Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Brivio, Lara (2016) Morphodynamic evolution of meandering channels in tidal landscapes: sedimentology and stratal architecture. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
8Mb

Abstract (inglese)

Meandering channels constitute one of the fundamental components of tidal systems, as related tidal point bars are ubiquitous features in lagoonal or estuarine sedimentary successions. Nevertheless, a limited number of studies analyzed their morphodynamic evolution, together with their planimetric shape and morphometric characteristics. Their internal architecture and sedimentary facies distribution are relatively unexplored, and commonly investigated using facies models developed for fluvial meander bends.
Focusing on differences, more than on similarities, between tidal and fluvial meanders, the present work aims at investigating the stratal architecture and sedimentary facies distribution of selected tidal point bars in the Venice Lagoon (Adriatic Sea, Italy). Three main issue were investigate by the present work: i) the role of low order tributaries in controlling the evolution of tidal meander bend; ii) the influence of salt marsh aggradation in shaping geometries of tidal point bars, iii) sedimentary process and morphodynamics changes acting on subtidal point bars. The morphodynamic evolution of tidal channels, and related sedimentary products, were analyzed using a multidisciplinary approach, which comprises the comparison of historical photos, the interpretation of high-resolution sub-bottom profiles, core logging analysis and 3D modelling.
The main results stemmed out form the study sites highlight that: I) lateral tributaries can strongly influence the evolution of bends modifying local mechanisms of sediment and flow distribution; II); the migration of tidal point bars occurs under aggradational conditions both in intertidal and subtidal setting; III) subtidal bars evolve under the strong interaction between wave and tidal currents.

Abstract (italiano)

I canali meandriformi costituiscono una delle principali componenti dei sistemi tidali e, come le relative point bar, sono una caratteri ricorrenti all'interno delle successioni sedimentarie lagunari. Tuttavia, un numero limitato di studi hanno analizzato l’evoluzione morfodinamica e le caratteristiche morfometriche di canali meandriformi tidali. La loro architettura interna e la distribuzione delle facies sedimentarie sono relativamente inesplorate, e comunemente investigate utilizzando i modelli di facies sviluppati per i meandri fluviali.
Concentrandosi sulle differenze, più che sulle similitudini, tra i meandri tidali e fluviali, questo lavoro si propone di investigare le architetture stratali e la distribuzione delle facies sedimentarie delle point bar selezionate nella della Laguna di Venezia (Mare Adriatico, Italia). In questo lavoro vengono affrontate tre problematiche principali: i) il ruolo dei tributari di ordine inferiore nell'evoluzione dei meandri tidali; ii) l’influenza dell'aggradazione delle barene nella modellazione delle geometrie delle point bar tidali; iii) i processi sedimentari e le variazioni morfodinamiche agenti sulle point bar subtidali. L’evoluzione morfodinamica dei canali tidali, e i relativi prodotti sedimentari, sono stati analizzati utilizzando un approccio multidisciplinare, che comprende la comparazione di foto storiche, l’interpretazione di profili sub-bottom ad alta risoluzione, log di carote e modellazione 3D.
I risultati principali ottenuti dai tre siti in esame evidenziano che: I) gli affluenti laterali possono influenzare fortemente l’evoluzione dei meandri, modificando i meccanismi locali di distribuzione dei flussi e dei sedimenti; II) la migrazione delle point bar tidali avviene in contesti aggradazionali, sia in ambienti intertidali che subtidali; III) le barre subtidali evolvono sotto l’influenza della forte interazione tra correnti da onde e di marea.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Ghinassi, Massimiliano
Correlatore:D'Alpaos, Andrea
Dottorato (corsi e scuole):Ciclo 28 > Scuole 28 > SCIENZE DELLA TERRA
Data di deposito della tesi:01 Febbraio 2016
Anno di Pubblicazione:01 Febbraio 2016
Parole chiave (italiano / inglese):meandri tidali, point bar tidali, morfodinamica, neck cut-off, aggradazione, migrazione laterale, laguna di Venezia / tidal meanders, tidal point bar, morphodynamics, neck cut-off, aggradation, lateral migration, Venice Lagoon
Settori scientifico-disciplinari MIUR:Area 04 - Scienze della terra > GEO/02 Geologia stratigrafica e sedimentologica
Struttura di riferimento:Dipartimenti > Dipartimento di Geoscienze
Codice ID:9555
Depositato il:25 Ott 2016 09:22
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Allen, J.R.L. (1963). The classification of cross‐stratified units with notes on their origin. Sedimentology 2, 93-114. Cerca con Google

Allen, J.R.L. (1982). Sedimentary structures. Developments in sedimentology. Elsevier. Cerca con Google

Allen, J.R.L. (2000). Morphodynamics of Holocene salt marshes: a review sketch from the Atlantic and Southern North Sea coasts of Europe. Quaternary Science Reviews, 19(12), 1155-1231. Cerca con Google

Ashley, G.M. and Zeff, M.L. (1988). Tidal channel classification for a low-mesotidal salt marsh. Marine Geology, 82(1), 17-32. Cerca con Google

Bartholdy, J. (2012). Salt marsh sedimentation. In Principles of tidal sedimentology (pp. 151-185). Springer Netherlands. Cerca con Google

Bathurst, J.C., Thorne, C.R. and Hey, R.D. (1977). Direct measurements of secondary currents in river bends. Nature 269, 504-506. Cerca con Google

Barwis, J.H. (1978). Sedimentology of some South Carolina tidal creek point bars and a comparison with their fluvial counterparts. Fluvial sedimentology, Canadian Society of Petroleum Geologists Memoir 5 (pp. 129–160). Eds Miall AD(Canadian Society Petroleum Geologists, Calgary). Cerca con Google

Barwis, J.H. and Hayes, M.O. (1979). Regional patterns of modern barrier island and tidal inlet deposits as applied to paleoenvironmental studies. InCarboniferous Depositional Environments in the Appalachian Region (pp. 472-498). Carolina Coal Group, University of South Carolina Columbia, SC. Cerca con Google

Bayliss-Smith, T.P., Healey, R., Lailey, R., Spencer, T. and Stoddart, D.R. (1979). Tidal flows in salt marsh creeks. Estuarine and Coastal Marine Science, 9(3), 235-255. Cerca con Google

Bellucci, L.G., Frignani, M., Cochran, J.K., Albertazzi, S., Zaggia, L., Cecconi, G. and Hopkins, H. (2007). 210Pb and 137 Cs as chronometers for salt marsh accretion in the Venice Lagoon–links to flooding frequency and climate change. Journal of Environmental Radioactivity, 97(2), 85-102. Cerca con Google

Biron, P., Roy, A.G., Best, J.L. and Boyer, C.J., (1993). Bed morphology and sedimentology at the confluence of unequal depth channels. Geomorphology, 8,115–129. Cerca con Google

Bluck, B.J. (1971). Sedimentation in the meandering River Endrick. Scottish Journal of Geology, 7, 93-138. Cerca con Google

Brice, J.C. (1974). Evolution of meander loops. Geological Society of America Bulletin, 85, 581-586. Cerca con Google

Brierley, G.J. (1991). Bar sedimentology of the Squamish River. British Columbia: definition and application of morphostratigraphic units. J Sed Res, 61,211–225. Cerca con Google

Brice, J.C. (1977). Lateral migration of the middle Sacramento River, California (No. 77-43). US Geological Survey. Water Resources Division. Cerca con Google

Bridges, P.H., and Leeder, M.R. (1976). Sedimentary model for intertidal mudflat channels, with examples from the Solway Firth. Scotland.Sedimentology, 23(4), 533-552. Cerca con Google

Carniello, L., Defina, A. and D'Alpaos, L. (2009). Morphological evolution of the Venice Lagoon: evidence from the past and trend for the future. J Geophys Res – Earth Surface, 114:F04002. Cerca con Google

Carniello, L., D'Alpaos, A. and Defina, A. (2011). Modeling wind waves and tidal flows in shallow micro-tidal basins. Estuarine Coastal Shelf Sci, 92(2):263–276. Cerca con Google

Carniello, L., Defina, A. and D'Alpaos, L. (2012). Modeling sand-mud transport induced by tidal currents and wind waves in shallow microtidal basins: Application to the Venice Lagoon (Italy). Estuarine Coastal Shelf Sci, 102–103:105–115. Cerca con Google

Choi, K.S., Dalrymple, R.W., Chun, S.S., and Kim, S.P. (2004). Sedimentology of modern, inclined heterolithic stratification (IHS) in the macrotidal Han River delta, Korea. Journal of Sedimentary Research, 74(5), 677-689. Cerca con Google

Choi, K. (2011). External controls on the architecture of inclined heterolithic stratification (IHS) of macrotidal Sukmo channel: wave versus rainfall. Marine Geology, 285(1), 17-28. Cerca con Google

Choi, K., Hong, C.M., Kim, M.H., Oh, C.R., and Jung, J.H. (2013). Morphologic evolution of macrotidal estuarine channels in Gomso Bay, west coast of Korea: Implications for the architectural development of inclined heterolithic stratification. Marine Geology, 346, 343-354. Cerca con Google

Choi, K. and Jo, J.H. (2015). Morphodynamics of Tidal Channels In the Open Coast Macrotidal Flat, Southern Ganghwa Island In Gyeonggi Bay, West Coast of Korea. J Sed Res, 85(6),582–595. Cerca con Google

Coco, G., Zhou, Z., van Maanen, B., Olabarrieta, M., Tinoco, R. and Townend, I. (2013). Morphodynamics of tidal networks: Advances and challenges. Mar Geol, 346,1–16. Cerca con Google

D'Alpaos, L. and Defina, A. (2007). Mathematical modeling of tidal hydrodynamics in shallow lagoons: A review of open issues and applications to the Venice lagoon. Comput. Geosci, 33,476–496. Cerca con Google

D'Alpaos, A., Lanzoni, S., Marani, M., and Rinaldo, A. (2007). Landscape evolution in tidal embayments: modeling the interplay of erosion, sedimentation, and vegetation dynamics. Journal of Geophysical Research: Earth Surface (2003–2012), 112(F1). Cerca con Google

D'Alpaos, A., Lanzoni, S., Marani, M. and Rinaldo, A. (2010). On the tidal prism–channel area relations. J Geophys Res, 115:F01003. Cerca con Google

Dalrymple, R.W., Makino, Y., and Zaitlin, B.A. (1991). Temporal and spatial patterns of rhythmite deposition on mud flats in the macrotidal Cobequid Bay-Salmon River estuary. Bay of Fundy, Canada. Cerca con Google

De Mowbray, T. (1983). The genesis of lateral accretion deposits in recent intertidal mudflat channels, Solway Firth, Scotland. Sedimentology, 30,425–435. Cerca con Google

Dietrich, W.E., Smith, J.D. and Dunne, T. (1979). Flow and sediment transport in a sand bedded meander. Journal of Geology, 87, 305-315. Cerca con Google

Dietrich, W.E. and Smith, J.D. (1983). Influence of the point bar on flow through curved channels Water Resour, 19, 1173–1192. Cerca con Google

Dietrich, W.E. (1987). Mechanics of flow and sediment transport in river bends. In: Richards, K.S. (Ed.), River Channels: Environment and Process. Institute of British Geographers. Special Publication, 18,179-227. Cerca con Google

Díez-Canseco, D., Arz, J.A., Benito, M.I., Díaz-Molina, M. and Arenillas, I. (2014). Tidal influence in redbeds: A palaeoenvironmental and biochronostratigraphic reconstruction of the Lower Tremp Formation (South-Central Pyrenees, Spain) around the Cretaceous/Paleogene boundary. Sedimentary Geology, 312, 31-49. Cerca con Google

Durkin, P.R., Hubbard, S.M., Boyd, R.L. and Leckie, D.A. (2015). Stratigraphic Expression of Intra-Point-Bar Erosion and Rotation. Journal of Sedimentary Research, 85, 1238-1257. Cerca con Google

Edwards, M.B., Eriksson, K.A and, Kier, R.S. (1983). Paleochannel geometry and flow patterns determined from exhumed Permian point bars in north-central Texas. Journal of Sedimentary Petrology, 53, 1261-1270. Cerca con Google

Fagherazzi, S., Bortoluzzi, A., Dietrich, W.E., Adami, A., Lanzoni, S., Marani, M. and Rinaldo, A. (1999). Tidal networks 1. Automatic network extraction and preliminary scaling features from digital terrain maps. Water Resources Research, 35(12), 3891-3904. Cerca con Google

Fagherazzi, S., Hannion, M. and D'Odorico, P. (2008). Geomorphic structure of tidal hydrodynamics in salt marsh creeks. Water resources research, 44(2). Cerca con Google

Fagherazzi, S., Gabet, E.J. and Furbish, D.J. (2004). The effect of bidirectional flow on tidal channel planforms. Earth Surf Process Landforms, 29,295–309. Cerca con Google

Fagherazzi, S., Carniello, L., D’Alpaos, L. and Defina, A. (2006). Critical bifurcation of shallow microtidal landforms in tidal flats and salt marshes. Proc Natl AcadSci USA, 103(22), 8337–8341. Cerca con Google

Fagherazzi, S., et al. (2012). Numerical models of salt marsh evolution: ecological, geomorphic, and climatic factors. Rev Geophys, 50(1),RG1002. Cerca con Google

Fenies, H. and Faugères, J.C. (1998). Facies and geometry of tidal channel-fill deposits (Arcachon Lagoon, SW France). Marine Geology, 150(1), 131-148. Cerca con Google

Frothingham, K.M. and Rhoads, B.L. (2003). Three‐dimensional flow structure and channel change in an asymmetrical compound meander loop, Embarras River, Illinois. Earth Surface Processes and Landforms, 28(6), 625-644. Cerca con Google

Fruergaard, M., et al. (2011). Punctuated sediment record resulting from channel migration in a shallow sand-dominated micro-tidal lagoon, Northern Wadden Sea, Denmark. Marine Geology, 280(1), 91-104. Cerca con Google

Gabet, E.J. (1998). Lateral migration and bank erosion in a salt marsh tidal channel in San Francisco Bay, California. Estuaries, 21(4B),745–753. Cerca con Google

Garofalo, D. (1980). The influence of wetland vegetation on tidal stream channel migration and morphology. Estuaries, 3(4), 258-270. Cerca con Google

Garotta, V., Pittaluga, M.B. and Seminara, G. (2006). On the migration of tidal free bars. Physics of Fluids (1994-present), 18(9), 096601. Cerca con Google

Ghinassi, M., Billi, P., Libsekal, Y., Papini, M. and Rook, L. (2013). Inferring fluvial morphodynamics and overbank flow control from 3D outcrop sections of a Pleistocene point bar, Dandiero Basin, Eritrea. Journal of Sedimentary Research, 83, 1066-108411. Cerca con Google

Ghinassi, M., Nemec, W., Aldinucci, M., Nehyba, S., Özaksoy, V. and Fidolini, F. (2014). Plan‐form evolution of ancient meandering rivers reconstructed from longitudinal outcrop sections. Sedimentology, 61, 952-977. Cerca con Google

Ghinassi, M. and Ielpi, A. (2015). Stratal Architecture and Morphodynamics of Downstream-Migrating Fluvial Point Bars (Jurassic Scalby Formation, UK). Journal of Sedimentary Research, 85, 1123-1137. Cerca con Google

Hickin, E.J. and Nanson, G.C. (1975). The character of channel migration on the Beatton River, northeast British Columbia, Canada. Geological Society of America Bulletin, 86(4), 487-494. Cerca con Google

Hickin, E.J. and Nanson, G.C. (1984). Lateral migration rates of river bends. Journal of Hydraulic Engineering, 110, 1557-1567. Cerca con Google

Hooke, R. (1975). Distribution of sediment transport and shear stress in a meander bend. Journal of Geology, 83, 543–565. Cerca con Google

Hooke, J.M. (1997). Styles of channel change. Applied fluvial geomorphology for river engineering and management, 237-268. Cerca con Google

Hooke, J.M. (2013). River meandering. In: Wohl, E. (Ed.), Treatise on Geomorphology. Academic Press, San Diego (California, United States). Fluvial Geomorphology, 9,260–288. Cerca con Google

Hubbard, S.M., Smith, D.G., Nielsen, H., Leckie, D.A., Fustic, M., Spencer, R.J. and Bloom, L. (2011). Seismic geomorphology and sedimentology of a tidally influenced river deposit, Lower Cretaceous Athabasca oil sands, Alberta, Canada. American Association of Petroleum Geologists Bulletin, 95, 1123-1145. Cerca con Google

Hughes, Z.J. (2012). Tidal Channels on Tidal Flats and Marshes. Principles of Tidal Sedimentology, (pp. 269–300). Eds Davis Jr. RA, Dalrymple RW (Springer, Dordrecht Heidelberg London New York). Cerca con Google

Ielpi, A. and Ghinassi, M. (2014). Planform architecture, stratigraphic signature and morphodynamics of an exhumed Jurassic meander plain (Scalby Formation, Yorkshire, UK). Sedimentology, 61, 1923-1960. Cerca con Google

Ikeda, S., Parker, G. and Sawai, K. (1981). Bend theory of river meanders. 1. Linear development. J Fluid Mech, 112:363–377. Cerca con Google

Ishigaki, T., Shiono, K., Rameshwaran, P., Scott, C.F. and Muto, Y. (2000). Impact of Secondary Flow on Bed Form and Sediment Transport in a Meandering Channel for Overbank Flow. Proceedings of Hydraulic Engineering, 44, 849-854. Cerca con Google

Jackson, R.G. (1976). Depositional Model of Point Bars in the Lower Wabash River. J Sed Petrol, 46(3),579–594. Cerca con Google

Janocko, M., Nemec, W., Henriksen, S. and Warchoł, M. (2013). The diversity of deep-water sinuous channel belts and slope valley-fill complexes. Marine and Petroleum Geology, 41, 7-34. Cerca con Google

Kasvi, E., Vaaja, M., Alho, P., Hyyppä, H., Hyyppä, J., Kaartinen, H. and Kukko, A. (2013). Morphological changes on meander point bars associated with flow structure at different discharges. Earth Surface Processes and Landforms, 38, 577-590. Cerca con Google

Kolb, C.R. (1963). Sediments forming the bed and banks of the lower Mississippi River and their effect on river migration. Sedimentology, 2(3), 227-234. Cerca con Google

Kolla, V., Posamentier, H.W. and Wood, L.J. (2007). Deep-water and fluvial sinuous channels—Characteristics, similarities and dissimilarities, and modes of formation. Marine and Petroleum Geology, 24(6), 388-405. Cerca con Google

Labrecque, P.A., Jensen, J.L., Hubbard, S.M. and Nielsen, H. (2011). Sedimentology and stratigraphic architecture of a point bar deposit, Lower Cretaceous McMurray Formation, Alberta, Canada. Bullettin of Canadian Petroleum Geology, 59,147–171. Cerca con Google

Land, L.S. and Hoyt, J.H. (1966). Sedimentation in a Meandering ESTUARY1. Sedimentology, 6(3), 191-207. Cerca con Google

Lanzoni, S. and Seminara, G. (2002). Long‐term evolution and morphodynamic equilibrium of tidal channels. Journal of Geophysical Research: Oceans (1978–2012), 107(C1), 1-1. Cerca con Google

Leopold, L.B. and Wolman, M.G. (1960). River meanders. Geological Society of America Bulletin, 71, 769-793. Cerca con Google

Li, C., Chen, C., Guadagnoli, D. and Georgiou, I.Y. (2008). Geometry induced residual eddies in estuaries with curved channels: Observations and modeling studies. J Geophys Res, 113:C01005. Cerca con Google

Loveless, J.H., Sellin, R.H.J., Bryant, T.B., Wormleaton, P.R., Catmur, S. and Hey, R. (2000). The Effect of Overbank Flow in a Meandering River on its Conveyance and the Transport of Graded Sediments. Water and Environment Journal, 14, 447–455. Cerca con Google

Marani, M., Lanzoni, S., Zandolin, D., Seminara, G. and Rinaldo, A. (2002). Tidal meanders. Water Resour Res, 38(11),1225. Cerca con Google

Marani, M., Belluco, E., D'Alpaos, A., Defina, A., Lanzoni, S. and Rinaldo, A. (2003). On the drainage density of tidal networks. Water Resources Research, 39(2). Cerca con Google

Marani, M., D'Alpaos, A., Lanzoni, S., Carniello, L. and Rinaldo, A. (2007). Biologically‐controlled multiple equilibria of tidal landforms and the fate of the Venice lagoon. Geophysical Research Letters, 34(11). Cerca con Google

Marani, M., d'Alpaos, A., Lanzoni, S. and Santalucia, M. (2011). Understanding and predicting wave erosion of marsh edges. GeophysicalResearch Letters, 38(21). Cerca con Google

Massari, F., Rio, D., Barbero, R.S., Asioli, A., Capraro, L., Fornaciari, E. and Vergerio, P.P. (2004). The environment of Venice area in the past two million years. Palaeogeography, Palaeoclimatology, Palaeoecology, 202(3), 273-308. Cerca con Google

Massari, F., Grandesso, P., Stefani, C. and Jobstraibizer, P.G. (2009). A small polyhistory foreland basin evolving in a context of oblique convergence: the Venetian basin (Chattian to Recent, Southern Alps, Italy). Foreland basins. Oxford: Blackwell Scientific, 141-168. Cerca con Google

McClennen, C.E. and Housley, R.A. (2006). Late-Holocene channel meander migration and mudflat accumulation rates, Lagoon of Venice, Italy. Journal of Coastal Research, 930-945. Cerca con Google

McGowen, J.H and Garner, L.E. (1970). Physiographic features and stratification types of coarse-grained point bars: modern and ancient examples. Sedimentology, 14,77-111. Cerca con Google

Middelkoop, H. and Asselman, N.E. (1998). Spatial variability of floodplain sedimentation at the event scale in the Rhine–Meuse delta, The Netherlands. Earth Surface Processes and Landforms, 23(6), 561-573. Cerca con Google

Mjos, R., Walderhaug, O. and Prestholm, E. (2009). Crevasse splay sandstone geometries in the Middle Jurassic Ravenscar Group of Yorkshire, UK. Alluvial Sedimentation, International Association of Sedimentologists, Special Publication, 17, 167-184. Cerca con Google

Moody, J.A. and Meade, R.H. (2014). Ontogeny of point bars on a river in a cold semi-arid climate. Geological Society of America Bulletin, 126(9-10), 1301-1316. Cerca con Google

Morris, J.T., Sundareshwar, P.V., Nietch, C.T., Kjerfve, B. and Cahoon, D.R. (2002). Responses of coastal wetlands to rising sea level. Ecology, 83(10), 2869-2877. Cerca con Google

Mudd, S.M., D'Alpaos, A. and Morris, J.T. (2010). How does vegetation affect sedimentation on tidal marshes? Investigating particle capture and hydrodynamic controls on biologically mediated sedimentation. Journal of Geophysical Research: Earth Surface (2003–2012), 115(F3). Cerca con Google

Naish, C. and Sellin, R.H.J. (1996). Flow structure in a large-scale model of doubly meandering compound channel. In: Ashworth, P.J., Bennet, S.J., Best, J.L., McLelland, S.J. (pp. 631–654). Eds. Coherent Flow Structures in Open Channels. John Wiley & Sons, Chichester (United Kingdom). Cerca con Google

Nanson, G.C. (1980). Point bar and floodplain formation of the meandering Beatton River, northeastern British Columbia, Canada. Sedimentology, 27,3-29. Cerca con Google

Nanson, G.C. and Hickin, E.J. (1983). Channel migration and incision on the Beatton River. Journal of Hydraulic Engineering, 109(3), 327-337. Cerca con Google

Parker, G., Shimizu, Y., Wilkerson, G.V., Eke, E.C., Abad, J.D., Lauer, J.W., Paola, C., Dietrich, W.E. and Voller, V.R. (2011). A new framework for modeling the migration of meandering rivers. Earth Surf Process Landforms, 36:70–86. Cerca con Google

Peakall, J., McCaffrey, B. and Kneller, B. (2000). A process model for the evolution, morphology, and architecture of sinuous submarine channels. Journal of Sedimentary Research, 70(3), 434-448. Cerca con Google

Peakall, J., Ashworth, P.J. and Best, J.L. (2007). Meander-Bend Evolution, Alluvial Architecture, and the Role of Cohesion in Sinuous River Channels: A Flume Study. Journal of Sedimentary Research, 77,197-212. Cerca con Google

Reading, H.G. and Collinson, J.D. (1996). Clastic coasts. Sedimentary environments: processes, facies and stratigraphy, 154-231. Cerca con Google

Rinaldo, A., Dietrich, W.E., Rigon, R., Vogel, G.K. and Rodrlguez-Lturbe, I. (1995). Geomorphological signatures of varying climate. Nature, 374(6523),632–635. Cerca con Google

Rizzetto, F. and Tosi, L. (2011). Aptitude of modern salt marshes to counteract relative sea-level rise, Venice Lagoon (Italy). Geology, 39(8), 755-758. Cerca con Google

Rizzetto, F. and Tosi, L. (2012). Rapid response of tidal channel networks to sea-level variations (Venice Lagoon, Italy). Global and Planetary Change, 92, 191-197. Cerca con Google

Roner, M., D'Alpaos, A., Ghinassi, M., Marani, M., Silvestri, S., Franceschinis, E. and Realdon, N. (2015). Spatial variation of salt-marsh organic and inorganic deposition and organic carbon accumulation: Inferences from the Venice lagoon, Italy. Advances in Water Resources. Cerca con Google

Seminara, G. (2006). Meanders. J Fluid Mech, 554,271–297. Cerca con Google

Shiono, K. and Muto, Y. (1998). Complex flow mechanisms in compound meandering channels with overbank flow. Journal of Fluid Mechanics, 376, 221-261. Cerca con Google

Smith, D.G., Hubbard, S.M., Leckie, D. and Fustic, M. (2009). Counter point bar deposits: Lithofacies and reservoir significance in the meandering modern Peace River and ancient McMurray Formation, Alberta, Canada. Sedimentology, 56,1655–1669. Cerca con Google

Smith, D.G., Hubbard, S.M., Lavigne, J., Leckie, D.A. and Fustic, M. (2011). Stratigraphy of counter-point-bar and eddy-accretion deposits in low-energy meander belts of the Peace-Athabasca Delta, northeast Alberta, Canada. In: Davidson, S.K., Leleu, S., North, C.P. (pp. 143-152). Eds. River to Rock Record: The Preservation of Fluvial Sediments and Their Subsequent Interpretation. SEPM Special Publication 97. Cerca con Google

Solari, L., Seminara, G., Lanzoni, S., Marani, M. and Rinaldo, A. (2002). Sand bars in tidal channels, part two, Tidal meanders. J Fluid Mech, 451,203–¬238. Cerca con Google

Terwindt, J.H.J. (1988). Palaeo-tidal reconstructions of inshore tidal depositional environments. In Tide-influenced sedimentary environments and facies (pp. 233-263). Reidel Dordrecht. Cerca con Google

Thomas, R.G., Smith, D.G., Wood, J.M., Visser, J., Calverley-Range, E.A. and Koster, E.H. (1987). Inclined heterolithic stratification -Terminology, description, interpretation and significance. SedGeol, 53,123–179. Cerca con Google

Van de Lageweg, W.I., Schuurman, F., Cohen, K.M., van Dijk, W.M., Shimizu, Y. and Kleinhans, M.G. (2015). Preservation of meandering river channels in uniformly aggrading channel belts. Sedimentology, doi: 10.1111/sed.12229 Cerca con Google

Willis, B.J. (1993). Bedding geometry of ancient point bar deposits. In: Marzo, M., Puigdefabregas, C. (pp. 101–114). Eds. Alluvial Sedimentation. International Association of Sedimentologists, Special Publication, 17. Cerca con Google

Wormleaton, P.R., Sellin, R.H.J., Bryant, T., Loveless, J.H., Hey, R.D. and Catmur, S.E. (2004). Flow structures in a two-stage channel with a mobile bed. Journal of Hydraulic Research, 42, 145-162. Cerca con Google

Zecchin, M., Baradello, L., Brancolini, G., Donda, F., Rizzetto, F. and Tosi, L. (2008). Sequence stratigraphy based on high-resolution seismic profiles in the late Pleistocene and Holocene deposits of the Venice area. Mar Geol, 253,185–198. Cerca con Google

Zecchin, M., Brancolini, G., Tosi, L., Rizzetto, F., Caffau, M. and Baradello, L. (2009). Anatomy of the Holocene succession of the southern Venice lagoon revealed by very high-resolution seismic data. Continental Shelf Research, 29(10), 1343-1359. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record