cerca con Google

UNI EN 12371, 2010. Metodo di prova per pietre naturali - determinazione della resistenza al gelo, CNR-ICR, Rome. Cerca con Google

UNI EN 12370, 2001. Metodi di prova per pietre naturali - determinazione della resistenza alla cristallizzazione dei Sali, CNR-ICR, Rome. Cerca con Google

Valluzzi M.R., Bondì A., da Porto F., Franchetti P., Modena C., 2002. Structural investigations and analyses for the conservation of the ‘Arsenale’ of Venice, Journal of Cultural Heritage 3, 65-71. Cerca con Google

Valluzzi M.R., Binda L., Modena C., 2005. Mechanical behaviour of historic masonry structures strengthened by bed joints structural repointing, Construction and Building Materials 19, 63-73. Cerca con Google

Van Hess R.P.J. , Brocken H.J.P., 2004. Damage development to treated brick masonry in a long-term salt crystallization test, Construction and Building Materials18, 331-338. Cerca con Google

Whitney D. L., Evans B. W., 2010. Abbreviations for names of rock-forming minerals, American Mineralogist 95, 185-187. Cerca con Google

Zangh L., 2013. Production of bricks from waste materials - a review, Construction and Building Materials 47, 643-655. Cerca con Google

References_Chapter 4-Results Cerca con Google

Abell A.B., Willis K.L., Lange D.A., 1999. Mercury Intrusion Porosimetry and Image Analysis of Cement-Based Materials, Journal of Colloid and Interface Science 211, 39–44 Cerca con Google

Aligizaki K.K., 2006. Pore structure on cement-based materials, Testing, interpretation and requirements, Taylor and Francis Group Cerca con Google

Anovitz L.M., Cole D.R., 2015. Characterization and Analysis of porosity and pore structure, Reviews in Mineralogy and Geochemistry 80, 61-164 Cerca con Google

Bai B., Zhu R., Wu S., Yang W.,Gelb J., Gu A., Zhang X., Su L., 2013. Multi-scale method of Nano(Micro)-CT study on microscopic pore structure of tight sandstone of Yanchang Formation, Ordos Basin, Petroleum Explotation and Development, Volume 40, Issue 3 Cerca con Google

Barbera G., Barone G., Crupi V., Longo F., Maisano G., Majolino D., Mazzoleni P, Raneri S., Teixeira J., Venuti V., 2014. A multi-technique approach for the determination of the porous structure of building stone, European Journal of Mineralogy 26, 189–198 Cerca con Google

Benavente D., Linares-Fernández L., Cultrone G., Sebastián E., 2006. Influence of microstructure on the resistance to salt crystallisation damage in brick, Materials and Structures 39:105–113 Cerca con Google

Crawford E.C., Mortensen J.K., 2009. An ImageJ plugin for the rapid morphological characterization of separated particles and an initial application to placer gold analysis, Computers & Geosciences 35, 347–359 Cerca con Google

Cnudde V., Cwirzen A., Masschaele B., Jacobs P.J.S., 2009. Porosity and microstructure characterization of building stones and concretes, Engineering Geology 103, 76–83 Cerca con Google

Cnudde V., Boone M.N., 2013. High-resolution X-ray computed tomography in geosciences: A review of the current technology and applications, Earth-Science Reviews 123, 1–17 Cerca con Google

Coletti C., Cultrone G., Maritan L., Mazzoli C., How to face the new industrial challenge of compatible, sustainable brick production: study of various types of commercially available bricks, (submitted) Cerca con Google

Cueto N., Benavente D., Martínez-Martínez J., García-del-Cura M.A., 2009. Rock fabric, pore geometry and mineralogy effects on water transport in fractured dolostones, Engineering Geology 107, 1–15 Cerca con Google

Cultrone G., Sebastián E., Elerta K., de la Torre M. J., Cazalla O., 2004. Rodriguez-Navarro C., Influence of mineralogy and firing temperature on the porosity of bricks, Journal of the European Ceramic Society 24, 547–564 Cerca con Google

Cultrone G., Madkourb F., 2013. Evaluation of the effectiveness of treatment products in improving the quality of ceramics used in new and historical buildings, Journal of Cultural Heritage 14, 304–310 Cerca con Google

Diamond S., 2000. Mercury porosimetry. An inappropriate method for the measurement of pore size distributions in cement-based materials, Cement and Concrete Research 30, 1517-1525 Cerca con Google

Di Benedetto C., Cappelletti P., Favaro M., Graziano S.F., Langella A., Calcaterra D., Colella A., 2015. Porosity as key factor in the durability of two historical building stones: Neapolitan Yellow Tuff and Vicenza Stone, Engineering Geology 193, 310–319 Cerca con Google

Galaup S., Liu Y, Cerepi A., 2012. New integrated 2D–3D physical method to evaluate the porosity and microstructure of carbonate and dolomite porous system, Microporous and Mesoporous Materials 154, 175–186 Cerca con Google

Giesche H., 2006. Mercury Porosimetry: A General (Practical) Overview, Particle & Particle Systems Characterization 23, 9–19 Cerca con Google

Groen J.C., Peffer L.A.A., Pérez-Ramírez, 2003. Pore size determination in modified micro- and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis, Microporous and Mesoporous Materials 60, 1–17 Cerca con Google

Grove C., Jerram D.J., 2011. jPOR: An ImageJ macro to quantify total optical porosity from blue-stained thin sections, Computers & Geosciences 37, 1850–1859 Cerca con Google

Hall C., Hoff W.D., 2009. Water Transport in Brick, Stone and Concrete, CRC Press, Taylor and Francis Group Cerca con Google

Hildebrand T., Rüegsegger P., 1997. A new method for the model independent assessment of thickness in three dimensional images. Journal of Microscopy 185, 67–75 Cerca con Google

Labus M., 2009. Rock porosity in the historical monuments preservation, Civil and Environmental Engineering Reports, N.3 Cerca con Google

Liu F.L.X., Xiong J., Liang L., 2015. Investigation of pore structure and fractal characteristics of organic rich Yanchang formation shale in central China by nitrogen adsorption/desorption analysis, Journal of Natural Gas Science and Engineering 22, 62–72 Cerca con Google

Moro F. and Böhni H., 2002. Ink-Bottle Effect in Mercury Intrusion Porosimetry of Cement-Based Materials, Journal of Colloid and Interface Science 246, 135–149 Cerca con Google

Noiriel C., 2015. Resolving Time-dependent Evolution of Pore-Scale Structure, Permeability and Reactivity using X-ray Microtomography, Reviews in Mineralogy & Geochemistry 80, 247 –285 Cerca con Google

NORMAL 29/88 1988, Misura dell’indice di asciugamento (drying index), CNR-ICR, Rome Cerca con Google

Pirard R., Alié C., Pirard J.-P., Characterization of porous texture of hyperporous materials by mercury porosimetry using densification equation, Powder Technology 128 (2002) 242–247 Cerca con Google

Rasband W.S., 1997-2015. ImageJ, U.S. National Institutes of Health, Bethesda, Maryland, USA, http://imagej.nih.gov/ij/ Vai! Cerca con Google

Remy E., Thiel E., 2002. Medial axis for chamfer distances: computing look-up tables and neighbourhoods in 2D or 3D, Pattern Recognition Letters 23, 649–661 Cerca con Google

Rigby S.P., Fletcher R. S., Riley S. N.., 2004. Characterisation of porous solids using integrated nitrogen sorption and mercury porosimetry, Chemical Engineering Science 59, 41–51 Cerca con Google

Rozenbaum O., 2011. 3-D characterization of weathered building limestones by high resolution synchrotron X-ray microtomography, Science of the Total Environment 409, 1959–1966 Cerca con Google

Siegesmund S., Dürrast H., 2014, Physical and Mechanical Properties of Rocks, in: Stone in Architecture, Properties, Durability, Siegesmund S. & Snethlage R. (eds), Springer, London, 97–225 Cerca con Google

Sing K.S.W., Everett D.H., Haul R.A.W., Moscou L., Pierotti R.A., Rouquérol J., Siemienievska T., 1985. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure & Applied Chemistry 57, 603–619 Cerca con Google

Sing K.S.W., 2001. The use of nitrogen adsorption for the characterisation of porous materials, Colloids and Surfaces, A: Physicochemical and Engineering Aspects 187–188, 3–9 Cerca con Google

Sobott R., Bente K., Kittel M., 2014. Comparative porosity measurements on ceramic materials, The Old Potter’s Almanack 19, 18–25 Cerca con Google

Storck S., Bretinger H., Maier W.F., 1998. Characterization of micro- and mesoporous solids by physisorption methods and pore-size analysis, Applied Catalysis A: General 174, 137-146 Cerca con Google

Sun W., Chen T., Chen C., Li J., 2007. A study on membrane morphology by digital image processing, Journal of Membrane Science 305, 93–102 Cerca con Google

UNI EN 13755, 2008. Metodi di prova per pietre naturali - Determinazione dell'assorbimento d'acqua a pressione atmosferica, CNR-ICR, Rome. Cerca con Google

UNI EN 1925, 2000. Metodi di prova per pietre naturali - determinazione del coefficiente di assorbimento d'acqua per capillarità, CNR-ICR, Rome. Cerca con Google

Zdravkov B.D., Cermák J.J., Šefara M., Janku J., 2007. Pore classification in the characterization of porous materials: A perspective, Central European Journal of Chemistry 5 385–395 Cerca con Google

References-Chapter 5-Results Cerca con Google

Asiedu Y. & Gu P., 1998. Product life cycle cost analysis: state of the art review, International Journal of Production Research, Vol. 36, n°. 4, 883-908 Cerca con Google

Barbieri L., Andreola F., Lancellotti I., Taurino R., 2013. Management of agricultural biomass wastes: Preliminary study on characterization and valorisation in clay matrix bricks, Waste Management 33,2307–2315 Cerca con Google

Benavente D., Linares-Fernández L., Cultrone G., Sebastián E., 2006. Influence of microstructure on the resistance to salt crystallization damage in bricks, Materials and Structures, 39, 105-113. Cerca con Google

Bilgin N., Yeprem H.A., Arslan S., Bilgin A., Gunay E. , Marsoglu M., 2012. Use of waste marble powder in brick industry, Construction and Building Materials 29, 449–457 Cerca con Google

Bories C., Borredon M.-E, Vedrenne E., Vilarem G., 2014. Development of eco-friendly porous fired clay bricks using pore-forming agents: A review, Journal of Environmental Management 143, 186-196 Cerca con Google

Bozkurt V., Kara A., Uçbas Y., Kayaci K. and Çiftçi M., 2006. Possible Use of Trachyte as a Flux in Floor Tile Production, Industrial Ceramics, 26, 87-94 Cerca con Google

Burnett J., 2007. City buildings-Eco-labels and shades of green!, Landscape and Urban Planning 83, 29–38 Cerca con Google

Cernuschi F., Ahmaniemi S., Vuoristo P., Mäntylä T., 2004. Modelling of thermal conductivity of porous materials: application to thick thermal barrier coatings, Journal of the European Ceramic Society 24, 2657–2667 Cerca con Google

Chen, G., Wang, J., 1998. The preparation of marine geological certified reference materials -polymetallic nodule GSPN-1 and marine sediment GSMS-1 from the Central Pacific Ocean, Geostand. Geoanal. Res. 22, 119-125. Cerca con Google

Chen Y., Zhang Y., Chen T., Zhao Y., Bao S., 2011. Preparation of eco-friendly construction bricks from hematite tailings, Construction and Building Materials 25, 2107–2111 Cerca con Google

Chiang K.Y., Chou P.H., Hua C.R., Chien K.L., Cheeseman C., 2009. Lightweight bricks manufactured from water treatment sludge and rice husks, Journal of Hazardous Materials 171, 76–82 Cerca con Google

Cultrone G., de la Torre M.J., Sebastian E. and Cazalla O., 2003. Evaluación de la durabilidad de ladrillos mediante técnicas destructivas (TD) y no-destructivas (TND), Materiales de Construcción 53, 41-59. Cerca con Google

Cultrone G., Rodríguez Navarro C., Sebastián E. Cazalla O., de la Torre, M.J. Carbonate and silicate phase reactions during ceramic firing, European Journal of Mineralogy, 13, 2001, 621-634. Cerca con Google

Cultrone G., Sebastián E., Elert K., de la Torre M.J., Cazalla O., Rodriguez-Navarro C., 2004. Influence of mineralogy and firing temperature in the porosity of bricks, Journal of the European Ceramic Society 34, 547-564. Cerca con Google

Cultrone G. & Sebastián E., 2009. Fly ash addition in clayey materials to improve the quality of solid bricks, Construction and Building Materials 23, 1178–1184 Cerca con Google

Cultrone G., Rodriguez-Navarro C., Sebastián E.M., Cazalla O., de la Torre M.J., 2001. Carbonate and silicate phase reactions during ceramic firing, European Journal Mineralogy 13, 621-634 Cerca con Google

Cusidó J. A., Cremades L.V., 2012. Environmental effects of using caly bricks produces with sewage sludge: Leachability and toxicity studies, Waste Management 31, 1372–1380 Cerca con Google

Deer W.A., Howie R.A., Zussman J., 2001. Rock-Forming Minerals, Volume 4A: Framework Silicates – Feldspars, Hardcover. Cerca con Google

Demir I., Baspinara M. S., Orhan M., 2005. Utilization of kraft pulp production residues in clay brick production, Building and Environment 40, 1533–1537 Cerca con Google

Demir I., 2006. An investigation on the production of construction brick with processed waste tea, Building and Environment 41, 1274–1278 Cerca con Google

Demir I., 2008. Effect of organic residues addition on the technological properties of clay bricks, Waste Management 28, 622–627 Cerca con Google

Dondi M., Marsigli M., Fabbri B., 1997a. Recycling of Industrial and Urban Wastes in Brick Production – A review, Tile Brick Int. 13, 218-225 Cerca con Google

Dondi M., Marsigli M., Fabbri B., 1997b. Recycling of Industrial and Urban Wastes in Brick Production – A review (Part 2), Tile Brick Int. 13, 302-309 Cerca con Google

Duminuco P., Messiga B., Riccardi M.P., 1998. Firnig process of natural clays. Some microtextures and related phase compositions, Termodicnamica Acta 321, 185-190 Cerca con Google

Eliche-Quesada D., Martínez-Martínez S., Pérez-Villarejo L., Iglesias-Godino F.J., Martínez-García C., Corpas-Iglesias F.A., 2012a. Valorization of biodiesel production residues in making porous clay brick, Fuel Processing Technology 103, 166–173 Cerca con Google

Eliche-Quesada D., Corpas-Iglesias F.A., Pérez-Villarejo L., Iglesias-Godino F.J., 2012b. Recycling of sawdust, spent earth from oil filtration, compost and marble residues for brick manufacturing, Construction and Building Materials 34, 275–284 Cerca con Google

Ercikdi B., Cihangir F., Kesimal A., Deveci H., Alp I., 2009. Utilization of industrial waste products as pozzolanic material in cemented paste backfill of high sulphide mill tailings, Journal of Hazardous Materials 168, 848–856 Cerca con Google

Haldar S. K., 2013. Mineral Exploration: Principles and Applications, Elsevier Science Publishing Co Inc, United States Cerca con Google

Hein A., Müller N.S., Day. P.M., Kilikoglou V., 2008. Thermal conductivity of archaeological ceramics: The effect of inclusions,porosity and firing temperature, Thermochimica Acta 480, 35–42 Cerca con Google

Fernández-Pereira C., de la Casa J.A., Gómez-Barea A., Arroyo F., Leiva C., Luna Y., 2011. Application of biomass gasification fly ash for brick manufacturing, Fuel 90, 220–232 Cerca con Google

García Ten J., Orts M.J., Sabutit A., Silva G., 2010. Thermal conductivity of traditional ceramics. Part I: Influence of bulk density and firing temperature, Ceramics International 36, 1951–1959 Cerca con Google

Kara A., Kayaci K., KüçüKer A.S., Bozkurt V., Uçbas Y., Özdamar S., 2009. Use of rhyolite as flux in porcelain tile production, Industrial Ceramics, vol. 29, 71-81 Cerca con Google

Koroneos C., Dompros A., 2007. Environmental assessment of brick production in Greece, Building and Environment 42, 2114–2123. Cerca con Google

Maritan L., 2001. Corse Iron age pottery from Este (Padova), Italy. Proceedings del 3rd International Congress on Science and Technology for the Safeguard of Cultural Heritage in the Mediterranean Basin, Alcalà de Henares, Spagna 9-14 luglio 2001, Eds. J. Alpuente, I. de Bustamante, P. López, J. Sanz, Servicio de Publicaciones de la Universidad de Alcalá, 1-6. Cerca con Google

Maritan L., Mazzoli C., Rigaldo P., Pesavento Mattioli S., Mazzocchin S., 2006. Le olle romane dello scavo di via Neroniana (Montegrotto Terme – Padova): indagini preliminari. Proceedings del Convegno Nazionale AIAr, 16-18 febbraio 2005, Ed. Patron, 253-260. Cerca con Google

Maritan L., Mazzoli C., Tenconi M., Leonardi G., Boaro S., 2009. Provenance and production technology of Early Bronze Age pottery from a lake dwelling settlement at Arquà Petrarca (Padova, NE Italy). In: Interpreting Silent Artefacts: Petrographic Approaches to Archaeological Ceramics (Ed. P.S. Quinn), Archaeopress, Oxford, 81-99. Cerca con Google

Maritan L., Nodari L., Mazzoli C., Milano A., Russo U., 2006. Influence of firing conditions in ceramic products: Experimental study on clay rich in organic matter, Applied Clay Science 31, 1-15. Cerca con Google

Martinéz-Martinéz J., Benavente D., Ordóñez S., García-del-Cura M.A., 2008. Multivariate statistical techniques for evaluating the effects of brecciated rock fabric on ultrasonic wave propagation, International Journal of Rock Mechanics and Mining Sciences 45, 609-620. Cerca con Google

Muñoz Velasco P., Morales Ortíz M.P., Mendívil Giró M.A., Muñoz Velasco L., 2014a. Fired clay bricks manufactured by adding wastes as sustainable construction material – A review, Construction and Building Materials 63, 97–107 Cerca con Google

Muñoz Velasco P., Morales M.P., Mendívil M.A., Juárez M.C., Muñoz L., 2014b. Using of waste pomace from winery industry to improve thermal insulation of fired clay bricks. Eco-friendly way of building construction, Construction and Building Materials 7, 181–187 Cerca con Google

Neves Monteiro S., Fontes Vieira C. M., 2014. On the production of fired clay bricks from waste materials: A critical update, Construction and Building Materials 68, 599–610 Cerca con Google

NORMAL 29/88, 1988. Misura dell’indice di asciugamento (drying index), CNR-ICR, Rome Cerca con Google

Ortiz O., Castells F., Sonnemann G., 2009. Sustainability in the construction industry: A review of recent developments based on LCA, Construction and Building Materials 23, 28–39 Cerca con Google

Pérez-Villarejo L., Eliche-Quesada D., Iglesias-Godino Fco. J., Martínez-García C., Corpas-Iglesias Fco. A., 2012. Recycling of ash from biomass incinerator in clay matrix to produce ceramic bricks, Journal of Environmental Management 95, 349-354 Cerca con Google

Peris Mora E., 2007. Life cycle, sustainability and the transcendent quality of building materials, Building and Environment 42, 1329–1334 Cerca con Google

Rajput D., Bhagade S.S., Raut S.P., Ralegaonkar R.V., Mandavgane S. A., 2012. Reuse of cotton and recycle paper mill waste as building material, Construction and Building Materials 34, 470–475 Cerca con Google

Raut S.P., Ralegaonkar R.V, Mandavgane S.A., 2011. Development of sustainable construction material using industrial and agricultural solid waste: A review of waste-create bricks, Construction and Building Materials 25, 4037–4042 Cerca con Google

Riccardi M.P., Messiga B., Duminuco P., 1999. An approach to the dynamics of clay firing, Applied Clay Science 15, 393-409 Cerca con Google

RILEM 1980, Recommended test to measure the deterioration of stone and to assess the differences of treatment methods, Mater. Struct. 13, 175-253. Cerca con Google

Salem A. and Aghahosseini S., 2012. Determination of fluxing agents mixing ratio for enchancing thermal shock resistance of ceramic Raschig ring via systematic approach, Thermodinamica Acta 545, 57-66 Cerca con Google

Scott V.D., Love G., 1983. Quantitative Electron Probe Microanalysis, John Wiley and Sons, New York. Cerca con Google

Singer S.S., Singer F., Industrial ceramics, Chapman and Hall, London, 1963. Cerca con Google

Sutcu M., Akkurt S., 2009. The use of recycled paper processing residues in making porous brick with reduced thermal conductivity, Ceramics International 35, 2625–2631 Cerca con Google

Sutcu M., del Coz Diaz J. J., Alvarez Rabanal F.P., Gencel O., Akkurt S., 2014. Thermal performance optimization of hollow clay bricks made up of paper waste, Energy and Buildings 75, 96–108 Cerca con Google

Sutcu M., Alptekin H., Erdogmus E., Er Y., Gencel O., 2015. Characteristics of fired clay bricks with waste marble powder addition as building materials Construction and Building Materials 82, 1–8 Cerca con Google

Tenconi M., Maritan L., Leonardi G., Prosdocimi B., Mazzoli C., 2013. Ceramic production and distribution in North-East Italy: Study of a possible trade network between Friuli Venezia Giulia and Veneto regions during the final Bronze Age and early Iron Age through analysis of peculiar “flared rim and flat lip” pottery, Applied Clay Science 82, 121–134 Cerca con Google

Topçu I. B., Isidag B., 2007. Manufacture of high heat conductivity resistant clay bricks containing perlite, Building and Environment 42, 3540–3546 Cerca con Google

Uçbas Y., Bozkurt V., Bilir K., 2008. Recovery of sanidine from trachyte, proceedings of the 11th International mineral processing symposium, Belek-Antalya, Turkey Cerca con Google

UNI EN 1925, Metodi di prova per pietre naturali. Determinazione del coefficiente di assorbimento d’acqua per capillarità, CNR-ICR, Rome (Italy), 2000. Cerca con Google

UNI EN 13755, 2002. Metodi di prova per pietre naturali. Determinazione dell’assorbimento d’acqua a pressione atmosferica, CNR-ICR, Rome Cerca con Google

UNI EN 12370, 2001. Metodi di prova per pietre naturali - determinazione della resistenza alla cristallizzazione dei Sali, CNR-ICR, Rome Cerca con Google

UNI EN 12371, 2010. Metodo di prova per pietre naturali - determinazione della resistenza al gelo, CNR-ICR, Rome Cerca con Google

Yagüe A., Valls S., 2002. Vázquez E., Kuchinow V., Utilización de Iodo seco de depuradora de aguas residuales como adición en adoquines de hormigón prefabricado, Materiales de construcción, 52, 267, 31-41 Cerca con Google

Yoshiki B., Matsumoto K., 1951. High-Temperature Modification of Barium Feldspar, Journal of the American Ceramic Society 34, 283-286 Cerca con Google

Weng C.-H., Lin D.-F., Chiang P.-C., 2003. Utilization of sludge as brick materials, Advances in Environmental Research 7, 679–685 Cerca con Google

Whitney D. L., Evans B. W., 2010. Abbreviations for names of rock-forming minerals, American Mineralogist 95, 185-187. Cerca con Google

Zhang L., Ahmari S., Zhang J., 2011. Synthesis and characterization of fly ash modified mine tailings-based geopolymers, Construction and Building Materials 25, 3773–3781 Cerca con Google

Zhang L., 2013. Production of bricks from waste materials – A review, Construction and Building Materials 47, 643–655 Cerca con Google

References-Chapter 6-Results Cerca con Google

Arnold A., Zehnder K., 1990. Salt weathering on monuments, in The Conservation of Monuments in the Mediterranean Basin: The influence of coastal environment and salt spray on limestone and marble. Proceedings of the 1st International Symposium, 31-58 Cerca con Google

Benavente D., 2011. Why pore size is important in the deterioration of porous stones used in the built heritage? Macla 15, 41–42 Cerca con Google

Benavente D., Martiñez-Verdú F., Bernabeu A., Viqueira V., Fort R., García del Cura M.A., Illueca C., Ordóñez S., 2002. Influence of surface roughness on color changes in building stones, Color Research and Application 28, 343–351. Cerca con Google

Bories C., Borredon M.-E, Vedrenne E., Vilarem G., 2014. Development of eco-friendly porous fired clay bricks using pore-forming agents: A review, Journal of Environmental Management 143, 186–196 Cerca con Google

Chen G. and Wang J., 1998. The preparation of marine geological certified reference materials -polymetallic nodule GSPN-1 and marine sediment GSMS-1 from the Central Pacific Ocean, Geostandards and Geoanalytical Research 22, 119–125. Cerca con Google

Cultrone G., Rodriguez-Navarro C., Sebastián E.M., Cazalla O., de la Torre M.J., 2001. Carbonate and silicate phase reactions during ceramic firing, European Journal Mineralogy 13, 621–634 Cerca con Google

Cultrone G., Sebastián E., Elert K., de la Torre M.J., Cazalla O., Rodriguez-Navarro C., 2004. Influence of mineralogy and firing temperature in the porosity of bricks, Journal of the European Ceramic Society 34, 547–564 Cerca con Google

Cultrone G., Sebastián E., de la Torre M.J., 2005. Mineralogical and physical behaviours of solid bricks with additives, Construction and Building Materials 19, 39–48 Cerca con Google

Demir I., 2008. Effect of organic residues addition on the technological properties of clay bricks, Waste Management 28, 622–627 Cerca con Google

Dondi M., Marsigli M., Fabbri B., 1997a. Recycling of Industrial and Urban Wastes in Brick Production – A review, Tile Brick Int. 13, 218–225 Cerca con Google

Dondi M., Marsigli M., Fabbri B., 1997b. Recycling of Industrial and Urban Wastes in Brick Production – A review (Part 2), Tile Brick Int. 13, 302–309 Cerca con Google

Dondi M., Fabbri B., Marsigli M., 1998. Rassegna delle esperienze di riciclaggio di scarti industriali e urbani nella produzione di laterizi, L’industria dei laterizi 51, 160–178 Cerca con Google

Duminuco P., Messiga B., Riccardi M.P., 1998. Firinig process of natural clays. Some microtextures and related phase compositions, Termodicnamica Acta 321, 185-190 Cerca con Google

Grossi C.M., Brimblecombe P., Esbert R.M., 2007. Francisco Javier Alonso, Color changes in architectural limestones from pollution and cleaning, Color Research and Application 32, 320-331 Cerca con Google

Maritan L., Nodari L., Mazzoli C., Milano A., Russo U., 2006. Influence of firing conditions in ceramic products: Experimental study on clay rich in organic matter, Applied Clay Science 31, 1–15 Cerca con Google

Martínez-Martínez J., Benavente D., Gomez-Heras M., Marco-Castaño L., García-del-Cura M. Á., 2013, Non-linear decay of building stones during freeze–thaw weathering processes, Construction and Building Materials 38, 443–454 Cerca con Google

Muñoz Velasco P., Morales Ortíz M.P., Mendívil Giró M.A., Muñoz Velasco L., 2014. Fired clay bricks manufactured by adding wastes as sustainable construction material – A review, Construction and Building Materials 63, 97–107 Cerca con Google

Neves Monteiro S., Fontes Vieira C. M., 2014. On the production of fired clay bricks from waste materials: A critical update, Construction and Building Materials 68, 599–610 Cerca con Google

UNE EN 15886, 2011. Conservación del patrimonio cultural. Métodos de ensayo. Medición del color de superficies, A.E.N.O.R., Madrid Cerca con Google

UNI EN 13755, 2008. Metodi di prova per pietre naturali - Determinazione dell'assorbimento d'acqua a pressione atmosferica, CNR-ICR, Rome. Cerca con Google

UNI EN 1925, 2000. Metodi di prova per pietre naturali - determinazione del coefficiente di assorbimento d'acqua per capillarità, CNR-ICR, Rome. Cerca con Google

UNI EN 1926, 2007. Metodo di prova per pietre naturali - determinazione della resistenza alla compressione uniassiale, ICNR-ICR, Rome. Cerca con Google

UNI EN 12371, 2010. Metodo di prova per pietre naturali - determinazione della resistenza al gelo, CNR-ICR, Rome. Cerca con Google

UNI EN 12370, 2001. Metodi di prova per pietre naturali - determinazione della resistenza alla cristallizzazione dei Sali, CNR-ICR, Rome. Cerca con Google

Raut S.P., Ralegaonkar R.V, Mandavgane S.A., 2011. Development of sustainable construction material using industrial and agricultural solid waste: A review of waste-create bricks, Construction and Building Materials 25, 4037–4042 Cerca con Google

Riccardi M.P., Messiga B., Duminuco P., 1999. An approach to the dynamics of clay firing, Applied Clay Science 15, 393-409. Cerca con Google

Sancho J., Fernández B., Ayala J., García P., Recio J.C., Rodríguez C., Bernardo J.L., 2009. Method of the obtaining electrolytic manganese from ferroalloy production waste, 1st Spanish National Conference on Advances in Materials Recycling and Eco – Energy, Madrid Cerca con Google

Scott V.D., Love G., 1983. Quantitative Electron Probe Microanalysis, John Wiley and Sons, New York. Cerca con Google

Sing K.S.W., Everett D.H., Haul R.A.W., Moscou L., Pierotti R.A., Rouquerol J., Siemieniewska T., 1985. Reporting physorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure & Applied Chemistry, IUPAC, Vol. 57, No. 4, 603-619 Cerca con Google

Storck S., Bretinger H., Maier W.F., 1998. Characterization of micro- and mesoporous solids by physisorption methods and pore-size analysis, Applied Catalysis A: General 174, 137-146 Cerca con Google

Whitney D.L., Evans B. W., 2010. Abbreviations for names of rock-forming minerals, American Mineralogist 95, 185-187. Cerca con Google

Zhang L., 2013. Production of bricks from waste materials – A review, Construction and Building Materials 47, 643–655 Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record