Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Meneghesso, Andrea (2016) Investigation of mechanisms modulating photosynthetic efficiency in Nannochloropsis gaditana. [Tesi di dottorato]

Full text disponibile come:

[img]Documento PDF (PhD thesis)
Tesi non accessible fino a 01 Gennaio 2018 per motivi correlati alla proprietà intellettuale.
Visibile a: nessuno

12Mb

Abstract (inglese)

Oxygenic photosynthesis is a crucial process for life on earth as it enables plants and algae to convert sunlight into chemical energy, generating molecular oxygen as a byproduct. Light can also be harmful and when in excess can drive to photosystems over‐excitation and production of reactive oxygen species (ROS) with the consequent decrease of the overall photosynthetic efficiency. In a highly dynamic natural environment photosynthetic organisms have evolved sophisticated mechanisms to modulate their efficiency to capture and exploit light. For instance the so called non photochemical quenching of fluorescence (NPQ) acts dissipating excess energy as heat and it’s used as short term response to high light in order to avoid oxidative damages. The carotenoid zeaxanthin belonging to the xanthophyll cycle enhances this thermal dissipation but also has a direct role in the scavenging of ROS generated in the membrane. Acclimation instead is a more complex long term process that acts directly modeling the composition of the photosynthetic apparatus in response to different light intensity, for example through modifications in protein composition. Photoregulation and photoprotection are strongly related also to modulations of flow of excitation energy and electrons across the thylakoid membrane. Indeed the major pathway for the light reactions of photosynthesis, the linear electron flow, can modulate its rate depending on metabolic demand and can be also supported by alternative electron pathway which affect the thylakoid gradient across the membrane and the ATP/NADPH ratio.
The general aim of this work is to investigate the different mechanisms modulating photosynthetic efficiency in the microalga Nannochloropsis gaditana in order to increase the limited knowledge about this interesting microalga and exploit it to optimize photosynthetic efficiency in a large-scale cultivation perspective, even through the development of computational models. The spectroscopic tools developed to untangle the complexity of the photosynthetic regulation in Nannochloropsis have been successfully applied to study photosynthesis in other photosynthetic organisms such as, Chlamydomonas reinhardtii, Physcomitrella patens and Koliella antarctica.
Nannochloropsis gaditana is an eukaryotic alga of the phylum of heterokonta, originating from a secondary endosymbiotic event. Species of this group have received increasing attention in the scientific community, reflecting their potential application in biofuel production, although the photosynthetic and physiological properties of these organisms remain poorly characterized. Nannochloropsis species have a peculiar photosynthetic apparatus characterized by the presence of chlorophyll a, violaxanthin and vaucheriaxanthin as the most abundant pigments.
The regulation of the photosynthetic apparatus in this interesting microalgae has been deeply discussed in Section B. Our study focused firstly on the acclimation response in Nannochloropsis gaditana subjected to prolonged exposition to low and high light. Intense illumination induces a decrease in the chlorophyll content and the antenna size of both Photosystem I and II. Cells grown in high light also show increased photosynthetic electron transport, paralleled by an increased contribution of cyclic electron transport around Photosystem I. Even when exposed to extreme light intensities, Nannochloropsis cells do not activate photo-protection responses, such as NPQ and the xanthophyll cycle in a constitutive way. Conversely, these responses remained available for activation upon additional changes in illumination. These results suggest NPQ and the xanthophyll cycle in Nannochloropsis gaditana play exclusive roles in response to short-term changes in illumination but only play a slight role, if any, in responses to chronic light stress.
In order to further explore the short term response mediated by xanthophyll cycle the effect of zeaxanthin accumulation in the photosynthetic apparatus of Nannochloropsis gaditana was investigated revealing some peculiar aspects. Interestingly zeaxanthin molecules are found to be constitutively present in this microalga, even in conditions of very low light in which the xanthophyll cycle is not yet induced. In addition this xanthophyll does not show a specific binding site in the different protein components of the photosynthetic apparatus and, in addition, has a strong effect in the NPQ response. The influence on NPQ seems to be related mostly on de novo synthesis of zeaxanthin while the molecules already present in the photosynthetic apparatus are involved in a transient NPQ active only in the first minute after the dark-light transition.
The regulation of the photosynthetic apparatus has been assessed also in N. salina in a growing system more compatible with a large-scale production system, a continuous-flow flat-plate photobioreactor. Interestingly changing the residence time maintaining the same irradiation affects the biomass concentration leading to an acclimation response very similar to that observed for N. gaditana grown in batch system, as previously discussed. These results highlight the importance of the biomass concentration and its connection with light supply as parameter to optimize in order to increase the microalgal culture productivity.
The molecular investigation of the mechanisms at the basis of light exploitations in Nannochloropsis is the starting point for the development of computational models that aim to simulate and predict microalgae behavior in order to optimize their productivity in large-scale cultivation systems. Section C deals with the development and widespread application of these models, which integrate chlorophyll fluorescence measurements allowing also the representation of complex mechanisms such as NPQ. Such models prove especially useful in identifying which parameters have the largest impact on productivity, thereby providing a means for enhancing growth through design and operational changes. They can also provide guidance for genetic engineering by identifying those modifications having the largest potential impact on productivity.
In Section D the study of photosynthetic processes is expanded to other organisms focusing on the regulation of the photosynthetic electron chain through the employment of several spectroscopic approaches set up during my PhD thesis. In the first work reported we show that the introduction of a mitochondrial mutation in Chlamydomonas reinhardtii mutants depleted in the chloroplastic PGRL1 rescue its photosensitivity in high light. Detailed functional analysis of these cells showed that the mitochondria mutation alters the electron transport reactions increasing alternative electron pathways around PSI at the detriment of PSII-related photosynthesis. This work thus clearly shows how mitochondrial activity play a seminal influence on photosynthesis in algae.
The second work presented deals with another important mechanisms to modulate flow of excitation, the Mehler-like reactions mediated by Flavodiiron (FLV) proteins. These proteins were lost during evolution of land plants but are still present in non vascular plants, as the moss Physcomitrella patens, the model organism employed for this study. P. patens mutants depleted in FLV show these proteins are active as an electron sink downstream of Photosystem I. Measurement of electron transport showed that they play a major role particularly in the first seconds after a sudden change in light intensity, when for a few seconds they are the major sink for electrons from PSI. When exposed to fluctuating light FLV mutants showed light sensitivity and PSI photoinhibition, demonstrating their biological role as a safety valve for excess electrons in dynamic light. FLV absence in mutants was, in part, compensated by increased cyclic electron flow, suggesting that their biological role may have been substituted in vascular plants by this other mechanism of alternative electron flow.
Finally we analyzed the time course of physiological and morphological responses to different irradiances in Koliella antarctica, a green antarctic microalga isolated from Ross Sea. K. antarctica not only modulates cell morphology and composition of its photosynthetic apparatus on a long-term acclimation, but also shows the ability of a very fast response to light fluctuations. The ability to activate such responses is fundamental for survival in its natural extreme environment.

Abstract (italiano)

La fotosintesi ossigenica è un processo fondamentale per la vita sulla terra in quanto consente a piante e alghe di convertire la luce solare in energia chimica generando ossigeno molecolare come sottoprodotto. La luce può anche essere dannosa e quando è in eccesso può portare alla sovreccitazione dei fotosistemi e alla produzione di specie reattive dell'ossigeno (ROS) con un conseguente calo dell’efficienza fotosintetica. In un ambiente naturale estremamente dinamico gli organismi fotosintetici hanno evoluto meccanismi sofisticati in grado di modulare la loro efficienza per catturare e sfruttare al meglio la luce. Per esempio il cosiddetto quenching non fotochimico della fluorescenza (NPQ) agisce dissipando l’energia in eccesso sotto forma di calore ed è utilizzato come sistema di risposta a breve termine agi stress luminosi col fine di evitare danni ossidativi. Il carotenoide zeaxantina appartenente al ciclo delle xantofille partecipa attivamente a questa risposta di dissipazione termica mantenendo però anche un ruolo diretto nello scavenging dei ROS generati nella membrana tilacoidale. L’acclimatazione invece è un processo a lungo termine che agisce direttamente modellando la composizione dell'apparato fotosintetico in risposta all'intensità della luce ad esempio attraverso modifiche nella composizione proteica. I meccanismi di regolazione e protezione indotti dalla luce sono spesso legati anche a modulazioni dei flussi elettronici attraverso la membrana tilacoidale. La via principale per le reazioni alla luce della fotosintesi infatti, il flusso elettronico lineare, è in grado di modulare la sua attività a seconda della richiesta metabolica e può essere sostenuto anche da pathways elettronici alternativi che influenzano il gradiente tilacoidale e il rapporto ATP / NADPH.
L'obiettivo generale di questo lavoro è quello di indagare i diversi meccanismi che modulano l'efficienza fotosintetica nella microalga Nannochloropsis gaditana al fine di aumentare la conoscenza ancora limitata di questa microalga e sfruttarla per ottimizzare l'efficienza fotosintetica in un ottica di coltivazione su larga scala, anche attraverso lo sviluppo modelli di calcolo. Gli strumenti spettroscopici sviluppati per districare la complessità dei meccanismi di regolazione della fotosintesi in Nannochloropsis sono stati applicati con successo anche per lo studio di altri organismi fotosintetici quali, Chlamydomonas reinhardtii, Physcomitrella patens e Koliella antarctica.
Nannochloropsis gaditana è un'alga eucariotica del phylum heterokonts originata da un evento di endosimbiosi secondaria. Specie di questo gruppo hanno ricevuto una crescente attenzione nella comunità scientifica che riflette la loro potenziale applicazione nella produzione di biocarburanti. Nonostante questo le proprietà fotosintetici e fisiologiche di questi organismi rimangono ancora poco caratterizzate. La specie Nannochloropsis possiede un apparato fotosintetico peculiare contenente come pigmenti più abbondanti clorofilla a, violaxantina e vaucheriaxantina. La regolazione dell'apparato fotosintetico in questa microalga è stato approfondito nella Sezione B. Il nostro studio si è concentrato in primo luogo sulla risposta di acclimatazione in Nannochloropsis gaditana sottoposta a prolungate esposizioni a luce bassa e alta. L’illuminazione intensa induce una diminuzione del contenuto di clorofilla e delle dimensioni della taglia d’antenna del PSI e II. Cellule coltivate in alta luce mostrano anche un aumento del trasporto fotosintetico degli elettroni di pari passo con un maggior contributo da parte del trasporto alternativo ciclico. Anche quando esposte a intensità di luce estreme, le cellule di Nannochloropsis non attivano le risposte di foto-protezione, come ad esempio NPQ e il ciclo delle xantofille, in modo costitutivo. Al contrario, queste risposte rimangono a disposizione per l'attivazione in risposta a ulteriori modifiche dell’ illuminazione. Questi risultati suggeriscono che l’NPQ e il ciclo delle xantofille in Nannochloropsis gaditana giocano un ruolo esclusivo in risposta alle variazioni luminose a breve termine, ma solo un ruolo marginale nelle risposte al stress luminosi cronico.
Al fine di esplorare ulteriormente la risposta a breve termine mediata dal ciclo delle xantofille è stato studiato l'effetto dell’ accumulo di zeaxantina nell'apparato fotosintetico di Nannochloropsis gaditana rivelando alcuni aspetti peculiari. E’ interessante notare che le molecole di zeaxantina si trovano ad essere sintetizzate costitutivamente in questa microalga, anche in condizioni di scarsa illuminazione in cui il ciclo delle xantofille non viene indotto. Inoltre questa xantofilla ha dimostrato di non avere un sito di legame specifico nelle diverse componenti proteiche dell’apparato fotosintetico e ha in aggiunta un forte effetto nella risposta di NPQ. L’effetto legato all’ NPQ sembra legato principalmente alla sintesi de novo di zeaxantina mentre le molecole già presenti nel’apparato fotosintetico sono coinvolte in un NPQ transitorio attivo solo nel primo minuto dopo la transizione luce-buio.
La regolazione dell'apparato fotosintetico è stata valutata anche in N. salina in un sistema di coltivazione più compatibile con la produzione su larga scala, un fotobioreattore a flusso continuo. È interessante notare che modificare il tempo di permanenza mantenendo la stessa irradiazione influisce sulla concentrazione di biomassa e produce una risposta di acclimatazione molto simile a quella osservata in N. gaditana coltivata in sistema a batch, come precedentemente discusso. Questi risultati evidenziano l'importanza della concentrazione della biomassa e la sua connessione con la luce somministrata come parametro da ottimizzare per aumentare la produttività delle colture microalgali.
L'indagine molecolare sui meccanismi alla base dell’utilizzo della luce in Nannochloropsis è il punto di partenza per lo sviluppo di modelli computazionali che mirano a simulare e prevedere il comportamento delle microalghe nell’ottica di ottimizzare la produttività in sistemi di coltivazione su larga scala. La Sezione C tratta dello sviluppo e dell'applicazione di questi modelli, che integrano misure di fluorescenza della clorofilla e consentono anche la rappresentazione di meccanismi complessi come l’NPQ. Tali modelli risultano particolarmente utili per identificare i parametri che hanno il maggiore impatto sulla produttività algale fornendo inoltre una guida per individuare quelle modifiche genetiche che hanno il maggiore potenziale impatto sulla produttività.
Nella sezione D lo studio dei processi fotosintetici si espande ad altri organismi focalizzandosi in particolare sui meccanismi di regolazione della catena fotosintetica di trasposto degli elettroni. Questo studio si avvale dell'impiego di diverse tecniche spettroscopiche che ho messo a punto durante la mia tesi di dottorato. Nel primo lavoro riportato viene mostrato come l'introduzione di una mutazione mitocondriale nella microalga Chlamydomonas reinhardtii priva della proteina cloroplastica PGRL1 porti ad un recupero delle performance di crescita in condizioni di alta luce. Analisi fotosintetiche effettuate in queste cellule mutanti ha mostrato che la mutazione mitocondriale altera le reazioni di trasporto degli elettroni aumentando i pathways elettronici alternativi che coinvolgono il PSI e limitando fortemente l’attività del PSII. Questo lavoro dimostra come l'attività mitocondriale abbia un'influenza fondamentale sulla fotosintesi delle microalghe.
Il secondo lavoro presentato si occupa di un importante meccanismo volto a modulare il flusso di eccitazione, le reazioni Mehler-like mediate dalle proteine Flavodiiron (FLV). Queste proteine sono state perse durante l'evoluzione delle piante terrestri, ma sono ancora presenti nelle piante non vascolari, come nel muschio Physcomitrella patens, l'organismo modello utilizzato per questo studio. Mutanti di P. patens deprivati della proteina FLV mostrano come quest’ultima abbia un ruolo di sink degli elettroni a valle del PSI. Misure di trasporto elettronico hanno dimostrato che le FLV svolgono un ruolo importante in particolare nei primi secondi dopo una rapida variazione dell'intensità luminosa, quando per alcuni secondi essi agiscono da principale sink degli elettroni provenienti dal PSI. Quando esposti ad una condizione di luce fluttuante i mutanti FLV mostrano fotosensibilità e inibizione del PSI, dimostrando il loro ruolo biologico come valvola di sicurezza in caso di sovrariduzione della catena fotosintetica. L’assenza delle FLV nei mutanti è in parte compensata da un aumento del flusso ciclico degli elettroni, suggerendo che quest’ultimo possa avere sostituito il ruolo biologico delle FLV nelle piante vascolari.
Infine abbiamo analizzato l'andamento nel tempo delle risposte fisiologiche e morfologiche a diverse intensità luminose in Koliella antarctica, una microalga verde antartica isolata nel Mare di Ross. K. antarctica modula non solo la morfologia cellulare e il suo apparato fotosintetico tramite una risposta acclimatativa a lungo termine, ma mostra anche la capacità di rispondere rapidamente alle variazioni dell’intensità luminosa. La possibilità di attivare tali risposte è fondamentale per la sopravvivenza nel suo ambiente naturale estremo.

Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Morosinotto, Tomas
Dottorato (corsi e scuole):Ciclo 28 > Scuole 28 > BIOSCIENZE E BIOTECNOLOGIE > BIOCHIMICA E BIOFISICA
Data di deposito della tesi:01 Febbraio 2016
Anno di Pubblicazione:01 Febbraio 2016
Parole chiave (italiano / inglese):Nannochloropsis gaditana, Photosynthetic efficiency, Electrochromic shift (ECS), biofuels, Chlamydomonas reinhardtii, Physcomitrella patens, photoregulation, photoprotection
Settori scientifico-disciplinari MIUR:Area 05 - Scienze biologiche > BIO/10 Biochimica
Area 05 - Scienze biologiche > BIO/04 Fisiologia vegetale
Struttura di riferimento:Dipartimenti > Dipartimento di Biologia
Codice ID:9542
Depositato il:20 Ott 2016 09:33
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Albertsson, P. (2001). A quantitative model of the domain structure of the photosynthetic membrane. Trends Plant Sci. 6: 349–58. Cerca con Google

Allahverdiyeva, Y., Isojärvi, J., Zhang, P., and Aro, E.-M. (2015). Cyanobacterial Oxygenic Photosynthesis is Protected by Flavodiiron Proteins. Life 5: 716–743. Cerca con Google

Allen, J. (2002). Photosynthesis of ATP-electrons, proton pumps, rotors, and poise. Cell 110: 273–6. Cerca con Google

Allen, J.F. (1992). Protein phosphorylation in regulation of photosynthesis. Biochim. Biophys. Acta 1098: 275–335. Cerca con Google

Amaro, H.M., Macedo, Â.C., and Malcata, F.X. (2012). Microalgae: An alternative as sustainable source of biofuels? Energy 44: 158–166. Cerca con Google

Andersen, B., Scheller, H. V, and Møller, B.L. (1992). The PSI-E subunit of photosystem I binds ferredoxin:NADP+ oxidoreductase. FEBS Lett. 311: 169–73. Cerca con Google

Anderson, J., Chow, W., and Goodchild, D. (1988). Thylakoid Membrane Organisation in Sun/Shade Acclimation. Aust. J. Plant Physiol. 15: 11. Cerca con Google

Archibald, J.M. and Keeling, P.J. (2002). Recycled plastids: a “green movement” in eukaryotic evolution. Trends Genet. 18: 577–584. Cerca con Google

ARNON, D.I., ALLEN, M.B., and WHATLEY, F.R. (1954). Photosynthesis by Isolated Chloroplasts. Nature 174: 394–396. Cerca con Google

Arnon, D.I., Whatley, F.R., and Allen, M.B. (1958). Assimilatory Power in Photosynthesis: Photosynthetic phosphorylation by isolated chloroplasts is coupled with TPN reduction. Science 127: 1026–34. Cerca con Google

Arnoux, P., Morosinotto, T., Saga, G., Bassi, R., and Pignol, D. (2009). A structural basis for the pH-dependent xanthophyll cycle in Arabidopsis thaliana. Plant Cell 21: 2036–44. Cerca con Google

Aro, E.-M., Virgin, I., and Andersson, B. (1993). Photoinhibition of Photosystem II. Inactivation, protein damage and turnover. Biochim. Biophys. Acta - Bioenerg. 1143: 113–134. Cerca con Google

Asada, K. (2006). Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol. 141: 391–6. Cerca con Google

Asada, K. (2000). The water-water cycle as alternative photon and electron sinks. Philos. Trans. R. Soc. B Biol. Sci. 355: 1419–1431. Cerca con Google

Ballottari, M., Dall’Osto, L., Morosinotto, T., and Bassi, R. (2007). Contrasting behavior of higher plant photosystem I and II antenna systems during acclimation. J. Biol. Chem. 282: 8947–8958. Cerca con Google

Barber, J. (2012). Photosystem II: the water-splitting enzyme of photosynthesis. Cold Spring Harb. Symp. Quant. Biol. 77: 295–307. Cerca con Google

Basso, S., Simionato, D., Gerotto, C., Segalla, A., Giacometti, G.M., and Morosinotto, T. (2014). Characterization of the photosynthetic apparatus of the Eustigmatophycean Nannochloropsis gaditana: evidence of convergent evolution in the supramolecular organization of photosystem I. Biochim. Biophys. Acta 1837: 306–14. Cerca con Google

Beer, A., Gundermann, K., Beckmann, J., and Büchel, C. (2006). Subunit composition and pigmentation of fucoxanthin-chlorophyll proteins in diatoms: evidence for a subunit involved in diadinoxanthin and diatoxanthin binding. Biochemistry 45: 13046–53. Cerca con Google

Bendall, D.S. and Manasse, R.S. (1995). Cyclic photophosphorylation and electron transport. Biochim. Biophys. Acta - Bioenerg. 1229: 23–38. Cerca con Google

Berg, J.M., Tymoczko, J.L., and Stryer, L. (2002). The Activity of the Calvin Cycle Depends on Environmental Conditions. Cerca con Google

Bernardi, A., Perin, G., Sforza, E., Galvanin, F., Morosinotto, T., and Bezzo, F. (2014). An Identifiable State Model To Describe Light Intensity Influence on Microalgae Growth. Ind. Eng. Chem. Res. 53: 6738–6749. Cerca con Google

Betterle, N., Ballottari, M., Zorzan, S., de Bianchi, S., Cazzaniga, S., Dall’Osto, L., Morosinotto, T., and Bassi, R. (2009). Light-induced dissociation of an antenna hetero-oligomer is needed for non-photochemical quenching induction. J. Biol. Chem. 284: 15255–15266. Cerca con Google

Bondioli, P., Della Bella, L., Rivolta, G., Chini Zittelli, G., Bassi, N., Rodolfi, L., Casini, D., Prussi, M., Chiaramonti, D., and Tredici, M.R. (2012). Oil production by the marine microalgae Nannochloropsis sp. F&M-M24 and Tetraselmis suecica F&M-M33. Bioresour. Technol. 114: 567–72. Cerca con Google

Bonente, G., Pippa, S., Castellano, S., Bassi, R., and Ballottari, M. (2012). Acclimation of Chlamydomonas reinhardtii to different growth irradiances. J. Biol. Chem. 287: 5833–47. Cerca con Google

Brakemann, T., Schlörmann, W., Marquardt, J., Nolte, M., and Rhiel, E. (2006). Association of fucoxanthin chlorophyll a/c-binding polypeptides with photosystems and phosphorylation in the centric diatom Cyclotella cryptica. Protist 157: 463–75. Cerca con Google

Brennan, L. and Owende, P. (2010). Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products. Renew. Sustain. Energy Rev. 14: 557–577. Cerca con Google

Breyton, C., Nandha, B., Johnson, G.N., Joliot, P., and Finazzi, G. (2006). Redox modulation of cyclic electron flow around photosystem I in C3 plants. Biochemistry 45: 13465–75. Cerca con Google

Brooks, M.D., Sylak-Glassman, E.J., Fleming, G.R., and Niyogi, K.K. (2013). A thioredoxin-like/β-propeller protein maintains the efficiency of light harvesting in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 110: E2733–40. Cerca con Google

Bungard, R.A., Ruban, A. V, Hibberd, J.M., Press, M.C., Horton, P., and Scholes, J.D. (1999). Unusual carotenoid composition and a new type of xanthophyll cycle in plants. Proc. Natl. Acad. Sci. U. S. A. 96: 1135–9. Cerca con Google

Calvin, M. and Benson, A.A. (1948). The Path of Carbon in Photosynthesis. Science 107: 476–80. Cerca con Google

Carvalho, A.P., Silva, S.O., Baptista, J.M., and Malcata, F.X. (2011). Light requirements in microalgal photobioreactors: an overview of biophotonic aspects. Appl. Microbiol. Biotechnol. 89: 1275–88. Cerca con Google

Cavalier-Smith, T. (2004). Only six kingdoms of life. Proc. Biol. Sci. 271: 1251–62. Cerca con Google

Cavalier-Smith, T. (1986). The kingdoms of organisms. Nature 324: 416–417. Cerca con Google

Chisti, Y. (2007). Biodiesel from microalgae. Biotechnol. Adv. 25: 294–306. Cerca con Google

Chow, W.S. (1994). Molecular Processes of Photosynthesis (Elsevier). Cerca con Google

Chow, W.S., Melis, A., and Anderson, J.M. (1990). Adjustments of photosystem stoichiometry in chloroplasts improve the quantum efficiency of photosynthesis. Proc. Natl. Acad. Sci. U. S. A. 87: 7502–6. Cerca con Google

Coesel, S., Oborník, M., Varela, J., Falciatore, A., and Bowler, C. (2008). Evolutionary origins and functions of the carotenoid biosynthetic pathway in marine diatoms. PLoS One 3: e2896. Cerca con Google

Crafts-Brandner, S.J. and Salvucci, M.E. (2000). Rubisco activase constrains the photosynthetic potential of leaves at high temperature and CO2. Proc. Natl. Acad. Sci. U. S. A. 97: 13430–5. Cerca con Google

Crofts, A.R. and Meinhardt, S.W. (1982). A Q-cycle mechanism for the cyclic electron-transfer chain of Rhodopseudomonas sphaeroides. Biochem. Soc. Trans. 10: 201–3. Cerca con Google

DalCorso, G., Pesaresi, P., Masiero, S., Aseeva, E., Schünemann, D., Finazzi, G., Joliot, P., Barbato, R., and Leister, D. (2008). A complex containing PGRL1 and PGR5 is involved in the switch between linear and cyclic electron flow in Arabidopsis. Cell 132: 273–85. Cerca con Google

Dall’Osto, L., Caffarri, S., and Bassi, R. (2005). A mechanism of nonphotochemical energy dissipation, independent from PsbS, revealed by a conformational change in the antenna protein CP26. Plant Cell 17: 1217–32. Cerca con Google

Dall’Osto, L., Holt, N.E., Kaligotla, S., Fuciman, M., Cazzaniga, S., Carbonera, D., Frank, H.A., Alric, J., and Bassi, R. (2012). Zeaxanthin protects plant photosynthesis by modulating chlorophyll triplet yield in specific light-harvesting antenna subunits. J. Biol. Chem. 287: 41820–34. Cerca con Google

Dang, K.-V., Plet, J., Tolleter, D., Jokel, M., Cuiné, S., Carrier, P., Auroy, P., Richaud, P., Johnson, X., Alric, J., Allahverdiyeva, Y., and Peltier, G. (2014). Combined increases in mitochondrial cooperation and oxygen photoreduction compensate for deficiency in cyclic electron flow in Chlamydomonas reinhardtii. Plant Cell 26: 3036–50. Cerca con Google

Dekker, J.P. and Boekema, E.J. (2005). Supramolecular organization of thylakoid membrane proteins in green plants. Biochim. Biophys. Acta 1706: 12–39. Cerca con Google

Demmig-Adams, B. (1990). Carotenoids and photoprotection in plants: A role for the xanthophyll zeaxanthin. Biochim. Biophys. Acta - Bioenerg. 1020: 1–24. Cerca con Google

Demmig-Adams, B. and Adams, W.W. (2000). Harvesting sunlight safely. Nature 403: 371, 373–4. Cerca con Google

Demmig-Adams, B. and Adams, W.W. (1992). Photoprotection and Other Responses of Plants to High Light Stress. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43: 599–626. Cerca con Google

Depauw, F.A., Rogato, A., Ribera d’Alcalá, M., and Falciatore, A. (2012). Exploring the molecular basis of responses to light in marine diatoms. J. Exp. Bot. 63: 1575–91. Cerca con Google

Desplats, C., Mus, F., Cuiné, S., Billon, E., Cournac, L., and Peltier, G. (2009). Characterization of Nda2, a plastoquinone-reducing type II NAD(P)H dehydrogenase in chlamydomonas chloroplasts. J. Biol. Chem. 284: 4148–57. Cerca con Google

Devaki, B. and Grossman, A.R. (1993). Characterization of gene clusters encoding the fucoxanthin chlorophyll proteins of the diatom Phaeodactylum tricornutum. Nucleic Acids Res. 21: 4458–4466. Cerca con Google

Dismukes, G.C., Carrieri, D., Bennette, N., Ananyev, G.M., and Posewitz, M.C. (2008). Aquatic phototrophs: efficient alternatives to land-based crops for biofuels. Curr. Opin. Biotechnol. 19: 235–40. Cerca con Google

Dittami, S.M., Michel, G., Collén, J., Boyen, C., and Tonon, T. (2010). Chlorophyll-binding proteins revisited--a multigenic family of light-harvesting and stress proteins from a brown algal perspective. BMC Evol. Biol. 10: 365. Cerca con Google

Durnford, D.G., Aebersold, R., and Green, B.R. (1996). The fucoxanthin-chlorophyll proteins from a chromophyte alga are part of a large multigene family: structural and evolutionary relationships to other light harvesting antennae. MGG Mol. Gen. Genet. 253: 377. Cerca con Google

Durnford, D.G., Price, J.A., McKim, S.M., and Sarchfield, M.L. (2003). Light-harvesting complex gene expression is controlled by both transcriptional and post-transcriptional mechanisms during photoacclimation in Chlamydomonas reinhardtii. Physiol. Plant. 118: 193–205. Cerca con Google

Durrant, J.R., Giorgi, L.B., Barber, J., Klug, D.R., and Porter, G. (1990). Characterisation of triplet states in isolated Photosystem II reaction centres: Oxygen quenching as a mechanism for photodamage. Biochim. Biophys. Acta - Bioenerg. 1017: 167–175. Cerca con Google

Dyall, S.D., Brown, M.T., and Johnson, P.J. (2004). Ancient invasions: from endosymbionts to organelles. Science 304: 253–7. Cerca con Google

Eberhard, S., Finazzi, G., and Wollman, F.-A. (2008). The dynamics of photosynthesis. Annu. Rev. Genet. 42: 463–515. Cerca con Google

Egorova, E.A. and Bukhov, N.G. (2002). Effect of Elevated Temperatures on the Activity of Alternative Pathways of Photosynthetic Electron Transport in Intact Barley and Maize Leaves. Russ. J. Plant Physiol. 49: 575–584. Cerca con Google

Falkowski, P.G. and Owens, T.G. (1980). Light-Shade Adaptation : TWO STRATEGIES IN MARINE PHYTOPLANKTON. Plant Physiol. 66: 592–595. Cerca con Google

Falkowski, P.G. and Raven, J.A. (2013). Aquatic Photosynthesis: (Second Edition). Cerca con Google

Fan, D.-Y., Hope, A.B., Smith, P.J., Jia, H., Pace, R.J., Anderson, J.M., and Chow, W.S. (2007). The stoichiometry of the two photosystems in higher plants revisited. Biochim. Biophys. Acta 1767: 1064–72. Cerca con Google

Ferreira, K.N. (2004). Architecture of the Photosynthetic Oxygen-Evolving Center. Science (80-. ). 303: 1831–1838. Cerca con Google

Finazzi, G. (2002). Involvement of state transitions in the switch between linear and cyclic electron flow in Chlamydomonas reinhardtii. EMBO Rep. 3: 280–285. Cerca con Google

Finazzi, G. and Forti, G. (2004). Metabolic Flexibility of the Green Alga Chlamydomonas reinhardtii as Revealed by the Link between State Transitions and Cyclic Electron Flow. Photosynth. Res. 82: 327–38. Cerca con Google

Fisher, T., Shurtz-swirski, R., Gepstein, S., and Dubinsky, Z. (1989). Changes in the levels of ribulose-l,5-bisphosphate carboxylase/oxygenase (rubisco) in tetraedron minimum (chlorophyta) during light and shade adaptation. Plant Cell Physiol. 30: 221–228. Cerca con Google

García-Camacho, F., Sánchez-Mirón, A., Molina-Grima, E., Camacho-Rubio, F., and Merchuck, J.C. (2012). A mechanistic model of photosynthesis in microalgae including photoacclimation dynamics. J. Theor. Biol. 304: 1–15. Cerca con Google

García-Plazaola, J.I., Matsubara, S., and Osmond, C.B. (2007). The lutein epoxide cycle in higher plants: its relationships to other xanthophyll cycles and possible functions. Funct. Plant Biol. 34: 759. Cerca con Google

Germano, M., Yakushevska, A.E., Keegstra, W., van Gorkom, H.J., Dekker, J.P., and Boekema, E.J. (2002). Supramolecular organization of photosystem I and light-harvesting complex I in Chlamydomonas reinhardtii. FEBS Lett. 525: 121–5. Cerca con Google

Gilmore, A.M., Mohanty, N., and Yamamoto, H.Y. (1994). Epoxidation of zeaxanthin and antheraxanthin reverses non-photochemical quenching of photosystem II chlorophyll a fluorescence in the presence of trans-thylakoid ΔpH. FEBS Lett. 350: 271–274. Cerca con Google

Golding, A.J., Finazzi, G., and Johnson, G.N. (2004). Reduction of the thylakoid electron transport chain by stromal reductants--evidence for activation of cyclic electron transport upon dark adaptation or under drought. Planta 220: 356–63. Cerca con Google

Golding, A.J. and Johnson, G.N. (2003). Down-regulation of linear and activation of cyclic electron transport during drought. Planta 218: 107–14. Cerca con Google

Goss, R. and Jakob, T. (2010). Regulation and function of xanthophyll cycle-dependent photoprotection in algae. Photosynth. Res. 106: 103–122. Cerca con Google

Green, B.R. and Durnford, D.G. (1996). The chlorophyll-carotenoid proteins of oxygenic photosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47: 685–714. Cerca con Google

Grobbelaar, J.U. (2011). Microalgae mass culture: the constraints of scaling-up. J. Appl. Phycol. 24: 315–318. Cerca con Google

Grossman, A.R., Schaefer, M.R., Chiang, G.G., and Collier, J.L. (1993). The phycobilisome, a light-harvesting complex responsive to environmental conditions. Microbiol. Rev. 57: 725–49. Cerca con Google

Gruszecki, W.I., Sujak, A., Strzalka, K., Radunz, A., and Schmid, G.H. (1999). Organisation of xanthophyll-lipid membranes studied by means of specific pigment antisera, spectrophotometry and monomolecular layer technique lutein versus zeaxanthin. Zeitschrift fur Naturforsch. - Sect. C J. Biosci. 54: 517–525. Cerca con Google

Guillard, R.R.L. and Lorenzen, C.J. (1972). YELLOW-GREEN ALGAE WITH CHLOROPHYLLIDE C 2. J. Phycol. 8: 10–14. Cerca con Google

Hager, A. and Holocher, K. (1994). Localization of the xanthophyll-cycle enzyme violaxanthin de-epoxidase within the thylakoid lumen and abolition of its mobility by a (light-dependent) pH decrease. Planta 192: 581–589. Cerca con Google

Hammes, G.G. (1982). Unifying concept for the coupling between ion pumping and ATP hydrolysis or synthesis. Proc. Natl. Acad. Sci. U. S. A. 79: 6881–4. Cerca con Google

Hashimoto, M., Endo, T., Peltier, G., Tasaka, M., and Shikanai, T. (2003). A nucleus-encoded factor, CRR2, is essential for the expression of chloroplast ndhB in Arabidopsis. Plant J. 36: 541–9. Cerca con Google

Havaux, M. (1998). Carotenoids as membrane stabilizers in chloroplasts. Trends Plant Sci. 3: 147–151. Cerca con Google

Havaux, M., Dall’osto, L., and Bassi, R. (2007). Zeaxanthin has enhanced antioxidant capacity with respect to all other xanthophylls in Arabidopsis leaves and functions independent of binding to PSII antennae. Plant Physiol. 145: 1506–20. Cerca con Google

Havaux, M. and Niyogi, K.K. (1999). The violaxanthin cycle protects plants from photooxidative damage by more than one mechanism. Proc. Natl. Acad. Sci. 96: 8762–8767. Cerca con Google

Helman, Y., Tchernov, D., Reinhold, L., Shibata, M., Ogawa, T., Schwarz, R., Ohad, I., and Kaplan, A. (2003). Genes Encoding A-Type Flavoproteins Are Essential for Photoreduction of O2 in Cyanobacteria. Curr. Biol. 13: 230–235. Cerca con Google

Herbstová, M., Tietz, S., Kinzel, C., Turkina, M. V, and Kirchhoff, H. (2012). Architectural switch in plant photosynthetic membranes induced by light stress. Proc. Natl. Acad. Sci. U. S. A. 109: 20130–5. Cerca con Google

Hertle, A.P., Blunder, T., Wunder, T., Pesaresi, P., Pribil, M., Armbruster, U., and Leister, D. (2013). PGRL1 is the elusive ferredoxin-plastoquinone reductase in photosynthetic cyclic electron flow. Mol. Cell 49: 511–23. Cerca con Google

HILL, R. and BENDALL, F. (1960). Function of the Two Cytochrome Components in Chloroplasts: A Working Hypothesis. Nature 186: 136–137. Cerca con Google

Holt, N.E., Zigmantas, D., Valkunas, L., Li, X.-P., Niyogi, K.K., and Fleming, G.R. (2005). Carotenoid cation formation and the regulation of photosynthetic light harvesting. Science 307: 433–6. Cerca con Google

Horton, P., Ruban, A. V., and Walters, R.G. (1996). REGULATION OF LIGHT HARVESTING IN GREEN PLANTS. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47: 655–684. Cerca con Google

Horton, P., Wentworth, M., and Ruban, A. (2005). Control of the light harvesting function of chloroplast membranes: the LHCII-aggregation model for non-photochemical quenching. FEBS Lett. 579: 4201–6. Cerca con Google

Ikeda, Y., Komura, M., Watanabe, M., Minami, C., Koike, H., Itoh, S., Kashino, Y., and Satoh, K. (2008a). Photosystem I complexes associated with fucoxanthin-chlorophyll-binding proteins from a marine centric diatom, Chaetoceros gracilis. Biochim. Biophys. Acta 1777: 351–61. Cerca con Google

Ikeda, Y., Komura, M., Watanabe, M., Minami, C., Koike, H., Itoh, S., Kashino, Y., and Satoh, K. (2008b). Photosystem I complexes associated with fucoxanthin-chlorophyll-binding proteins from a marine centric diatom, Chaetoceros gracilis. Biochim. Biophys. Acta 1777: 351–61. Cerca con Google

Iwai, M., Takizawa, K., Tokutsu, R., Okamuro, A., Takahashi, Y., and Minagawa, J. (2010). Isolation of the elusive supercomplex that drives cyclic electron flow in photosynthesis. Nature 464: 1210–3. Cerca con Google

Jackowski, G., Olkiewicz, P., and Zelisko, A. (2003). The acclimative response of the main light-harvesting chlorophyll a/b-protein complex of photosystem II (LHCII) to elevated irradiances at the level of trimeric subunits. J. Photochem. Photobiol. B. 70: 163–70. Cerca con Google

Jahns, P. and Heyde, S. (1999). Dicyclohexylcarbodiimide alters the pH dependence of violaxanthin de-epoxidation. Planta 207: 393–400. Cerca con Google

Jahns, P., Latowski, D., and Strzalka, K. (2009). Mechanism and regulation of the violaxanthin cycle: the role of antenna proteins and membrane lipids. Biochim. Biophys. Acta 1787: 3–14. Cerca con Google

Jans, F., Mignolet, E., Houyoux, P.-A., Cardol, P., Ghysels, B., Cuiné, S., Cournac, L., Peltier, G., Remacle, C., and Franck, F. (2008). A type II NAD(P)H dehydrogenase mediates light-independent plastoquinone reduction in the chloroplast of Chlamydomonas. Proc. Natl. Acad. Sci. U. S. A. 105: 20546–51. Cerca con Google

Jansson, S. (1999). A guide to the Lhc genes and their relatives in Arabidopsis. Trends Plant Sci. 4: 236–240. Cerca con Google

Jensen, P.E., Bassi, R., Boekema, E.J., Dekker, J.P., Jansson, S., Leister, D., Robinson, C., and Scheller, H.V. (2007). Structure, function and regulation of plant photosystem I. Biochim. Biophys. Acta 1767: 335–52. Cerca con Google

Joët, T., Cournac, L., Peltier, G., and Havaux, M. (2002). Cyclic electron flow around photosystem I in C(3) plants. In vivo control by the redox state of chloroplasts and involvement of the NADH-dehydrogenase complex. Plant Physiol. 128: 760–9. Cerca con Google

Johnson, G.N. (2005). Cyclic electron transport in C3 plants: fact or artefact? J. Exp. Bot. 56: 407–16. Cerca con Google

Johnson, X. et al. (2014). Proton gradient regulation 5-mediated cyclic electron flow under ATP- or redox-limited conditions: a study of ΔATpase pgr5 and ΔrbcL pgr5 mutants in the green alga Chlamydomonas reinhardtii. Plant Physiol. 165: 438–52. Cerca con Google

Joliot, P. and Joliot, A. (2002). Cyclic electron transfer in plant leaf. Proc. Natl. Acad. Sci. U. S. A. 99: 10209–14. Cerca con Google

Joliot, P. and Joliot, A. (2005). Quantification of cyclic and linear flows in plants. Proc. Natl. Acad. Sci. U. S. A. 102: 4913–8. Cerca con Google

Jordan, P., Fromme, P., Witt, H.T., Klukas, O., Saenger, W., and Krauss, N. (2001). Three-dimensional structure of cyanobacterial photosystem I at 2.5 A resolution. Nature 411: 909–17. Cerca con Google

Keeling, P.J. (2010). The endosymbiotic origin, diversification and fate of plastids. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 365: 729–48. Cerca con Google

Keren, N., Berg, A., van Kan, P.J.M., Levanon, H., and Ohad, I. (1997). Mechanism of photosystem II photoinactivation and D1 protein degradation at low light: The role of back electron flow. Proc. Natl. Acad. Sci. 94: 1579–1584. Cerca con Google

Kirchhoff, H., Schöttler, M.A., Maurer, J., and Weis, E. (2004). Plastocyanin redox kinetics in spinach chloroplasts: evidence for disequilibrium in the high potential chain. Biochim. Biophys. Acta 1659: 63–72. Cerca con Google

Kirilovsky, D. (2015). Modulating energy arriving at photochemical reaction centers: orange carotenoid protein-related photoprotection and state transitions. Photosynth. Res. 126: 3–17. Cerca con Google

Klimmek, F., Sjödin, A., Noutsos, C., Leister, D., and Jansson, S. (2006). Abundantly and rarely expressed Lhc protein genes exhibit distinct regulation patterns in plants. Plant Physiol. 140: 793–804. Cerca con Google

Krieger-Liszkay, A., Fufezan, C., and Trebst, A. Singlet oxygen production in photosystem II and related protection mechanism. Photosynth. Res. 98: 551–64. Cerca con Google

Kruip, J., Bald, D., Boekema, E., and Rögner, M. (1994). Evidence for the existence of trimeric and monomeric Photosystem I complexes in thylakoid membranes from cyanobacteria. Photosynth. Res. 40: 279–86. Cerca con Google

Külheim, C., Agren, J., and Jansson, S. (2002). Rapid regulation of light harvesting and plant fitness in the field. Science 297: 91–3. Cerca con Google

Lavaud, J., Rousseau, B., and Etienne, A.-L. (2002). In diatoms, a transthylakoid proton gradient alone is not sufficient to induce a non-photochemical fluorescence quenching. FEBS Lett. 523: 163–6. Cerca con Google

Lavergne, J. and Joliot, P. (1991). Restricted diffusion in photosynthetic membranes. Trends Biochem. Sci. 16: 129–34. Cerca con Google

LEDFORD, H.K. and NIYOGI, K.K. (2005). Singlet oxygen and photo-oxidative stress management in plants and algae. Plant, Cell Environ. 28: 1037–1045. Cerca con Google

Leister, D. and Shikanai, T. (2013). Complexities and protein complexes in the antimycin A-sensitive pathway of cyclic electron flow in plants. Front. Plant Sci. 4: 161. Cerca con Google

Lepetit, B., Goss, R., Jakob, T., and Wilhelm, C. (2012). Molecular dynamics of the diatom thylakoid membrane under different light conditions. Photosynth. Res. 111: 245–57. Cerca con Google

Li, X.P., Björkman, O., Shih, C., Grossman, A.R., Rosenquist, M., Jansson, S., and Niyogi, K.K. (2000). A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature 403: 391–5. Cerca con Google

Li, X.-P., Gilmore, A.M., Caffarri, S., Bassi, R., Golan, T., Kramer, D., and Niyogi, K.K. (2004). Regulation of Photosynthetic Light Harvesting Involves Intrathylakoid Lumen pH Sensing by the PsbS Protein. J. Biol. Chem. 279: 22866–22874. Cerca con Google

Li, Z., Wakao, S., Fischer, B.B., and Niyogi, K.K. (2009). Sensing and responding to excess light. Annu. Rev. Plant Biol. 60: 239–60. Cerca con Google

Liu, Z., Yan, H., Wang, K., Kuang, T., Zhang, J., Gui, L., An, X., and Chang, W. (2004). Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution. Nature 428: 287–292. Cerca con Google

Lubián, L.M., Montero, O., Moreno-Garrido, I., Huertas, I.E., Sobrino, C., González-Del Valle, M., and Parés, G. (2000). Nannochloropsis (Eustigmatophyceae) as source of commercially valuable pigments. In Journal of Applied Phycology, pp. 249–255. Cerca con Google

Mehler, A.H. (1951). Studies on reactions of illuminated chloroplasts. Arch. Biochem. Biophys. 33: 65–77. Cerca con Google

Melis, A. (1991). Dynamics of photosynthetic membrane composition and function. Biochim. Biophys. Acta - Bioenerg. 1058: 87–106. Cerca con Google

Mellis, A. (1999). Photosystem-II damage and repair cycle in chloroplasts: What modulates the rate of photodamage in vivo? Trends Plant Sci. 4: 130–135. Cerca con Google

Minagawa, J. and Tokutsu, R. (2015). Dynamic regulation of photosynthesis in Chlamydomonas reinhardtii. Plant J. 82: 413–28. Cerca con Google

MITCHELL, P. (1961). Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191: 144–8. Cerca con Google

Miyake, C., Horiguchi, S., Makino, A., Shinzaki, Y., Yamamoto, H., and Tomizawa, K. (2005). Effects of light intensity on cyclic electron flow around PSI and its relationship to non-photochemical quenching of Chl fluorescence in tobacco leaves. Plant Cell Physiol. 46: 1819–30. Cerca con Google

Moseley, J.L., Allinger, T., Herzog, S., Hoerth, P., Wehinger, E., Merchant, S., and Hippler, M. (2002). Adaptation to Fe-deficiency requires remodeling of the photosynthetic apparatus. EMBO J. 21: 6709–20. Cerca con Google

Mozzo, M., Dall’Osto, L., Hienerwadel, R., Bassi, R., and Croce, R. (2008). Photoprotection in the antenna complexes of photosystem II: role of individual xanthophylls in chlorophyll triplet quenching. J. Biol. Chem. 283: 6184–92. Cerca con Google

Müller, P., Li, X.P., and Niyogi, K.K. (2001). Non-photochemical quenching. A response to excess light energy. Plant Physiol. 125: 1558–1566. Cerca con Google

Mullineaux, C.W. (2008). Phycobilisome-reaction centre interaction in cyanobacteria. Photosynth. Res. 95: 175–82. Cerca con Google

Munekage, Y., Hashimoto, M., Miyake, C., Tomizawa, K., Endo, T., Tasaka, M., and Shikanai, T. (2004). Cyclic electron flow around photosystem I is essential for photosynthesis. Nature 429: 579–82. Cerca con Google

Munekage, Y., Hojo, M., Meurer, J., Endo, T., Tasaka, M., and Shikanai, T. (2002). PGR5 is involved in cyclic electron flow around photosystem I and is essential for photoprotection in Arabidopsis. Cell 110: 361–71. Cerca con Google

Munekage, Y., Takeda, S., Endo, T., Jahns, P., Hashimoto, T., and Shikanai, T. (2001). Cytochrome b6f mutation specifically affects thermal dissipation of absorbed light energy in Arabidopsis. Plant J. 28: 351–359. Cerca con Google

Murata, N., Takahashi, S., Nishiyama, Y., and Allakhverdiev, S.I. (2007). Photoinhibition of photosystem II under environmental stress. Biochim. Biophys. Acta 1767: 414–21. Cerca con Google

Neilson, J.A.D. and Durnford, D.G. (2010). Structural and functional diversification of the light-harvesting complexes in photosynthetic eukaryotes. Photosynth. Res. 106: 57–71. Cerca con Google

Nield, J., Kruse, O., Ruprecht, J., da Fonseca, P., Büchel, C., and Barber, J. (2000). Three-dimensional structure of Chlamydomonas reinhardtii and Synechococcus elongatus photosystem II complexes allows for comparison of their oxygen-evolving complex organization. J. Biol. Chem. 275: 27940–6. Cerca con Google

Nilkens, M., Kress, E., Lambrev, P., Miloslavina, Y., Müller, M., Holzwarth, A.R., and Jahns, P. (2010). Identification of a slowly inducible zeaxanthin-dependent component of non-photochemical quenching of chlorophyll fluorescence generated under steady-state conditions in Arabidopsis. Biochim. Biophys. Acta 1797: 466–75. Cerca con Google

Niyogi, K.K. (1999). PHOTOPROTECTION REVISITED: Genetic and Molecular Approaches. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 333–359. Cerca con Google

Niyogi, K.K. (2000). Safety valves for photosynthesis. Curr. Opin. Plant Biol. 3: 455–460. Cerca con Google

Niyogi, K.K., Grossman, A.R., and Björkman, O. (1998). Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion. Plant Cell 10: 1121–1134. Cerca con Google

Niyogi, K.K. and Truong, T.B. (2013). Evolution of flexible non-photochemical quenching mechanisms that regulate light harvesting in oxygenic photosynthesis. Curr. Opin. Plant Biol. 16: 307–14. Cerca con Google

Norsker, N.-H., Barbosa, M.J., Vermuë, M.H., and Wijffels, R.H. (2011). Microalgal production--a close look at the economics. Biotechnol. Adv. 29: 24–7. Cerca con Google

Nymark, M., Valle, K.C., Brembu, T., Hancke, K., Winge, P., Andresen, K., Johnsen, G., and Bones, A.M. (2009). An integrated analysis of molecular acclimation to high light in the marine diatom Phaeodactylum tricornutum. PLoS One 4: e7743. Cerca con Google

Ogawa, T. (1991). A gene homologous to the subunit-2 gene of NADH dehydrogenase is essential to inorganic carbon transport of Synechocystis PCC6803. Proc. Natl. Acad. Sci. U. S. A. 88: 4275–9. Cerca con Google

Okegawa, Y., Long, T.A., Iwano, M., Takayama, S., Kobayashi, Y., Covert, S.F., and Shikanai, T. (2007). A Balanced PGR5 Level is Required for Chloroplast Development and Optimum Operation of Cyclic Electron Transport Around Photosystem I. Plant Cell Physiol. 48: 1462–1471. Cerca con Google

Olaizola, M., La Roche, J., Kolber, Z., and Falkowski, P.G. (1994). Non-photochemical fluorescence quenching and the diadinoxanthin cycle in a marine diatom. Photosynth. Res. 41: 357–370. Cerca con Google

Owens, T.G. (1986). Light-Harvesting Function in the Diatom Phaeodactylum tricornutum: II. Distribution of Excitation Energy between the Photosystems. Plant Physiol. 80: 739–46. Cerca con Google

Papadakis, I.A., Kotzabasis, K., and Lika, K. (2012). Modeling the dynamic modulation of light energy in photosynthetic algae. J. Theor. Biol. 300: 254–64. Cerca con Google

Papagiannakis, E., H M van Stokkum, I., Fey, H., Büchel, C., and van Grondelle, R. (2005). Spectroscopic characterization of the excitation energy transfer in the fucoxanthin-chlorophyll protein of diatoms. Photosynth. Res. 86: 241–50. Cerca con Google

Pascal, A.A., Liu, Z., Broess, K., van Oort, B., van Amerongen, H., Wang, C., Horton, P., Robert, B., Chang, W., and Ruban, A. (2005). Molecular basis of photoprotection and control of photosynthetic light-harvesting. Nature 436: 134–7. Cerca con Google

Peers, G., Truong, T.B., Ostendorf, E., Busch, A., Elrad, D., Grossman, A.R., Hippler, M., and Niyogi, K.K. (2009). An ancient light-harvesting protein is critical for the regulation of algal photosynthesis. Nature 462: 518–21. Cerca con Google

Peltier, G. and Cournac, L. (2002). Chlororespiration. Annu. Rev. Plant Biol. 53: 523–50. Cerca con Google

Peltier, G., Tolleter, D., Billon, E., and Cournac, L. (2010). Auxiliary electron transport pathways in chloroplasts of microalgae. Photosynth. Res. 106: 19–31. Cerca con Google

Peng, L. and Shikanai, T. (2011). Supercomplex formation with photosystem I is required for the stabilization of the chloroplast NADH dehydrogenase-like complex in Arabidopsis. Plant Physiol. 155: 1629–39. Cerca con Google

Perry, M.J., Talbot, M.C., and Alberte, R.S. (1981). Photoadaption in marine phytoplankton: Response of the photosynthetic unit. Mar. Biol. 62: 91–101. Cerca con Google

Petroutsos, D., Terauchi, A.M., Busch, A., Hirschmann, I., Merchant, S.S., Finazzi, G., and Hippler, M. (2009). PGRL1 participates in iron-induced remodeling of the photosynthetic apparatus and in energy metabolism in Chlamydomonas reinhardtii. J. Biol. Chem. 284: 32770–81. Cerca con Google

Pfundel, E.E. and Dilley, R.A. (1993). The pH Dependence of Violaxanthin Deepoxidation in Isolated Pea Chloroplasts. Plant Physiol. 101: 65–71. Cerca con Google

Pfundel, E.E., Renganathan, M., Gilmore, A.M., Yamamoto, H.Y., and Dilley, R.A. (1994). Intrathylakoid pH in Isolated Pea Chloroplasts as Probed by Violaxanthin Deepoxidation. Plant Physiol. 106: 1647–1658. Cerca con Google

Pittman, J.K., Dean, A.P., and Osundeko, O. (2011). The potential of sustainable algal biofuel production using wastewater resources. Bioresour. Technol. 102: 17–25. Cerca con Google

Pogson, B.J., Niyogi, K.K., Bjorkman, O., and DellaPenna, D. (1998). Altered xanthophyll compositions adversely affect chlorophyll accumulation and nonphotochemical quenching in Arabidopsis mutants. Proc. Natl. Acad. Sci. 95: 13324–13329. Cerca con Google

Preisig, H.R. and Wilhelm, C. (1989). Ultrastructure, pigments and taxonomy of Botryochloropsis similis gen. et sp. nov. (Eustigmatophyceae). Phycologia 28: 61–69. Cerca con Google

Quick, W.P. and Stitt, M. (1989). An examination of factors contributing to non-photochemical quenching of chlorophyll fluorescence in barley leaves. Biochim. Biophys. Acta - Bioenerg. 977: 287–296. Cerca con Google

Riisberg, I., Orr, R.J.S., Kluge, R., Shalchian-Tabrizi, K., Bowers, H.A., Patil, V., Edvardsen, B., and Jakobsen, K.S. (2009). Seven gene phylogeny of heterokonts. Protist 160: 191–204. Cerca con Google

Rockholm, D. (1996). Violaxanthin de-epoxidase. PLANT Physiol. 110: 697–703. Cerca con Google

Rodolfi, L., Chini Zittelli, G., Bassi, N., Padovani, G., Biondi, N., Bonini, G., and Tredici, M.R. (2009). Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol. Bioeng. 102: 100–12. Cerca con Google

Rodríguez, F., Chauton, M., Johnsen, G., Andresen, K., Olsen, L.M., and Zapata, M. (2005). Photoacclimation in phytoplankton: implications for biomass estimates, pigment functionality and chemotaxonomy. Mar. Biol. 148: 963–971. Cerca con Google

Ruban, A. V. and Horton, P. (1995). An Investigation of the Sustained Component of Nonphotochemical Quenching of Chlorophyll Fluorescence in Isolated Chloroplasts and Leaves of Spinach. Plant Physiol. 108: 721–726. Cerca con Google

Rumeau, D., Bécuwe-Linka, N., Beyly, A., Louwagie, M., Garin, J., and Peltier, G. (2005). New subunits NDH-M, -N, and -O, encoded by nuclear genes, are essential for plastid Ndh complex functioning in higher plants. Plant Cell 17: 219–32. Cerca con Google

Saga, G., Giorgetti, A., Fufezan, C., Giacometti, G.M., Bassi, R., and Morosinotto, T. (2010). Mutation analysis of violaxanthin de-epoxidase identifies substrate-binding sites and residues involved in catalysis. J. Biol. Chem. 285: 23763–70. Cerca con Google

Schaller, S., Latowski, D., Jemioła-Rzemińska, M., Wilhelm, C., Strzałka, K., and Goss, R. (2010). The main thylakoid membrane lipid monogalactosyldiacylglycerol (MGDG) promotes the de-epoxidation of violaxanthin associated with the light-harvesting complex of photosystem II (LHCII). Biochim. Biophys. Acta 1797: 414–24. Cerca con Google

Schaller, S., Wilhelm, C., Strzałka, K., and Goss, R. (2012). Investigating the interaction between the violaxanthin cycle enzyme zeaxanthin epoxidase and the thylakoid membrane. J. Photochem. Photobiol. B. 114: 119–25. Cerca con Google

Scheller, H. V, Jensen, P.E., Haldrup, A., Lunde, C., and Knoetzel, J. (2001). Role of subunits in eukaryotic Photosystem I. Biochim. Biophys. Acta 1507: 41–60. Cerca con Google

Schenk, P.M., Thomas-Hall, S.R., Stephens, E., Marx, U.C., Mussgnug, J.H., Posten, C., Kruse, O., and Hankamer, B. (2008). Second Generation Biofuels: High-Efficiency Microalgae for Biodiesel Production. BioEnergy Res. 1: 20–43. Cerca con Google

Searchinger, T., Heimlich, R., Houghton, R.A., Dong, F., Elobeid, A., Fabiosa, J., Tokgoz, S., Hayes, D., and Yu, T.-H. (2008). Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319: 1238–40. Cerca con Google

Sforza, E., Simionato, D., Giacometti, G.M., Bertucco, A., and Morosinotto, T. (2012). Adjusted light and dark cycles can optimize photosynthetic efficiency in algae growing in photobioreactors. PLoS One 7: e38975. Cerca con Google

Shikanai, T. (2007). Cyclic electron transport around photosystem I: genetic approaches. Annu. Rev. Plant Biol. 58: 199–217. Cerca con Google

Shikanai, T., Endo, T., Hashimoto, T., Yamada, Y., Asada, K., and Yokota, A. (1998). Directed disruption of the tobacco ndhB gene impairs cyclic electron flow around photosystem I. Proc. Natl. Acad. Sci. U. S. A. 95: 9705–9. Cerca con Google

Siefermann, D. and Yamamoto, H.Y. (1975). Properties of NADPH and oxygen-dependent zeaxanthin epoxidation in isolated chloroplasts. A transmembrane model for the violaxanthin cycle. Arch. Biochem. Biophys. 171: 70–7. Cerca con Google

Simionato, D., Block, M.A., La Rocca, N., Jouhet, J., Maréchal, E., Finazzi, G., and Morosinotto, T. (2013). The response of Nannochloropsis gaditana to nitrogen starvation includes de novo biosynthesis of triacylglycerols, a decrease of chloroplast galactolipids, and reorganization of the photosynthetic apparatus. Eukaryot. Cell 12: 665–76. Cerca con Google

Simionato, D., Sforza, E., Corteggiani Carpinelli, E., Bertucco, A., Giacometti, G.M., and Morosinotto, T. (2011). Acclimation of Nannochloropsis gaditana to different illumination regimes: effects on lipids accumulation. Bioresour. Technol. 102: 6026–32. Cerca con Google

Smith, B.M. and Melis, A. (1988). Photochemical Apparatus Organization in the Diatom Cylindrotheca fusiformis: Photosystem Stoichiometry and Excitation Distribution in Cells Grown under High and Low Irradiance. Plant Cell Physiol. 29: 761–769. Cerca con Google

Smith, B.M., Morrissey, P.J., Guenther, J.E., Nemson, J.A., Harrison, M.A., Allen, J.F., and Melis, A. (1990). Response of the Photosynthetic Apparatus in Dunaliella salina (Green Algae) to Irradiance Stress. Plant Physiol. 93: 1433–40. Cerca con Google

Strzepek, R.F. and Harrison, P.J. (2004). Photosynthetic architecture differs in coastal and oceanic diatoms. Nature 431: 689–92. Cerca con Google

Sukenik, A., Livne, A., Apt, K.E., and Grossman, A.R. (2000). CHARACTERIZATION OF A GENE ENCODING THE LIGHT-HARVESTING VIOLAXANTHIN-CHLOROPHYLL PROTEIN OF NANNOCHLOROPSIS SP. (EUSTIGMATOPHYCEAE). J. Phycol. 36: 563–570. Cerca con Google

Sukenik, A., Livne, A., Neori, A., Yacobi, Y.Z., and Katcoff, D. (1992). Purification and characterization of a light-harvesting chlorophyll-protein complex from the marine eustigmatophyte nannochloropsis sp. Plant Cell Physiol. 33: 1041–1048. Cerca con Google

Tardy, F. and Havaux, M. (1997). Thylakoid membrane fluidity and thermostability during the operation of the xanthophyll cycle in higher-plant chloroplasts. Biochim. Biophys. Acta 1330: 179–93. Cerca con Google

Teramoto, H., Nakamori, A., Minagawa, J., and Ono, T. (2002). Light-intensity-dependent expression of Lhc gene family encoding light-harvesting chlorophyll-a/b proteins of photosystem II in Chlamydomonas reinhardtii. Plant Physiol. 130: 325–33. Cerca con Google

Terashima, M., Petroutsos, D., Hüdig, M., Tolstygina, I., Trompelt, K., Gäbelein, P., Fufezan, C., Kudla, J., Weinl, S., Finazzi, G., and Hippler, M. (2012). Calcium-dependent regulation of cyclic photosynthetic electron transfer by a CAS, ANR1, and PGRL1 complex. Proc. Natl. Acad. Sci. U. S. A. 109: 17717–22. Cerca con Google

Ting, C.S. and Owens, T.G. (1994). The Effects of Excess Irradiance on Photosynthesis in the Marine Diatom Phaeodactylum tricornutum. Plant Physiol. 106: 763–770. Cerca con Google

Tolleter, D. et al. (2011). Control of hydrogen photoproduction by the proton gradient generated by cyclic electron flow in Chlamydomonas reinhardtii. Plant Cell 23: 2619–30. Cerca con Google

Umena, Y., Kawakami, K., Shen, J.-R., and Kamiya, N. (2011). Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473: 55–60. Cerca con Google

Vass, I., Styring, S., Hundal, T., Koivuniemi, A., Aro, E., and Andersson, B. (1992). Reversible and irreversible intermediates during photoinhibition of photosystem II: stable reduced QA species promote chlorophyll triplet formation. Proc. Natl. Acad. Sci. 89: 1408–1412. Cerca con Google

Veith, T., Brauns, J., Weisheit, W., Mittag, M., and Büchel, C. (2009). Identification of a specific fucoxanthin-chlorophyll protein in the light harvesting complex of photosystem I in the diatom Cyclotella meneghiniana. Biochim. Biophys. Acta 1787: 905–12. Cerca con Google

Veith, T. and Büchel, C. (2007). The monomeric photosystem I-complex of the diatom Phaeodactylum tricornutum binds specific fucoxanthin chlorophyll proteins (FCPs) as light-harvesting complexes. Biochim. Biophys. Acta 1767: 1428–35. Cerca con Google

Walters, R.G. (2005). Towards an understanding of photosynthetic acclimation. J. Exp. Bot. 56: 435–47. Cerca con Google

Ware, M.A., Belgio, E., and Ruban, A. V. (2014). Comparison of the protective effectiveness of NPQ in Arabidopsis plants deficient in PsbS protein and zeaxanthin. J. Exp. Bot. 66: 1259–1270. Cerca con Google

Wijffels, R.H., Kruse, O., and Hellingwerf, K.J. (2013). Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae. Curr. Opin. Biotechnol. 24: 405–13. Cerca con Google

Wilhelm, C., Jungandreas, A., Jakob, T., and Goss, R. (2014). Light acclimation in diatoms: from phenomenology to mechanisms. Mar. Genomics 16: 5–15. Cerca con Google

Wollman, F.A. (2001). State transitions reveal the dynamics and flexibility of the photosynthetic apparatus. EMBO J. 20: 3623–30. Cerca con Google

Yang, D., Webster, J., Adam, Z., Lindahl, M., and Andersson, B. (1998). Induction of acclimative proteolysis of the light-harvesting chlorophyll a/b protein of photosystem II in response to elevated light intensities. Plant Physiol. 118: 827–34. Cerca con Google

Young, A.J. (1991). The photoprotective role of carotenoids in higher plants. Physiol. Plant. 83: 702–708. Cerca con Google

Young, A.J. and Frank, H.A. (1996). Energy transfer reactions involving carotenoids: quenching of chlorophyll fluorescence. J. Photochem. Photobiol. B Biol. 36: 3–15. Cerca con Google

Zelisko, A., García-Lorenzo, M., Jackowski, G., Jansson, S., and Funk, C. (2005). AtFtsH6 is involved in the degradation of the light-harvesting complex II during high-light acclimation and senescence. Proc. Natl. Acad. Sci. U. S. A. 102: 13699–704. Cerca con Google

Zhang, H., Whitelegge, J.P., and Cramer, W.A. (2001). Ferredoxin:NADP+ oxidoreductase is a subunit of the chloroplast cytochrome b6f complex. J. Biol. Chem. 276: 38159–65. Cerca con Google

Zhang, N. and Portis, A.R. (1999). Mechanism of light regulation of Rubisco: a specific role for the larger Rubisco activase isoform involving reductive activation by thioredoxin-f. Proc. Natl. Acad. Sci. U. S. A. 96: 9438–43. Cerca con Google

Zhu, S.-H. and Green, B.R. (2010). Photoprotection in the diatom Thalassiosira pseudonana: role of LI818-like proteins in response to high light stress. Biochim. Biophys. Acta 1797: 1449–57. Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record