Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Bosi, Franco Javier (2016) Development of global models of plasma systems for space propulsion. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF (Tesi di dottorato) - Versione sottomessa
2508Kb
[img]
Anteprima
Documento PDF (Errata corrige)
167Kb

Abstract (inglese)

The focus of this research work is to develop plasma global models, to support the investigations on argon and carbon dioxide helicon plasma thruster, carried out at CISAS research center.
These models have been applied in three different and consecutive research programs, the EU FP7 HpH.com program, the AO7048 ESA program, and the SAPERE-STRONG MIUR program.

The models have been developed for the most general case of an electronegative magnetized discharge, therefore encompass all types of cold non magnetized or electropositive discharges.
Furthermore, the models employs results from particle in cell simulations of the plasma exhaust plume, in order to account properly for the plasma detachment and acceleration provided by the so called magnetic nozzle effect.
The simulations are in agreement with performed experiments on the laboratory set up, and allow prediction of the thruster propulsive performances.

The viability of plasma assisted combustion for monopropellant propulsion applications, is also investigated. An experimental proof of concept is provided with a nitrous oxide gliding arc experiment, carried out at Drexel Plasma Institute. The experiment shows that the plasma is effective in promoting catalytic decomposition and combustion of the gas.

A global model is developed to investigate the mechanism of nitrous oxide plasma assisted dissociation; the model implements non-equilibrium neutral gas phase reaction rates and a vibrational energy equation for the estimation of the vibrational temperature.
The model is able to reveal the mechanism of plasma catalysis, and predicts good performances for an hypothetical nitrous oxide microwave discharge thruster.

Abstract (italiano)

Obiettivo di questo lavoro è lo sviluppo di modelli globali di plasma atti a supportare lo studio della propulsione al plasma di tipo helicon, con propellente ad argon e anidride carbonica, portato avanti al centro di ricerca ed attività spaziali CISAS.
I modelli sono stati applicati in tre progetti di ricerca consecutivi: il progetto HpH.com, finanziato nel contesto del programma europeo FP7, il progetto AO7048 finanziato da ESA ed il progetto STRONG-SAPERE finanziato dal MIUR.

I modelli sono sviluppati in via generale per plasmi di gas elettronegativo e magnetizzato, perciò sono applicabili alle sottocategorie di plasmi freddi, non magnetizzati o elettropositivi.

I modelli inoltre, incorporano risultati da simulazioni di tipo paticle in cell, della zona del plume del propulsore; in questo modo è possibile tener conto degli effetti di distacco e accelerazione del plasma, provocati dalla divergenza delle linee del campo magnetico; il cosiddetto effetto di ugello magnetico.

E' inoltre studiata la fattibilità della combustione assistita da plasma, per applicazioni relative a propulsione monopropellente. Una verifica sperimentale di fattibilità è effettuata attraverso un esperimento di scarica di tipo gliding arc, di protossido d'azoto; l'esperimento è stato effettuato presso il Drexel Plasma Institute a Philadelphia.

Un modello globale di plasma è stato sviluppato per studiare i meccanismi della dissociazione assistita da plasma; il modello implementa reazioni di fase neutra di non equilibrio, e una equazione per l'evoluzione dell'energia vibrazionale delle molecole, che permette di tracciare l'andamento temporale della temperatura vibrazionale.
Il modello è in grado di evidenziare i meccanismi di catalisi da plasma; inoltre, predice buone prestazioni per un eventuale propulsore di tipo plasma a microonde con protossido d'azoto.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Pavarin, Daniele
Correlatore:Manente, Marco
Dottorato (corsi e scuole):Ciclo 28 > Scuole 28 > SCIENZE TECNOLOGIE E MISURE SPAZIALI > SCIENZE E TECNOLOGIE PER APPLICAZIONI SATELLITARI E AERONAUTICHE
Data di deposito della tesi:31 Gennaio 2016
Anno di Pubblicazione:31 Gennaio 2016
Parole chiave (italiano / inglese):kinetic plasma discharge average global model vibrational temperature electron spectroscopy energy equation
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-IND/07 Propulsione aerospaziale
Area 03 - Scienze chimiche > CHIM/02 Chimica fisica
Struttura di riferimento:Centri > Centro Interdipartimentale di ricerca di Studi e attività  spaziali "G. Colombo" (CISAS)
Codice ID:9504
Depositato il:24 Ott 2016 15:08
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] G G Chernyi, S A Losev, S O Macheret, and B V Potapkin. Physical and Chemical Processes in Gas Dynamics: Cross sections and rate constants. Volume I, volume 1. AIAA, 2002. Cerca con Google

[2] R. Winglee, T. Ziemba, L. Giersch, J. Prager, J. Carscadden, and B.R. Roberson. Simulation and laboratory validation of magnetic nozzle eects for high power helicon thruster. Physics of Plasmas, 14(6):063501{14, June 2007. Cerca con Google

[3] C. Charles, R.W. Boswell, R. Lane, and P. MacLellan. An experimental investigation of alternative propellants for the helicon double layer thruster. Journal of Physics D: Applied Physics, 41:175213 (6pp), 2008. Cerca con Google

[4] D. Pavarin, F. Ferri, and M. Manente. Helicon plasma hydrazine.combined-micro. In XX AIAA Congress, Milan, Italy, June 29 - July 3 2009. Cerca con Google

[5] K Takahashi, T Laeur, C Charles, P Alexander, RW Boswell, M Perren, R Laine, S Pottinger, V Lappas, T Harle, et al. Direct thrust measurement of a permanent magnet helicon double layer thruster. Applied Physics Letters, 98(14):141503, 2011. Cerca con Google

[6] Chloe Berenguer and Konstantinos Katsonis. Global modeling of CO2 discharges with aerospace applications. Advances in Aerospace Engineering, 2014, 2014. Cerca con Google

[7] M A Lieberman and A J Lichtenberg. Principles of plasma discharges and materials processing. John Wiley & Sons, 2005. Cerca con Google

[8] C Lee and M A Lieberman. Global model of Ar, O2, Cl2, and Ar/O2 high-density plasma discharges. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 13(2):368{380, 1995. Cerca con Google

[9] T De los Arcos, C Domingo, VJ Herrero, MM Sanz, Astrid Schulz, and I Tanarro. Diagnostics and kinetic modeling of a hollow cathode N2O discharge. The Journal of Physical Chemistry A, 102(31):6282{6291, 1998. Cerca con Google

[10] Y Ikeda, JP Verboncoeur, PJ Christenson, and CK Birdsall. Global modeling of a dielectric barrier discharge in Ne-Xe mixtures for an alternating current plasma display panel. Journal of applied physics, 86(5):2431{2441, 1999. Cerca con Google

[11] F Bosi, G Parissenti, M Pessana, and D Pavarin. Modelling of plasma-chemical propellant interaction in electrodeless helicon plasma thruster. In Proceedings of 5th Eucass - European Conference for Aerospace Sciences - Munich, Germany, 2013, July 2013. Cerca con Google

[12] D Steitz. Nasa goes green: Nasa selects green propellant technology demonstration mission, ttp://www.nasa.gov/home/hqnews/2012/aug/hq 12-281 green propellants.html. Vai! Cerca con Google

[13] Vadim Zakirov, Martin Sweeting, Timothy Lawrence, and Jerry Sellers. Nitrous oxide as a rocket propellant. Acta Astronautica, 48(5):353{362, 2001. Cerca con Google

[14] Pratik Saripalli and Raymond J Sedwick. Development of a green propellant stationkeeping thruster using a dielectric barrier discharge. Cerca con Google

[15] Andrea Lucca Fabris. Experimental characterization of plasma sources for space propulsion. Master's thesis, University of Padova, 2014. Cerca con Google

[16] S R Turns et al. An introduction to combustion, volume 287. McGraw-hill New York, 1996. Cerca con Google

[17] Franco Bosi. Analisys of N2O plasma induced decomposition. Master's thesis, University of Padova, October 2011. Cerca con Google

[18] Alexander Fridman. Plasma chemistry. Cambridge University Press, 2008. Cerca con Google

[19] T Hori, M Kogano, M D Bowden, K Uchino, and K Muraoka. A study of electron energy distributions in an inductively coupled plasma by laser thomson scattering. Journal of applied physics, 83(4):1909{1916, 1998. Cerca con Google

[20] V A Godyak. Soviet radio frequency discharge research. Delphic Associates Falls Church, VA, 1986. Cerca con Google

[21] AV Phelps. The diusion of charged particles in collisional plasmas: free and ambipolar diusion at low and moderate pressures. Journal of Research of the National Institute of Standards and Technol, pages 407{431, 1990. Cerca con Google

[22] E Kawamura, AJ Lichtenberg, and MA Lieberman. Two-dimensional particle-in-cell simulations of transport in a magnetized electronegative plasma. Journal of Applied Physics, 108(10):103305, 2010. Cerca con Google

[23] G Leray, P Chabert, AJ Lichtenberg, and MA Lieberman. Fluid model of an electronegative discharge with magnetized electrons and unmagnetized ions. Journal of Physics D: Applied Physics, 42(19):194020, 2009. Cerca con Google

[24] Francois Vidal, Tudor Wyatt Johnston, Joelle Margot, Mohamed Chaker, and Olivier Pauna. Diusion modeling of an hf argon plasma discharge in a magnetic eld. Plasma Science, IEEE Transactions on, 27(3):727{745, 1999. Cerca con Google

[25] M Capitelli, C M Ferreira, A I Osipov, and F Gordiets, Boris. Plasma kinetics in atmospheric gases. Springer, 2000. Cerca con Google

[26] P J Chantry. A simple formula for diusion calculations involving wall reection and low density. Journal of applied physics, 62(4):1141{1148, 1987. Cerca con Google

[27] Bruce E Poling, John M Prausnitz, John P O'connell, et al. The properties of gases and liquids, volume 5. McGraw-Hill New York, 2001. Cerca con Google

[28] D. Pavarin, F. Ferri, M. Manente, D. Curreli, D. Melazzi, D. Rondini, and A. Cardinali. Development of plasma codes for the design of mini-helicon thrusters. In Proceedings of the 32nd International Electric Propulsion Conference, page 240, Wiesbaden, Germany, 2011. Cerca con Google

[29] Andrea L. Fabris, Chris. V. Young, Marco Manente, Daniele Pavarin, and Mark A. Cappelli. Ion velocimetry measurements and particle-in-cell simulation of a cylindrical cusped plasma accelerator. Plasma Science, IEEE Transactions on, 43(1):54{63, Jan 2015. Cerca con Google

[30] C Geuzaine and J Fcois Remacle. Gmsh: A 3d nite element mesh generator with built-in pre-and post-processing facilities. International Journal for Numerical Methods in Engineering, 79(11):1309{1331, 2009. Cerca con Google

[31] C. Geuzaine. Getdp: a general nite-element solver for the de rham complex. In PAMM Volume 7 Issue 1. Special Issue: Sixth International Congress on Industrial Applied Mathematics (ICIAM07) and GAMM Annual Meeting, Zurich 2007, volume 7, pages 1010603{1010604. Wiley, 2008. Cerca con Google

[32] P. Dular, C. Geuzaine, F. Henrotte, and W. Legros. A general environment for the treatment of discrete problems and its application to the nite element method. IEEE Transactions on Magnetics, 34(5):3395{3398, sep 1998. Cerca con Google

[33] M Manente, F Trezzolani, A Lucca Fabris, D Melazzi, F Bosi, K Katsonis, and D Pavarin.Thruster trade o analysis report (tn3). Technical report, ESA, 2013. Cerca con Google

[34] Daniele Pavarin, Fernando Ferri, M Manente, D Curreli, Y Guclu, D Melazzi, D Rondini, S Suman, J Carlsson, Cristina Bramanti, et al. Design of 50 W helicon plasma thruster. In 31st Int. Electric Propulsion Conf., Ann Arbor, MI, pages 2009{205, 2009. Cerca con Google

[35] F Trezzolani, A Lucca Fabris, D Pavarin, A Selmo, and M Manente. Low power radiofrequency plasma thruster development and testing. In Proceedings of 33nd International Electric Propulsion Conference, Washington, D.C. USA, October 2013. IEPC-2013-153. Cerca con Google

[36] V Vahedi and M Surendra. A monte carlo collision model for the particle-in-cell method: applications to argon and oxygen discharges. Computer Physics Communications, 87(1):179{198, 1995. Cerca con Google

[37] T Laeur, C Charles, and RW Boswell. Characterization of a helicon plasma source in low diverging magnetic elds. Journal of Physics D: Applied Physics, 44(5):055202, 2011. Cerca con Google

[38] Francis F Chen. Performance of a permanent-magnet helicon source at 27 and 13 mhz. Physics of Plasmas (1994-present), 19(9):093509, 2012. Cerca con Google

[39] V Kaeppelin, M Carrere, and JB Faure. Dierent operational regimes in a helicon plasma source. Review of scientic instruments, 72(12):4377{4382, 2001. Cerca con Google

[40] Shane M Tysk, C Mark Denning, John E Scharer, and Kamran Akhtar. Optical, wave measurements, and modeling of helicon plasmas for a wide range of magnetic elds. Physics of Plasmas (1994-present), 11(3):878{887, 2004. Cerca con Google

[41] Arnab Rai Choudhuri. The physics of uids and plasmas: an introduction for astrophysicists. Cambridge University Press, 1998. Cerca con Google

[42] S Pancheshnyi, B Eismann, G J M Hagelaar, and L C Pitchford. Computer code zdplaskin, LAPLACE, CNRS-UPS-INP, Toulouse, France, 2008. Cerca con Google

[43] lxcat - plasma data exchange project, http://nl.lxcat.net/home/, LXcat. Vai! Cerca con Google

[44] A Flitti and S Pancheshnyi. Gas heating in fast pulsed discharges in N2-O2 mixtures. The European Physical Journal Applied Physics, 45(02):21001, 2009. Cerca con Google

[45] RE Beverly III. Ion aging eects on the dissociative-attachment instability in CO2 lasers. Optical and quantum electronics, 14(6):501{513, 1982. Cerca con Google

[46] Hirokazu Hokazono and Haruo Fujimoto. Theoretical analysis of the CO2 molecule decomposition and contaminants yield in transversely excited atmospheric CO2 laser discharge. Journal of applied physics, 62(5):1585{1594, 1987. Cerca con Google

[47] Thomas G Beuthe and Jen-Shih Chang. Chemical kinetic modelling of non-equilibrium Ar-CO2 thermal plasmas. Japanese Journal of applied physics, 36(7S):4997, 1997. Cerca con Google

[48] VD Rusanov, AA Fridman, and GV Sholin. The physics of a chemically active plasma with nonequilibrium vibrational excitation of molecules. Soviet Physics Uspekhi, 24(6):447, 1981. Cerca con Google

[49] Tomas Kozak and Annemie Bogaerts. Splitting of CO2 by vibrational excitation in nonequilibrium plasmas: a reaction kinetics model. Plasma Sources Science and Technology, 23(4):045004, 2014. Cerca con Google

[50] Robby Aerts, Tom Martens, and Annemie Bogaerts. Inuence of vibrational states on CO2 splitting by dielectric barrier discharges. The Journal of Physical Chemistry C, 116(44):23257{23273, 2012. Cerca con Google

[51] JJ Lowke, AV Phelps, and BW Irwin. Predicted electron transport coecients and operating characteristics of CO2-N2-He laser mixtures. Journal of Applied Physics, 44(10):4664{4671, 1973. Cerca con Google

[52] Weihong Liu and GA Victor. Electron energy deposition in carbon monoxide gas. The Astrophysical Journal, 435:909{919, 1994. Cerca con Google

[53] R Locht and M Davister. The dissociative electroionization of carbon dioxide by low-energy electron impact. the C+, O+ and CO dissociation channels. International journal of mass spectrometry and ion processes, 144(1):105{129, 1995. Cerca con Google

[54] Yukikazu Itikawa. Cross sections for electron collisions with carbon dioxide. Journal of Physical and Chemical Reference Data, 31(3):749{768, 2002. Cerca con Google

[55] NIST. Nist chemical kinetics database, ttp://kinetics.nist.gov/kinetics/index.jsp. Cerca con Google

[56] Sanford Gordon and Bonnie J McBride. Computer program for calculation of complex chemical equilibrium compositions and applications. National Aeronautics and Space Administration, Cerca con Google

Oce of Management, Scientic and Technical Information Program, 1996. Cerca con Google

[57] D Pavarin et al. Thruster development set-up for the helicon plasma hydrazine combined micro research project. In Proceedings of 32nd International Electric Propulsion Conference, Wiesbaden, Germany, September 2011. IEPC-2011-241. Cerca con Google

[58] O Tudisco, A Lucca Fabris, C Falcetta, L Accatino, R De Angelis, M Manente, F Ferri, M Florean, C Neri, C Mazzotta, et al. A microwave interferometer for small and tenuous plasma density measurements. Review of Scientic Instruments, 84(3):033505, 2013. Cerca con Google

[59] NIST. Nist atomic spectra database, http://www.nist.gov/pml/data/asd.cfm. Vai! Cerca con Google

[60] John B Board, RO Jung, Chun C Lin, LE Aneskavich, and AEWendt. Argon 420.1{419.8 nm emission line ratio for measuring plasma eective electron temperatures. Journal of Physics D: Applied Physics, 45(4):045201, 2012. Cerca con Google

[61] H J Kunze. Introduction to plasma spectroscopy, volume 56. Springer, 2009. Cerca con Google

[62] Sergey G Belostotskiy, Tola Ouk, Vincent M Donnelly, Demetre J Economou, and Nader Sadeghi. Gas temperature and electron density proles in an argon dc microdischarge measured by optical emission spectroscopy. Journal of applied physics, 107(5):053305, 2010. Cerca con Google

[63] Muyang Qian, Chunsheng Ren, Dezhen Wang, Jialiang Zhang, and Guodong Wei. Stark broadening measurement of the electron density in an atmospheric pressure argon plasma jet with double-power electrodes. Journal of Applied Physics, 107(6):063303, 2010. Cerca con Google

[64] Reginald William Blake Pearse, Alfred Gordon Gaydon, Reginald William Blake Pearse, and Alfred Gordon Gaydon. The identication of molecular spectra, volume 297. Chapman and Hall London, 1976. Cerca con Google

[65] Joseph M Ajello. Emission cross sections of CO2 by electron impact in the interval 1260{4500 a. ii. The Journal of Chemical Physics, 55(7):3169{3177, 1971. Cerca con Google

[66] Fabienne Poncin-Epaillard and Mohammed Aouinti. Characterization of CO2 plasma and interactions with polypropylene lm. Plasmas and polymers, 7(1):1{17, 2002. Cerca con Google

[67] Santolo De Benedictis, Riccardo D'Agostino, and Francesco Cramarossa. Spectroscopic analysis of the vibrational distributions in dissociative CO-He rf discharges. Chemical Physics, 71(2):247{256, 1982. Cerca con Google

[68] GW Fox, OS Duendack, and EF Barker. The spectrum of CO2. Proceedings of the National Academy of Sciences of the United States of America, 13(5):302, 1927. Cerca con Google

[69] Paul H Krupenie. The band spectrum of carbon monoxide. Technical report, DTIC Document, 1966. Cerca con Google

[70] Seiji Tsurubuchi and Tsuruji Iwai. Simultaneous ionization and excitation of CO2 by electron-impact. Journal of the Physical Society of Japan, 37(4):1077{1081, 1974. Cerca con Google

[71] Timothy J Lawrence, Martin Sweeting, Malcolm Paul, JJ Sellers, JR LeDuc, JB Malak, GG Spanjers, RA Spores, and J Schilling. Performance testing of a resistojet thruster for small satellite applications. Defense Technical Information Center, 1998. Cerca con Google

[72] Vadim Zakirov, Martin Sweeting, and Timothy Lawrence. An update on surrey nitrous oxide catalytic decomposition research. 2001. Cerca con Google

[73] K Krawczyk and M Wieczorkowski. Studies of nitrous oxide conversion in gliding arc discharges. In HAKONE 8: International Symposium on High Pressure, Low Temperature Plasma Chemistry. Proceedings. Vol. 1 and 2, 2002. Cerca con Google

[74] T Nunnally, Kirill Gutsol, Alexander Rabinovich, Alexander Fridman, A Gutsol, and A Kemoun.Dissociation of CO2 in a low current gliding arc plasmatron. Journal of Physics D: Applied Physics, 44(27):274009, 2011. Cerca con Google

[75] Dipl Physiker Georg Rollmann. Calculation of correction factors for variable area ow meters at deviating working conditions. Cerca con Google

[76] David Staack, Bakhtier Farouk, Alexander F Gutsol, and Alexander A Fridman. Spectroscopic studies and rotational and vibrational temperature measurements of atmospheric pressure normal glow plasma discharges in air. Plasma sources science and technology, 15(4):818, 2006. Cerca con Google

[77] Laurence S Rothman, CP Rinsland, A Goldman, ST Massie, DP Edwards, JM Flaud, A Perrin, C Camy-Peyret, V Dana, J-Y Mandin, et al. The hitran molecular spectroscopic database and hawks (hitran atmospheric workstation): 1996 edition. Journal of Quantitative Spectroscopy and Radiative Transfer, 60(5):665{710, 1998. Cerca con Google

[78] D G Goodwin, H K Moat, and R L Speth. Cantera: An object- oriented software toolkit for chemical kinetics, thermodynamics, and transport processes. Cerca con Google

[79] A Yanguas-Gil, J Cotrino, and AR Gonzalez-Elipe. Global model of a low pressure ecr microwave plasma applied to the pecvd of SiO2 thin lms. Journal of Physics D: Applied Physics, 40(11):3411, 2007. Cerca con Google

[80] K Hassouni, A Gicquel, M Capitelli, and J Loureiro. Chemical kinetics and energy transfer in moderate pressure H2 plasmas used in diamond mpacvd processes. Plasma Sources Science and Technology, 8(3):494, 1999. Cerca con Google

[81] Sang Ki Nam and John P Verboncoeur. Global model for high power microwave breakdown at high pressure. In IEEE International Power Modulators and High Voltage Conference, Proceedings of the 2008, pages 564{566. IEEE, 2008. Cerca con Google

[82] Carl D Scott, Samir Farhat, Alix Gicquel, and Khaled Hassouni. Determining electron temperature and density in a hydrogen microwave plasma. Journal of thermophysics and heat transfer, 10(3):426{435, 1996. Cerca con Google

[83] Marek AWojtowicz, Francis P Miknis, RWGrimes, WayneWSmith, and Michael A Serio. Control of nitric oxide, nitrous oxide, and ammonia emissions using microwave plasmas. Journal of Hazardous Materials, 74(1):81{89, 2000. Cerca con Google

[84] Krzysztof Krawczyk, Michal Drozdowski, and Katarzyna Naperty. Nitrous oxide processing by a combination of gliding and microwave discharges. Catalysis today, 119(1):239{242, 2007. Cerca con Google

[85] M Jasinski, D Czylkowski, Z Zakrzewski, and J Mizeraczyk. Treatment of N2O in pulsed microwave torch discharge. Czechoslovak Journal of Physics, 54(3):C859{C865, 2004. Cerca con Google

[86] AS Biryukov, A Yu Volkov, AI Demin, EM Kudryavtsev, Yu A Kulagin, NN Sobolev, and LA Shelepin. Investigation of a gas-dynamic N2O laser. Zh. Eksp. Tekh. Fiz, 688:1664, 1975. Cerca con Google

[87] John D Anderson Jr. Modern compressible ow with historical. Perspective, 1982. Cerca con Google

[88] Takashi Kimura and Hiroki Kasugai. Properties of inductively coupled rf Ar/H2 plasmas: Experiment and global model. Journal of Applied Physics, 107(8):083308, 2010. Cerca con Google

[89] L Pitchford, G J M Hagelaar, S Pancheshnyi, M C Bordage, L L Alves, C M Ferreira, S F Biagi, Y Itikawa, and A V Phelps. Comparisons of sets of electron-neutral scattering cross sections and calculated swarm parameters in N2 and H2. In APS Meeting Abstracts, volume 1, page 1087, 2012. Cerca con Google

[90] Ramesh A Arakoni, Ananth N Bhoj, and Mark J Kushner. H2 generation in Ar/NH3 microdischarges. Journal of Physics D: Applied Physics, 40(8):2476, 2007. Cerca con Google

[91] Isabel Mendez, Francisco J Gordillo-Vazquez, Vctor J Herrero, and Isabel Tanarro. Atom and ion chemistry in low pressure hydrogen dc plasmas. The Journal of Physical Chemistry A, 110(18):6060{6066, 2006. Cerca con Google

[92] B F Gordiets, C M Ferreira, V L Guerra, J M Loureiro, J Nahorny, D Pagnon, M Touzeau, and M Vialle. Kinetic model of a low-pressure N2-O2 Cerca con Google

owing glow discharge. Plasma Science, IEEE Transactions on, 3(4):750{768, 1995. Cerca con Google

[93] D A Shutov, S Y Kang, K H Baek, K S Suh, and K H Kwon. Inductively-coupled nitrous-oxide plasma etching of parylene-c lms. Journal of the Korean Physical Society, 55(5):1836{1840, 2009. Cerca con Google

[94] L Pitchford, M C Bordage, G J M Hagelaar, A Pancheshnyi, and A V Phelps. Comparisons of sets of electron-neutral scattering cross sections and calculated swarm parameters in O2. In APS Meeting Abstracts, volume 1, page 1088, 2012. Cerca con Google

[95] IA Kossyi, A Yu Kostinsky, AA Matveyev, and VP Silakov. Kinetic scheme of the nonequilibrium discharge in nitrogen-oxygen mixtures. Plasma Sources Science and Technology, 1(3):207, 1992. Cerca con Google

[96] CNEP. Centre for non-equilibrium processes. Cerca con Google

[97] L Date, K Radouane, B Despax, M Yous, H Caquineau, and A Hennad. Analysis of the N2O dissociation in a rf discharge reactor. Journal of Physics D: Applied Physics, 32(13):1478, 1999. Cerca con Google

[98] A.V. Phelps. Phelps a:v: compilation of atomic and molecular data, http://jilawww.colorado.edu/ avp/. Vai! Cerca con Google

[99] Morgan. database, http://www.lxcat.net. Vai! Cerca con Google

[100] D McElroy, C Walsh, AJ Markwick, MA Cordiner, K Smith, and TJ Millar. The umist database for astrochemistry 2012. Astronomy & Astrophysics, 550:A36, 2013. Cerca con Google

[101] Mahsa Setareh, Morteza Farnia, Ali Maghari, and Annemie Bogaerts. CF4 decomposition in a low-pressure icp: in uence of applied power and O2 content. Journal of Physics D: Applied Physics, 47(35):355205, 2014. Cerca con Google

[102] J C Tully. Reactions of O(1D) with atmospheric molecules. The Journal of Chemical Physics, 62(5):1893{1898, 1975. Cerca con Google

[103] Yukikazu Itikawa. Cross sections for electron collisions with nitrogen molecules. Journal of Physical and Chemical Reference Data, 35(1):31{53, 2006. Cerca con Google

[104] KA Berrington, PG Burke, and WD Robb. The scattering of electrons by atomic nitrogen. Journal of Physics B: Atomic and molecular physics, 8(15):2500, 1975. Cerca con Google

[105] Makoto Hayashi. Electron collision cross-sections for molecules determined from beam and swarm data. In Swarm Studies and Inelastic Electron-Molecule Collisions, pages 167{187. Springer, 1987. Cerca con Google

[106] PJ Chantry. Temperature dependence of dissociative attachment in N2O. The Journal of Chemical Physics, 51(8):3369{3379, 1969. Cerca con Google

[107] Miguel Gonzalez, R Sayos, and Rosendo Valero. Ab initio and kinetics study of the ground 1a" potential energy surface of the O(1D)+N2O! 2 NO, N2+O2(a1g) reactions. Chemical Physics Letters, 355:123{132, 2002. Cerca con Google

[108] Miguel Gonzalez, Rosendo Valero, Josep Maria Anglada, and R Sayos. Ab initio 1a' ground potential energy surface and transition state theory kinetics study of the O(1D) + N2O! 2 NO, N2 + O2(a1g) reactions. The Journal of Chemical Physics, 115(15):7015{7031, 2001. Cerca con Google

[109] Nancy E Meagher and William R Anderson. Kinetics of the O(3P)+N2O reaction. 2. interpretation and recommended rate coecients. The Journal of Physical Chemistry A, 104(25):6013{6031, 2000. Cerca con Google

[110] S Losev, A Sergievskaya, A Starik, and N Titova. Modeling of thermal nonequilibrium multicomponent kinetics in gas dynamics and combustion. AIAA Paper, (97-2532), 1997. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record