Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Piermattei, Livia (2016) THE USE OF STRUCTURE FROM MOTION TECHNOLOGIES FOR HIGH-RESOLUTION TERRAIN MODELLING ON HIGH ALTITUDE CATCHMENTS. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF (TESI Dottorato)
11Mb

Abstract (inglese)

The research project developed in this Thesis involves the application of close-range photogrammetry based on the Structure from Motion (SfM) approach that allows reconstructing the 3D point cloud of the photographed object from a sequence of overlapping images taken with a common digital camera. Thanks to the characteristics of high portability of the equipment, flexibility of the method to reconstruct surface at different scale with high resolution, low-cost, and ease of use also for not expertise during both acquisition and processing phase, the SfM-photogrammetry is becoming a valid alternative to the range-based technology for remote sensing and monitoring of dynamic natural environments. The aim of this research was to test and validate the capability of a ground photogrammetric survey to reconstruct a surface by dealing the main practical issues of a ground acquisition and by highlighting the main error sources which may be present within the field data. Furthermore, the feasibility of the SfM-photogrammetry approach for monitoring glacial and periglacial processes was tested in order to highlight the limitation and the potential of the method for these applications.
A total of four study sites were surveyed in order to validate the photogrammetric method. A depth investigation on the photo-based approach was carried out in a test field area where different image acquisition, georeferencing methods and processing were compared and evaluated. A terrestrial panorama images acquisition was proposed and tested in this work. This acquisition strategy provided advantages in comparison to a normal single frame acquisition by increasing the spatial coverage of the reconstructed surface and the number of overlapping images that ensure higher accuracy.
The potential and limits of the ground-based SfM-photogrammetry approach for monitoring glacial and periglacial processes were investigated in three different environments. For each of these study areas several tests concerning the quality of the obtained photogrammetric digital elevation models (DEMs) were performed. Different resolution and accuracy of the photogrammetric DEMs were obtained for the three case studies according to the different ground survey characteristics and survey object (i.e. extension and accessibility of the areas, camera-object distance, surface coverage, and camera resolution and geometry network). For the investigated areas, the main practical problems of the ground photogrammetric surveys that affected the SfM-photogrammetry results were: i) image quality determined by poor texture (i.e. snow and dark rock area with low contrast) and strong illumination variations during long time photos acquisition, ii) camera network geometry (i.e. high camera-object distance, poor overlapping images) and iii) distribution and accuracy of control measurements. However, the photogrammetric 3D model allowed us to estimate with good accuracy the glacial and periglacial processes respect to the reference data.
The investigation on the SfM-photogrammetry quality reconstruction allowed to have a complete view of the critical points and the potential of this method for multitemporal analysis in remote alpine area and thus to assess the applicability range for future realistic case scenarios.

Abstract (italiano)

L’attività di ricerca sviluppata in questa tesi riguarda lo studio e l’applicazione della fotogrammetria close-range basata sulla tecnica della Structure from Motion o image-based modeling) per la realizzazione di modelli digitali del terreno (DEMs) ad alta risoluzione che costituiscono la base informativa fondamentale per analisi geomorfologiche. Per Structure from Motion (SfM) si intende una tecnica di calcolo che consente di ricostruire tridimensionalmente un oggetto reale da una serie di immagini sovrapposte ricorrendo alle formulazioni proprie della fotogrammetria e agli automatismi (algoritmi) della Computer Vision. La SfM comparata alla tecnologia laser (LiDAR) presenta numerosi vantaggi legati alla elevata portabilità della strumentazione, flessibilità del metodo di ricostruire superfici a diverse scale ad alta risoluzione, il basso costo e la facilità di applicazione, anche da non esperti, sia durante la fase di acquisizione che di elaborazione dei dati. Per tali motivi questa metodologia di rilievo sta diventando una interessante alternativa alla tecnologia LiDAR, in particolare per il rilievo e monitoraggio di ambienti naturali in zone remote. L’obiettivo principale della ricerca è stato quello testare le potenzialità della fotogrammetria terrestre per generare DEMs con accuratezze e precisioni adeguate all’oggetto rilevato e al tipo di analisi, in particolare alle analisi dei processi glaciali e periglaciali. Una indagine approfondita sui principali problemi pratici legati ad un rilievo fotogrammetrico terrestre e sulle principali fonti di errore che caratterizzano il metodo è stata eseguita su un’area di studio. Diversi sono i fattori che influenzano la qualità del modello fotogrammetrico in termini di accuratezza, precisione e risoluzione. Si è dimostrato che la geometria di presa delle immagini e la distribuzione dei punti di controllo necessari per la georeferenziazione sono i fattori chiave che determinano la qualità del modello e possono portare alla formazione di distorsioni se non accuratamente pianificati. Per migliorare la geometria di presa delle immagini è stata testata una diversa strategia di acquisizione basata su immagini panoramiche. Rispetto ad una acquisizione di singole immagine acquisite ad ogni posizione, una acquisizione multi immagine ha generato accuratezze più elevate e una copertura spaziale maggiore dell`area ricostruita. Per validare la tecnica della fotogrammetria terrestre in ambiente glaciale e periglaciale sono stati identificati tre casi studio con diverse caratteristiche in termini di accessibilità, estensione della superficie e tipo di copertura (detrito, neve fresca e roccia). Nello specifico sono stati rilevati con la fotogrammetria terrestre il ghiaccio del Montasio Occidentale, il ghiaccio di La Mare e il rock glacier AVDM3 al fine di calcolare il bilancio di massa annuale dei ghiacciai e le velocità di scorrimento del rock glacier. L’accuratezza del metodo fotogrammetrico è stata convalidata per ogni singolo caso studio con dati LiDAR. Diverse sono le accuratezze e le precisione ottenute nei tre casi studio. Tuttavia, i DEMs generati dalla fotogrammetria hanno permesso di stimare con buona precisione i processi glaciali e periglaciali con accuratezze comprabile con la tecnologia laser. Le indagini effettuate sui vari casi studio hanno permesso di avere una visione completa sul metodo della SfM e sui punti critici e le potenzialità di questo tecnica di rilievo per l'analisi multi-temporale in bacini montani.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Vettore, Antonio
Correlatore:Pfeifer, Norbert
Dottorato (corsi e scuole):Ciclo 28 > Scuole 28 > TERRITORIO, AMBIENTE, RISORSE E SALUTE
Data di deposito della tesi:31 Gennaio 2016
Anno di Pubblicazione:31 Gennaio 2016
Parole chiave (italiano / inglese):structure from motion, fotogrammetria terrestre, analisi glaciali e periglaciali, configurazione del rilievo, georeferenziazione / structure from motion, terrestrial photogrammetry, glacial and periglacial analysis, camera configuration, georeferencing
Settori scientifico-disciplinari MIUR:Area 08 - Ingegneria civile e Architettura > ICAR/06 Topografia e cartografia
Struttura di riferimento:Dipartimenti > Dipartimento Territorio e Sistemi Agro-Forestali
Codice ID:9506
Depositato il:21 Ott 2016 15:40
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Abdalati W., Krabill W.B. 1999. Calculation of ice velocities in the Jakobshavn Isbrae area using airborne laser altimetry. Remote Sensing of Environment 67(2):194-204. Cerca con Google

Abermann J., Fischer A., Lambrecht A., Geist T. 2010. On the potential of very high-resolution repeat DEMs in glacial and periglacial environments. The Cryosphere 4:53-65. doi:10.5194/tc-4-53-2010 Cerca con Google

AgiSoft LLC 2010a. AgiSoft PhotoScan Professional Edition. Version 1.0.3, available at: http://www.agisoft.ru/products/photoscan/ (last access: 18 January 2015). Vai! Cerca con Google

AgiSoft LLC 2010b. AgiSoft PhotoScan professional edition. Version 1.1.5. Retrieved from http://www.agisoft.ru/products/photoscan/ Vai! Cerca con Google

AgiSoft LLC 2010c. AgiSoft PhotoScan User-manuals Version 1.0, available at: http://www.agisoft.com/pdf/photoscan-pro_1_1_en.pdf (last access: 15 May 2015). Vai! Cerca con Google

Aguilar F.J., Mills J. 2008. Accuracy assessment of lidar-derived digital elevation models, Photogramm. Rec., 23:148–169. Cerca con Google

Ahmadabadian, A. H., Robson, S., Boehm, J., Shortis, M., Wenzel, K., Fritsch, D. 2013. A comparison of dense matching algorithms for scaled surface reconstruction using stereo camera rigs. ISPRS Journal of Photogrammetry and Remote Sensing, 78, pp. 157-167. Cerca con Google

Alsadik B., Remondino F., Menna F., Gerke M., Vosselman G. 2013. Robust extraction of image correspondences exploiting the image scene geometry and approximate camera orientation. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 40(5/W1):1-7. doi:10.5194/isprsarchives-XL-5-W1-1-2013. Cerca con Google

Arnold N.S., Willis I.C., Sharp M.J., Richards K.S., Lawson W.J. 1996. A distributed surface energy-balance model for a small valley glacier. I. Development and testing for Haut Glacier d'Arolla, Valais, Switzerland. Journal of Glaciology 42(140):77-89. Cerca con Google

Arya S., Mount D.M. 1993. Approximate Nearest Neighbor Queries in Fixed Dimensions. In SODA 93:271-280. Cerca con Google

Arya S., Mount D.M., Netanyahu N.S., Silverman R., Wu A.Y. 1998. An optimal algorithm for approximate nearest neighbor searching fixed dimensions. Journal of the ACM (JACM) 45(6):891-923. Cerca con Google

Avian M., Kellerer-Pirklbauer A., Bauer A. 2009. LiDAR for monitoring mass movements in permafrost environments at the cirque Hinteres Langtal, Austria, between 2000 and 2008. Natural Hazards and Earth System Science 9(4):1087-1094. Cerca con Google

Baltsavias E.P., Favey E., Bauder A., Bosch H., Pateraki M. 2001. Digital Surface Modelling by Airborne Laser Scanning and Digital Photogrammetry for Glacier Monitoring. The Photogrammetric Record 17:243–273. doi: 10.1111/0031-868X.00182 Cerca con Google

Barrand N.E., Murray T., James T.D., Barr S.L., Mills J.P. 2009. Optimizing photogrammetric DEMs for glacier volume change assessment using laser-scanning derived ground-control points. Journal of Glaciology 55(189):106-116. Cerca con Google

Barsch D. 1996. Rockglaciers. Indicators for the permafrost and former geoecology in high mountain environments. Springer, Berlin, 331p. Cerca con Google

Bay H., Ess A., Tuytelaars T., Van Gool L. 2008. Speeded-up robust features (SURF). Computer vision and image understanding 110(3):346-359. Cerca con Google

Bemis S., Micklethwaite S., Turner D. 2014. Ground-based and UAV-Based photogrammetry: A multi-scale, high-resolution mapping tool for Structural Geology and Paleoseismology. J Struct Geol. 69:163-178. doi:10.1016/j.jsg.2014.10.007. Cerca con Google

Bentley J.L. 1975. Multidimensional binary search trees used for associative searching. Communications of the ACM 18(9):509-517. Cerca con Google

Bertone A. 2014. Misure di spostamento dei rock glacier con l’uso di feature tracking applicato a DTM multitemporali, BSc Thesis, Department of Earth and Environmental Sciences, University of Pavia, Pavia, Italy, 63 pp. Cerca con Google

Besl P.J., McKay N.D. 1992. Method for registration of 3-D shapes, in: Proceedings of the International Society for Optics and Photonics IEEE Transactions on Pattern Analysis and Machine\Intelligence 1611:586-606. Cerca con Google

Börlin N., Grussenmeyer P. Camera calibration using the damped bundle adjustment toolbox. ISPRS Annals - Volume II-5, 2014: ISPRS Technical Commission V Symposium 23–25 June 2014, Riva del Garda, Italy, 2014, Vol. II-5, pp. 89-96, doi:10.5194/isprsannals-II-5-89-2014,2014. Cerca con Google

Bradley D., Boubekeur T., Heidrich W. 2008. Accurate multi-view reconstruction using robust binocular stereo and surface meshing. In Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on (pp. 1-8). IEEE Cerca con Google

Braithwaite R. J. Raper S.C. 2009. Glacier volume response time and its links to climate and topography based on a conceptual model of glacier hypsometry. The Cryosphere 3(2):183-194. Cerca con Google

Brasington J., Vericat D., Rychkov I. 2012. Modeling riverbed morphology, roughness, and surface sedimentology using high resolution terrestrial laser scanning. Water Resources Research 48.11. Cerca con Google

Bretar F., Arab-Sedze M., Champion J., Pierrot-Deseilligny M., Heggy E., Jacquemoud S. 2013. An advanced photogrammetric method to measure surface roughness: Application to volcanic terrains in the Piton de la Fournaise, Reunion Island. Remote Sensing of Environment 135:1-11. Cerca con Google

Brown M., Lowe D.G. 2007. Automatic panoramic image stitching using invariant features. International journal of computer vision 74(1):59-73. Cerca con Google

Bühler Y., Graf C. 2013. Sediment transfer mapping in a high-alpine catchment using airborne LiDAR. GRAF C (Red.) Mattertal – ein Tal in Bewegung, Publikation zur Jahrestagung der Schweizerischen Geomorphologischen Gesellschaft, 29 June–1 July 2011, Eidg. Forschungsanstalt WSL, St. Niklaus, Birmensdorf, Switzerland, pp. 113-124. Cerca con Google

Bühler Y., Marty M., Egli L., Veitinger J., Jonas T., Thee P., Ginzler C. 2014. Spatially continuous mapping of snow depth in high alpine catchments using digital photogrammetry, The Cryosphere Discuss 8:3297–3333. doi: 10.5194/tcd-8-3297-2014. Cerca con Google

Calonder M., Lepetit V., Strecha C., Fua P. 2010. Brief: Binary robust independent elementary features. Computer Vision–ECCV 2010, 778-792. Cerca con Google

Carturan L. 2010. Climate change effects on the cryosphere and hydrology of a high-altitude watershed, PhD thesis, Department of Land, Environment, Agriculture and Forestry, University of Padova, Padova, Italy. Cerca con Google

Carturan L. 2015. Starting new mass balance observations close to decaying monitored glaciers: La Mare Glacier (Ortles-Cevedale, Italian Alps), J. Glaciol., in preparation. Cerca con Google

Carturan L., Baldassi G.A., Bondesan A., Calligaro S., Carton A., Cazorzi F., Dalla Fontana G., Francese R., Guarnieri A., Milan N., Moro D., Tarolli P. 2013b. Current behaviour and dynamics of the lowermost italian glacier (Montasio Occidentale, Julian Alps). Geografiska Annaler: Series A, Physical Geography 95(1):79-96. Cerca con Google

Carturan L., Baroni C., Carton A., Cazorzi F., Dalla Fontana G., Delpero C., Zanoner T. 2014. Reconstructing Fluctuations of La Mare Glacier (Eastern Italian Alps) in the Late Holocene: new Evidence for a Little Ice Age Maximum Around 1600 AD. Geografiska Annaler: Series A, Physical Geography 96:287–306. Cerca con Google

Carturan L., Blasone G., Calligaro S., Carton A., Cazorzi F., Dalla Fontana G., Moro D. 2013c. High-Resolution Monitoring of Current Rapid Transformations on Glacial and Periglacial Environments. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XL-5/W3:39-44. doi:10.5194/isprsarchives-XL-5-W3 Cerca con Google

Carturan L., Cazorzi F., Dalla Fontana G. 2009. Enhanced estimation of glacier mass balance in unsampled areas by means of topographic data, Ann. Glaciol. 50:37–46. Cerca con Google

Carturan L., Filippi R., Seppi R., Gabrielli P., Notarnicola C., Bertoldi L., Paul F., Rastern P., Cazorzi F., Dinale R., Dalla Fontana G. 2013a. Area and volume loss of the glaciers in the Ortles-Cevedale group (Eastern Italian Alps): controls and imbalance of the remaining glaciers. The Cryosphere 7:1339–1359. Cerca con Google

Carturan L., Zuecco G., Seppi R., Zanoner Z., Borga M., Carton A., Dalla Fontana G. 2015. Catchment-scale permafrost mapping using spring water characteristics, Permafrost Periglac. (in press.). Cerca con Google

Castillo C., Pérez R., James M.R., Quinton J.N., Taguas E.V., Gómez J.A. 2012. Comparing the accuracy of several field methods for measuring gully erosion, Soil Sci. Soc. Am. J. 76:1319–1332. doi:10.2136/sssaj2011.0390. Cerca con Google

Chen Y., Medioni G. 1991. Object modeling by registration of multiple range images, in: Proceedings, IEEE International Conference on Robotics and Automation, 9–11 April, Sacramento, CA, USA, 10:145–155. Cerca con Google

Clapuyt F., Vanacker V., Van Oost K. 2015. Reproducibility of uav-based earth topography reconstructions based on structure-from-motion algorithms. Geomorphology (in press). doi:10.1016/j.geomorph.2015.05.011. Cerca con Google

Cogley J.G. 2009. Geodetic and direct mass-balance measurements: comparison and joint analysis, Ann. Glaciol. 50:96-100. Cerca con Google

Cogley J.G., Adams W.P. 1998. Mass balance of glaciers other than the ice sheets, J. Glaciol. 44:315-325. Cerca con Google

Cogley J.G., Hock R., Rasmussen L.A., Arendt A.A., Bauder A., Braithwaite R.J., Zemp M. 2011. Glossary of glacier mass balance and related terms. IHP-VII Technical Documents in Hydrology 86. Cerca con Google

Colucci R.R., Forte E., Boccali C., Dossi M., Lanza L., Pipan M., Guglielmin M. 2015. Evaluation of internal structure, volume and mass of glacial bodies by integrated LiDAR and ground penetrating radar surveys: the case study of Canin Eastern Glacieret (Julian Alps, Italy), Surv. Geophys. 36:231-252. Cerca con Google

Dai F., Feng Y., Hough R. 2014. Photogrammetric error sources and impacts on modeling and surveying in construction engineering applications. Visualization in Engineering 2(1):2. Cerca con Google

Dall’Asta E., Delaloye R., Diotri F., Forlani G., Fornari M., Morra di Cella U., Pogliotti P., Roncella R., Santise M. 2015. Use of UAS in a high mountain landscape: the case of gran sommetta rock glacier (AO), The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3/W3:391–397. Cerca con Google

Dall’Asta E., Thoeni K., Santise M., Forlani G., Giacomini A., Roncella R 2015b. Network design and quality checks in automatic orientation of close-range photogrammetric blocks, Sensors 15:7985–8008. Cerca con Google

Dandois J.P., Ellis E.C. 2013. High spatial resolution three-dimensional mapping of vegetation spectral dynamics using computer vision, Remote Sens. Environ., 136, 259–276, doi:10.1016/j.rse.2013.04.005. Cerca con Google

Deems J.S., Painter T.H., Finnegan D.C. 2013. Lidar measurement of snow depth: a review, J. Glaciol. 59:467–479. Cerca con Google

Delon J., Rougé B. 2007. Small baseline stereovision. Journal of Mathematical Imaging and Vision 28(3):209-223. Cerca con Google

Diefenbach A.K., Crider J.G., Schilling S.P., Dzurisin D. 2012. Rapid, low-cost photogrammetry to monitor volcanic eruptions: an example from Mount St. Helens, Washington, USA. Bulletin of volcanology 74(2):579-587. Cerca con Google

Dietrich J.T. 2015. Riverscape mapping with helicopter-based Structure-from-Motion photogrammetry. Geomorphology 252:144–157. Cerca con Google

Eltern A., Kaiser A., Castillo C., Rock G., Neugirg F., Abellan A. 2015. Image-based surface reconstruction in geomorphometry – merits, limits and developments of a promising tool for geoscientists Earth Surf. Dynam. Discuss. 3:1445–1508. doi:10.5194/esurfd-3-1445-2015. Cerca con Google

Eltner A., Schneider D. 2015. Analysis of different methods for 3-D reconstruction of natural surfaces from parallel-axes UAV images, Photogramm. Rec. 30:279–299. doi:10.1111/phor.12115. Cerca con Google

Eltner A., Mulsow C., Maas H. 2013. Quantitative measurement of soil erosion from TLS and UAV data, Int. Arch. Photogramm. Rem. Sens. XL-1/W2:119–124. Cerca con Google

Favalli M., Fornaciai A., Isola I., Tarquini S., Nannipieri L. 2012. Multiview 3D reconstruction in geosciences, Comput. Geosci. 44:168–176. Cerca con Google

Fey C., Rutzinger M., Wichmann V., Prager C., Bremer M., Zangerl C. 2015. Deriving 3D displacement vectors from multi-temporal airborne laser scanning data for landslide activity analyses. GIScience & Remote Sensing 52(4):437-461. doi:10.1080/15481603.2015.1045278. Cerca con Google

Fischer L., Eisenbeiss H., Kääb A., Huggel C., Haeberli W. 2011. Monitoring topographic changes in a periglacial high-mountain face using high-resolution DTMs, Monte Rosa East Face, Italian Alps, Permafrost Periglac. 22:140–152. Cerca con Google

Fischler M.A., Bolles R.C. 1981. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM 24(6):381-395. Cerca con Google

Fisher P.F., Tate N.J. 2006. Causes and consequences of error in digital elevation models. Progress in Physical Geography 30(4):467-489. Cerca con Google

Fisher R.B., Breckon T.P., Dawson-Howe K., Fitzgibbon A., Robertson C., Trucco E., Williams C.K. 2013. Dictionary of computer vision and image processing. John Wiley & Sons. Cerca con Google

Fonstad M.A., Dietrich J.T., Courville B.C., Jensen J.L., Carbonneau P.E. 2013. Topographic structure from motion: a new development in photogrammetric measurement. Earth Surface Processes and Landforms 38(4):421-430. Cerca con Google

Fox A.J., Gooch M.J. 2001. Automatic Dem Generation for Antarctic Terrain. The Photogrammetric Record 17:275–290. doi: 10.1111/0031-868X.00183 Cerca con Google

Frankl A., Stal C., Abraha A., Nyssen J., Rieke-Zapp D., DeWulf A., Poesen J. 2014. Detailed recording of gully morphology in 3-D through image-based modelling PhotoScan Digital Elevation Model (DEM) soil pipes Structure from Motion–Multi View Stereo (SfM–MVS) volume calculation, Catena 127:92–101. doi:10.1016/j.catena.2014.12.016. Cerca con Google

Fraser C.S. 1996. Network design. In “Close-range Photogrammetry and Machine Vision”, Atkinson (Ed.), Whittles Pubblishing, UK, pp.256-282. Cerca con Google

Friedman J.H., Bentley J.L., Finkel R.A. 1977. An algorithm for finding best matches in logarithmic expected time. ACM Transactions on Mathematical Software (TOMS) 3(3):209-226. Cerca con Google

Furukawa Y., Ponce J. 2010. Accurate, dense, and robust multiview stereopsis. Pattern Analysis and Machine Intelligence, IEEE Transactions 32(8):1362-1376. Cerca con Google

Gauthier D., Conlan M., Jamieson B. 2014. Photogrammetry of fracture lines and avalanche terrain: potential applications to research and hazard mitigation projects, Proceedings, International Snow Science Workshop, Banff, 29 September–3 October 2014:109–115. Cerca con Google

Geist T., Stotter J. 2007. Documentation of glacier surface elevation change with multi temporal airborne laser scanner data – case study: Hintereisferner and Kesselwandferner, Tyrol, Austria, Zeitschrift fur Gletscherkunde und Glazialgeologie 41:77–106. Cerca con Google

Glira P., Pfeifer N., Briese C., Ressl C. 2015. A correspondence framework for ALS strip adjustments based on variants of the ICP algorithm. PFG Photogrammetrie, Fernerkundung, Geoinformation 4:275-289. doi:10.1127/pfg/2015/0270. Cerca con Google

Gómez-Gutiérrez Á., de Sanjosé-Blasco J.J., de Matías-Bejarano J., Berenguer-Sempere F. 2014. Comparing Two Photo-Reconstruction Methods to Produce High Density Point Clouds and DEMs in the Corral del Veleta Rock Glacier (Sierra Nevada, Spain). Remote Sensing 6(6):5407-5427. Cerca con Google

Gómez-Gutiérrez Á., de Sanjosé-Blasco J.J., Lozano-Parra J., Berenguer-Sempere .F, de Matías-Bejarano J. 2015. Does HDR pre-processing improve the accuracy of 3D models obtained by means of two conventional SfM-MVS software packages? The case of the Corral del Veleta Rock Glacier, Remote Sensing 7:10269–10294. Cerca con Google

Grün A. 2012. Development and status of image matching in photogrammetry, Photogramm. Rec. 27:36–57. doi:10.1111/j.1477-9730.2011.00671.x. Cerca con Google

Haeberli W., Hoelzle M., Paul F., Zemp M. 2007. Integrated monitoring of mountain glaciers as key indicators of global climate change: the European Alps. Annals of Glaciology 46(1):150-160. Cerca con Google

Haeberli W., Bösch H., Scherler K., Østrem G., Wallén CC. 1989. World Glacier Inventory; Status 1988. A Contribution to the Global Environment Monitoring System (GEMS) and the International Hydrological Programme, Compiled by the World Glacier Monitoring Service. IASH Press. Cerca con Google

Haug T., Rolstad C., Elvehøy H., Jackson M., Maalen-Johansen I. 2009. Geodetic mass balance of the western Svartisen ice cap, Norway, in the periods 1968–1985 and 1985–2002, Ann. Glaciol. 50:119–125. Cerca con Google

Höfle B., Geist T., Rutzinger M., Pfeifer N. 2007. Glacier surface segmentation using airborne laser scanning point cloud and intensity data, International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 36 (W52):195–200. Cerca con Google

Höfle B., Rutzinger M. 2011. Topographic airborne LiDAR in geomorphology: A technological perspective. Zeitschrift für Geomorphologie Supplementary Issues 55(2):1-29. Cerca con Google

Hosseininaveh A., Sargeant B., Erfani T., Robson S., Shortis M., Hess M., Boehm J. 2014. Towards fully automatic reliable 3D acquisition: from designing imaging network to a complete and accurate point cloud, Robotics and Autonomous Systems 62:1197–1207. Cerca con Google

Huss M. 2013. Density assumptions for converting geodetic glacier volume change to mass change. The Cryosphere 7(3):877-887. Cerca con Google

Immerzeel W.W., Kraaijenbrink P.D.A., Shea J.M., Shrestha A.B., Pellicciotti F., Bierkens M.F.P., De Jong S.M. 2014. High-resolution monitoring of Himalayan glacier dynamics using unmanned aerial vehicles, Remote Sens. Environ. 150:93–103. Cerca con Google

James M.R., Robson S. 2012. Straightforward reconstruction of 3D surfaces and topography with a camera: accuracy and geoscience application. Journal of Geophysical Research - Earth Surface 117:F03017. doi:10.1029/2011JF002289. Cerca con Google

James M.R., Robson S. 2014. Mitigating systematic error in topographic models derived from UAV and ground-based image networks. Earth Surf Process Landforms 39:1413-1420. doi:10.1002/esp.3609. Cerca con Google

Javernick L., Brasington J., Caruso B. 2014. Modelling the topography of shallow braided rivers using Structure-from-Motion photogrammetry. Geomorphology. Cerca con Google

Joerg P.C., Zemp M. 2014. Evaluating Volumetric Glacier Change Methods Using Airborne Laser Scanning Data. Geografiska Annaler: Series A, Physical Geography 96:135–145. Cerca con Google

Johnson K., Nissen E., Saripalli S., Arrowsmith J. R., Mcgarey P., Scharer K., Williams P., Blisniuk K. 2014. Rapid mapping of ultrafine fault zone topography with structure from motion, Geosphere 10:969. doi:10.1130/GES01017.1. Cerca con Google

Kääb A. 2002. Monitoring high-mountain terrain deformation from repeated air-and spaceborne optical data: examples using digital aerial imagery and ASTER data. ISPRS Journal of Photogrammetry and remote sensing 57:39–52. Cerca con Google

Kääb A. 2005. Remote Sensing of Mountain Glaciers and Permafrost Creep. Research Perspectives from Earth Observation Technologies and Geoinformatics, Schriftenreihe Physische Geographie, Glaziologie und Geomorphodynamik, 48, University of Zurich, Zurich, Switzerland. Cerca con Google

Kääb A., Funk M. 1999. Modelling mass balance using photogrammetric and geophysical data: a pilot study at Griesgletscher, Swiss Alps. Journal of Glaciology 45(151):575-583. Cerca con Google

Kääb A., Girod L., Berthling I. 2014. Surface kinematics of periglacial sorted circles using Structure-from-Motion technology. The Cryosphere Discussions 7(6):6043-6074. Cerca con Google

Kääb A., Haeberli W., Gudmundsson G.H. 1997. Analyzing the creep of mountain permafrost using high precision aerial photogrammetry: 25 years of monitoring Gruben rock glacier, Swiss Alps, Permafrost Periglac. 8:409–426. Cerca con Google

Kääb A., Kaufmann V., Ladstädter R., Eiken T. 2003. Rock glacier dynamics: implications from high-resolution measurements of surface velocity fields, in: Eighth International Conference on Permafrost, 21–25 July 2003, Zurich, Switzerland 1:501–506. Cerca con Google

Kääb A., Vollmer M. 2000. Surface geometry, thickness changes and flow fields on creeping mountain permafrost: automatic extraction by digital image analysis. Permafrost and Periglacial Processes 11(4):315-326. Cerca con Google

Kaiser A., Neugirg F., Haas F., Schmidt J., Becht M., Schindewolf M. 2015. Determination of hydrological roughness by means of close range remote sensing, SOIL 1:613–620. doi:10.5194/soil-1-613-2015. Cerca con Google

Karpilo J.R., Ronald D. 2009. Glacier monitoring techniques. Geological Monitoring: Boulder, Colorado, Geological Society of America 2009:141-162. Cerca con Google

Kaufmann V. 1998. Deformation analysis of the Doesen rock glacier (Austria), in: Proceedings of the 7th International Permafrost Conference, 23–27 June 1998, Yellowknife, Canada 551–556. Cerca con Google

Kaufmann V., Ladstädter R. 2008. Application of terrestrial photogrammetry for glacier monitoring in Alpine environments. Ele 2700.2800, 2900. Cerca con Google

Kellerer-Pirklbauer A. 2005. Alpine permafrost occurrence at its spatial limits: First results from the eastern margin of the European Alps. Norsk Geografisk Tidsskrift-Norwegian Journal of Geography 59(2):184-193. Cerca con Google

Knoll C., Kerschner H. 2010. A glacier inventory for South Tyrol, Italy, based on airborne laserscanner data, Ann. Glaciol. 50:46–52. Cerca con Google

Kodde M.P., Pfeifer N., Gorte B.G.H., Geist T., Höfle B. 2007. Automatic glacier surface analysis from airborne laser scanning, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 36:221–226. Cerca con Google

Krabill W., Frederick E., Manizade S., Martin C., Sonntag J., Swift R., Yungel J. 1999. Rapid thinning of parts of the southern Greenland ice sheet. Science 283(5407):1522-1524. Cerca con Google

Kraus K. 1997. Photogrammetry. Volume 2: Advanced Methods and Applications. Ferd.Dümmlers Verlag. Cerca con Google

Lague D., Brodu N., Leroux J. 2013. Accurate 3-D comparison of complex topography with terrestrial laser scanner: application to the Rangitikei canyon (N-Z), ISPRS J. Photogramm. 82:10–26. doi:10.1016/j.isprsjprs.2013.04.009. Cerca con Google

Lambiel C., Delaloye R. 2004. Contribution of real-time kinematic GPS in the study of creeping mountain permafrost: examples from the Western Swiss Alps. Permafrost and periglacial processes 15(3):229-241. Cerca con Google

Lowe DG. 2004. Distinctive image features from scale-invariant keypoints. International journal of computer vision 60(2):91-110. Cerca con Google

Mancini F., Dubbini M., Gattelli M., Stecchi F., Fabbri S., Gabbianelli G. 2013. Using unmanned aerial vehicles (UAV) for high-resolution reconstruction of topography: the structure from motion approach on coastal environments, Remote Sensing 5:6880-6898. doi:10.3390/rs5126880. Cerca con Google

Mathews A.J., Jensen J.L. 2013. Visualizing and quantifying vineyard canopy LAI using an unmanned aerial vehicle (UAV) collected high density structure from motion point cloud. Remote Sensing 5(5):2164-2183. Cerca con Google

Micheletti N., Chandler J.H., Lane S.N. 2014. Investigating the geomorphological potential of freely available and accessible Structure‐from‐Motion photogrammetry using a smartphone. Earth Surface Processes and Landforms. doi: 10.1002/esp.3648. Cerca con Google

Micusik B., Pajdla T. 2006. Structure from motion with wide circular field of view cameras. Pattern Analysis and Machine Intelligence, IEEE Transactions 28(7):1135-1149. Cerca con Google

Morel J.M., Yu G. 2009. ASIFT: A new framework for fully affine invariant image comparison. SIAM Journal on Imaging Sciences 2(2):438-469. Cerca con Google

Muja M., Lowe D.G. 2009. Flann, fast library for approximate nearest neighbors. In International Conference on Computer Vision Theory and Applications (VISAPP'09). Cerca con Google

Müller J., Gärtner-Roer I., Thee P., Ginzler C. 2014. Accuracy assessment of airborne photogrammetrically derived high-resolution digital elevation models in a high mountain environment. ISPRS Journal of Photogrammetry and Remote Sensing 98:58–69. Cerca con Google

Munkelt C., Trummer M., Denzler J., Wenhardt S. 2007. Benchmarking 3D Reconstructions from Next Best View Planning. In MVA (pp. 552-555). Nilosek D, Sun S, Salvaggio C 2012. Geo-accurate model extraction from three-dimensional image-derived point clouds, in: Proceedings of SPIE, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XVIII, 23 April 2012, Baltimore, MD, USA, 8390, 83900J, doi:10.1117/12.919148. Cerca con Google

Nocerino E., Menna F., Remondino F. 2014. Accuracy of typical photogrammetric networks in cultural heritage 3D modeling projects. ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 1:465–472. Cerca con Google

Nocerino E., Menna F., Remondino F., Saleri R. 2013. Accuracy and block deformation analysis in automatic UAV and Terrestrial photogrammetry–Lesson learnt. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. II-5/W1, XXIV International CIPA Symposium, 2-6 September, Strasbourg, France. Cerca con Google

Ouédraogo M.M., Degré A., Debouche C., Lisein J. 2014. The evaluation of unmanned aerial system-based photogrammetry and terrestrial laser scanning to generate DEMs of agricultural watersheds, Geomorphology 214:339–355. doi:10.1016/j.geomorph.2014.02.016. Cerca con Google

Paul F., Huggel C., Kääb A. 2004. Combining satellite multispectral image data and a digital elevation model for mapping debris-covered glaciers. Remote Sensing of Environment 89(4):510-518. Cerca con Google

Pellikka P., Rees W.G. 2009. Remote Sensing Of Glaciers: Techniques For Topographic, Spatial and Thematic Mapping of Glaciers, CRC Press, University of Cambridge, Cambridge, UK. Cerca con Google

Piermattei L., Carturan L., Guarnieri A. 2015. Use of terrestrial photogrammetry based on structure from motion for mass balance estimation of a small glacier in the Italian Alps. Earth Surf. Proc. Land. 40:1791-1802. doi:10.1002/esp.3756, 2015. Cerca con Google

Pierrot-Deseilligny M., Clery I.: APERO, an open source bundle adjustment software for automatic calibration and orientation of set of images, Intern. Arch. Photogramm. Rem. Sens. 38(5):269–276. Cerca con Google

Prosdocimi M., Sofia G., Dalla Fontana G., Tarolli P. 2015. Bank erosion in agricultural drainage networks: effectiveness of Structure-from-Motion for post-event analysis, Earth Surf. Proc. Land. 40:1891-1906. doi:10.1002/esp.3767. Cerca con Google

Quan L., Kanade T. 2010. Affine structure from line correspondences with uncalibrated affine cameras. Pattern Analysis and Machine Intelligence, IEEE Transactions 19(8):834-845. Cerca con Google

Remondino F., Menna F., Koutsoudis A., Chamzas C., El-Hakim S. 2013. Design and implement a reality-based 3D digitisation and modelling project. In Proceedings of the Digital Heritage International Congress pp. 137-144. Cerca con Google

Remondino F., Fraser C. 2006. Digital camera calibration methods: considerations and comparisons. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 36(5):266-272. Cerca con Google

Remondino F., Del Pizzo S., Kersten T., Troisi S. 2012. Low-cost and open source solutions for automated image orientation-A critical overview. Proc. EuroMed 2012 Conference, LNCS 7616:40-54. Cerca con Google

Rippin D.M., Pomfret A., King N. 2015. High resolution mapping of supraglacial drainage pathways reveals link between micro-channel drainage density, surface roughness and surface reflectance, Earth Surf. Proc. Land. 40:1279–1290. doi:10.1002/esp.3719. Cerca con Google

Robertson D.P., Cipolla R. 2009. Structure from Motion. In: Varga, M. (Ed.), Practical Image Processing and Computer Vision. John Wiley, Chichester. Cerca con Google

Roer I., Nyenhuis M. 2007. Rockglacier activity studies on a regional scale: comparison of geomorphological mapping and photogrammetric monitoring, Earth Surf. Proc. Land. 32:1747-1758. Cerca con Google

Rumpler M., Daftry S., Tscharf A., Prettenthaler R., Hoppe C., Mayer G., Bischof H. 2014. Automated end-to-end workflow for precise and geo-accurate reconstructions using fiducial markers. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. 2(3):135-142. doi:10.5194/isprsannals-II-3-135-2014. Cerca con Google

Ryan J.C., Hubbard A.L. Box J.E., Todd J., Christoffersen P., Carr J.R., Holt T.O., Snooke N. 2015. UAV photogrammetry and structure from motion to assess calving dynamics at Store Glacier, a large outlet draining the Greenland ice sheet, The Cryosphere 9:1-11. doi:10.5194/tc-9-1-2015. Cerca con Google

Scaioni M. 2015. Modern Technologies for Landslide Monitoring and Prediction, Springer Natural Hazard. doi:10.1007/978-3-662-45931-7_10. Cerca con Google

Scambos T.A., Dutkiewicz M.J., Wilson J.C., Bindschadler R.A. 1992. Application of image cross-correlation to the measurement of glacier velocity using satellite image data. Remote Sensing of Environment 42(3):177-186. Cerca con Google

Schaffhauser et al., (2008 Cerca con Google

Scharstein D., Szeliski R. 2002. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. International journal of computer vision 47(1-3):7-42. Cerca con Google

Seitz S.M., Curless B., Diebel J., Scharstein D., Szeliski R. 2006, June. A comparison and evaluation of multi-view stereo reconstruction algorithms. In Computer vision and pattern recognition, 2006 IEEE Computer Society Conference 1:519-528. Cerca con Google

Seppi R., Carton A., Zumiani M., Dall’Amico M., Zampedri G., Rigon R. 2012. Inventory, distribution and topographic features of rock glaciers in the southern region of the Eastern Italian Alps (Trentino). Geografia Fisica e Dinamica Quaternaria 35:185-197. doi:10.4461/GFDQ.2012.35.17. Cerca con Google

Smith M., Carrivick J.L., Quincey D.J. 2015. Structure from motion photogrammetry in physical geography. Physical Geography 1-29. doi: 10.1177/0309133315615805 Cerca con Google

Smith M.W., Vericat D. 2015. From experimental plots to experimental landscapes: topography, erosion and deposition in sub‐humid badlands from Structure‐from‐Motion photogrammetry. Earth Surf. Proc. Land. 40:1656-1671. doi: 10.1002/esp.3747. Cerca con Google

Snavely N., Seitz S.M., Szeliski R. 2006. Photo tourism? exploring photo collections in 3-D, ACM T. Graphic., 25:835–846. Cerca con Google

Snavely N., Seitz S.M., Szeliski R. 2008. Modeling the world from internet photo collections, Int. J. Comput. Vision 80:189–210. doi:10.1007/s11263-007-0107-3. Cerca con Google

Solbø S., Storvold R. 2013. Mapping svalbard glaciers with the cryowing uas, ISPRS International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-1/W2:373-377. Cerca con Google

Steiner D., Pauling A., Nussbaumer S.U., Nesje A., Luterbacher J., Wanner H., Zumbühl H.J. 2008. Sensitivity of European glaciers to precipitation and temperature–two case studies. Climatic Change 90(4):413-441. Cerca con Google

Stöcker C., Eltner A., Karrasch P. 2015. Measuring gullies by synergetic application of UAV and close range photogrammetry – a case study from Andalusia, Spain, Catena, 132:1–11. doi:10.1016/j.catena.2015.04.004. Cerca con Google

Stumpf A., Malet J.P., Allemand P., Pierrot-Deseilligny M., Skupinski G. 2015. Ground-based multi-view photogrammetry for the monitoring of landslide deformation and erosion. Geomorphology 231:130-145. Cerca con Google

Tamburini A., Deline P., Jaillet S., Mortara G., Conforti D. 2007. Application of terrestrial scanning LIDAR to study the evolution of ice contact Miage Lake and Miage Glacier ice cliff (Mont Blanc massif, Italy). Geophysical Research Abstracts 9:07718. Cerca con Google

Tarolli P., Arrowsmith J.R., Vivoni E.R. 2009. Understanding earth surface processes from remotely sensed digital terrain models. Geomorphology 113(1):1-3. Cerca con Google

Thoeni K., Giacomini A., Murtagh R., Kniest E. 2014. A comparison of multi-view 3D reconstruction of a rock wall using several cameras and a laser scanner. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci, ISPRS Technical Commission V Symposium, 23-25 June, Riva del Garda, Italy, pp. 573-580. Cerca con Google

Tonkin T.N., Midgley N.G., Graham D.J., Labadz J.C. 2014. The potential of small unmanned aircraft systems and structure-from-motion for topographic surveys: a test of emerging integrated approaches at Cwm Idwal, North Wales, Geomorphology 226:35–43. Cerca con Google

Triggs B. 1999. Camera pose and calibration from 4 or 5 known 3d points. In Computer Vision, 1999. The Proceedings of the Seventh IEEE International Conference 1:278-284. Cerca con Google

Tseng C.M., Lin C.W., Dalla Fontana G., Tarolli P. 2015. The topographic signature of a Major Typhoon, Earth Surf. Proc. Land. 40:1129-1136. Cerca con Google

Ullman S. 1979. The interpretation of structure from motion. Proceedings of the Royal Society of London. Series B. Biological Sciences 203:405-426. Cerca con Google

Unger J., Reich M., Heipke C. 2014. UAV-based photogrammetry: monitoring of a building zone. ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XL-5:601-606. Cerca con Google

Verhoeven G., Doneus M., Bries C., Vermeulen F. 2012. Mapping by matching: a computer vision-based approach to fast and accurate georeferencing of archaeological aerial photographs. Journal of Archaeological Science 39:2060-2070. Cerca con Google

Verhoeven G., Karel W., Štuhec S., Doneus M., Trinks I., Pfeifer N. 2015. Mind your grey tones – examining the influence of decolourization methods on interest point extraction and matching for architectural image-based modelling. 3D-Arch 2015–3D Virtual Reconstruction and Visualization of Complex Architectures, ISPRS, 25-27 February, Avila, Spain 40:307-314. doi: 10.5194/isprsarchives-XL-5-W4-307. Cerca con Google

Viswanathan M. 2005. Measurement error and research design. Sage. Cerca con Google

Wackrow R., Chandler J. 2011. Minimising systematic error surfaces in digital elevation models using oblique convergent imagery. The Photogrammetric Record 26(133):16-31. doi.org/10.1111/j.1477-9730.2011.00623.x. Cerca con Google

Wackrow R., Chandler J.H. 2008. A convergent image configuration for DEM extraction that minimises the systematic effects caused by an inaccurate lens model. The Photogrammetric Record 23(121):6-18. Cerca con Google

Welch R., Howarth P.J. 1968. Photogrammetric measurements of glacial landforms. The Photogrammetric Record 6:75-96. doi:10.1111/j.1477-9730.1968.tb00915.x Cerca con Google

Wenzel K., Rothermel M., Fritsch D., Haala N. 2013. Image acquisition and model selection for multi-view stereo. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci 251-258. Cerca con Google

Westoby M.J., Brasington J., Glasser N.F. 2012. ‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology 179:300-314. Cerca con Google

Westoby M.J., Brasington J., Glasser N.F., Hambrey M.J., Reynolds J.M. 2012. ‘Structure from Motion’ photogrammetry: a low-cost, effective tool for geoscience applications. Geomorphology 179:300-314. Cerca con Google

Whitehead K., Moorman B.J., Hugenholtz C.H. 2013. Brief Communication: Low-cost, ondemand aerial photogrammetry for glaciological measurement, The Cryosphere 7:1879-1884. doi:10.5194/tc-7-1879-2013. Cerca con Google

Woodget A.S., Carbonneau P.E., Visser F. 2014. Quantifying submerged fluvial topography using hyperspatial resolution UAS imagery and structure from motion photogrammetry. Earth Surface Processes and Landforms 40:47-64. doi:10.1002/esp.3613. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record