Sede Amministrativa: Università degli Studi di Padova

Dipartimento di Geoscienze

SCUOLA DI DOTTORATO DI RICERCA IN: SCIENZE DELLA TERRA
CICLO: XXVIII

EFFETTI SULLE PROPRIETÀ MECCANICHE, IDRAULICHE E TERMICHE PRODOTTI DA SCAMBIATORI GEOTERMICI NEI TERRENI ARGILLOSII: IL CASO STUDIO DELLA CITTÀ DI VENEZIA

Direttore della Scuola: Ch.mo Prof. Fabrizio Nestola
Supervisore: dott. Antonio Galgaro

Dottorando: ing. Giorgia Dalla Santa
Giorgia Dalla Santa - Effetti sulle proprietà meccaniche, idrauliche e termiche prodotti da scambiatori geotermici nei terreni argillosi: il caso studio della città di Venezia

gennaio 2016
Sommario

SUMMARY ... 9

RIASSUNTO .. 13

1 **INQUADRAMENTO DEL PROBLEMA** ... 17

1.1 Impianti geotermici a circuito chiuso per la climatizzazione: generalità ... 17
1.1.1 Vantaggi ambientali di un impianto a circuito chiuso .. 21
1.1.2 Possibili conseguenze ambientali di un impianto a circuito chiuso ... 23

1.2 Estensione ed intensità dell’anomalia termica indotta nel terreno ... 24
1.2.1 Condizioni estreme di esercizio .. 25

1.3 Il caso studio: impianti GSHP nel centro storico di Venezia ... 27
1.3.1 La sequenza litostatigrafica della città di Venezia ... 32

1.4 Le attività svolte ... 35

2 **EFFETTI TERMO-MECCANICI NEI MATERIALI COESIVI** .. 39

2.1 Caratteristiche mineralogiche ed elettriche dei minerali argillosi ed effetti indotti da variazioni di temperatura ... 40

2.2 Evoluzione del processo di congelamento in un sedimento ... 41
2.2.1 La formazione delle lenti di ghiaccio .. 42
2.2.2 Unfrozen water .. 44
2.2.3 Temperatura di congelamento di un terreno ... 46
2.2.4 Struttura del terreno congelato .. 48
2.2.5 Fenomeni di congelamento naturale dei terreni .. 48
2.2.6 Effetti del carico verticale e dello stato di consolidazione ... 51

2.3 Il processo di scongelamento .. 54
2.3.1 Effetto di isteresi ... 56

2.4 Condizioni di variazione ciclica di temperatura ... 57

2.5 Effetti dei processi di riscaldamento ... 58

2.6 Stato di ri-equilibrio finale .. 60
2.7 Processi di congelamento in terreni argillosi in ambiente salino ... 61
 2.7.1 Soluzioni saline bi-fasiche .. 61
 2.7.2 Effetti della presenza di sale nei fluidi interstiziali di un sedimento .. 63
 2.7.2.1 Effetti sulla struttura del sedimento .. 64
 2.7.2.2 Effetti sulla quantità di ‘unfrozen water’ e sulla temperatura di congelamento 67

2.8 Effetti delle variazioni cicliche di temperatura sulla resistenza a compressione di un sedimento argilloso .. 74

2.9 Fenomeni di migrazione dei fluidi interstiziali in mezzi porosi ghiacciati 78
 2.9.1 Variazione della permeabilità idraulica nel suolo ghiacciato .. 81
 2.9.2 Effetti del processo di gelo e disgelo sulla permeabilità idraulica ... 82

2.10 Highlights principali .. 88

MATERIALI E METODI ... 91

3 MISURA DELLE VARIAZIONI DELLE PROPRIETÀ MECCANICHE E DI PERMEABILITÀ INDOTTE NEI SEDIMENTI COESIVI DA SOLLECITAZIONI TERMICHE GENERATE DA UNA SONDA GEOTERMICA ... 93

3.1 Programma sperimentale .. 94

3.2 Deformazione indotta nei sedimenti da variazioni cicliche di temperatura 95
 3.2.1 Descrizione dell’apparato sperimentale utilizzato .. 97
 3.2.2 Caratterizzazione dei sedimenti coesivi utilizzati nelle prove sperimentali 99
 3.2.3 Preparazione del materiale e svolgimento della prova di consolidazione con carico verticale costante e variazione ciclica di temperatura ... 104

3.3 Influenza dell’intervallo di temperatura sulla deformazione indotta ... 106
 3.3.1 Risultati sperimentali .. 106

3.4 Influenza della durata della fase di congelamento sulla deformazione .. 112
 3.4.1 Risultati sperimentali .. 112

3.5 Influenza del carico verticale applicato sulla deformazione ... 113
 3.5.1 Descrizione del materiale usato ... 113
 3.5.2 Risultati sperimentali .. 114

3.6 Influenza dello stato di consolidazione sulla deformazione ... 116
 3.6.1 Caratterizzazione dell’orizzonte stratigrafico sovraconsolidato detto ‘caranto’ 117
 3.6.2 Descrizione dei campioni di materiale utilizzato .. 122
 3.6.3 Procedura di preparazione del materiale .. 123
 3.6.4 Risultati sperimentali .. 125

3.7 Influenza di granulometria e composizione mineralogica sulla deformazione 127
3.7.1 Descrizione dei materiali utilizzati

3.7.2 Risultati sperimentali – sedimenti più grossolani

3.7.3 Risultati sperimentali – sedimenti limoso-argillosi

3.8 Confronto tra la deformazione indotta da cicli di gelo/disgelo in sedimenti di diversa natura

3.8.1 Effetto della progressiva perdita del contenuto d'acqua

3.8.2 Misura della deformazione indotta: relazione con l’indice di plasticità e la perdita di contenuto d’acqua

3.9 Influenza della salinità del fluido interstiziale sulla deformazione

3.9.1 Metodologie di preparazione del campione

3.9.2 I risultati ottenuti

3.9.3 Effetto della concentrazione di sale nell’acqua interstiziale sulla temperatura di congelamento

3.9.4 Effetti della salinità interstiziale sui processi di deformazione indotta

3.10 Conclusioni riguardo la deformazione indotta nei livelli coesivi da variazioni cicliche di temperatura

3.11 Variazione di rigidezza indotta da cicli di gelo/disgelo

3.12 Variazione di resistenza indotta da cicli di gelo e disgelo

3.12.1 I risultati ottenuti

3.13 Conclusioni riguardo alla variazione di rigidezza e resistenza

3.14 Variazioni di permeabilità verticale dovute a variazioni cicliche di temperatura

3.14.1 I risultati ottenuti

3.14.2 Risultati sperimentali nel caso di depositi sovraconsolidati

3.15 Micro-tomografia computerizzata a raggi X

3.15.1 Risultati ottenuti

3.16 Conclusioni riguardo alla variazione di permeabilità indotta

4 MISURA DELLE VARIAZIONI DI CONDUCIBILITA’ TERMICA DEI MATERIALI RAPPRESENTATIVI DELLA SEQUENZA LITOSTRATIGRAFICA VENEZIANA DOVUTE A VARIAZIONI DI TEMPERATURA

4.1 Conducibilità termica di materiali sciolti: lo stato dell’arte

4.1.1 Trasmissione del calore in un mezzo poroso

4.1.2 La conducibilità termica

4.1.3 Fattori che influenzano la conducibilità termica dei sedimenti

4.1.4 Variazione di conducibilità termica dei sedimenti al variare della temperatura

4.1.5 Variazioni di conducibilità termica dei sedimenti in condizioni di congelamento

4.2 Le analisi sperimentali eseguite

4.2.1 Metodo di misura e strumentazione utilizzata
4.2.2 Descrizione del materiale utilizzato nella misura di conducibilità termica al variare della temperatura 192
 4.2.2.1 Materiale argilloso ... 193
 4.2.2.2 Materiale sabbioso ... 194
 4.2.2.3 Preparazione del materiale ... 195
4.2.3 I risultati ottenuti – materiale argilloso ... 198
4.2.4 I risultati ottenuti – materiale sabbioso ... 200

4.3 Conclusioni ... 201

5 MODELLAZIONE DELL’ANOMALIA TERMICA INDOTTA NEL TERRENO
DA UNA SONDA GEOTERMICA VERTICALE ... 203

5.1 Alcune note circa l’estensione e l’evoluzione dell’anomalia termica indotta da una BHE 204
5.2 Le attivita’ di modellazione agli elementi finiti ... 208

5.3 Implementazione del modello agli elementi finiti del sistema completo sonda-terreno .. 209
 5.3.1 Valutazione delle richieste termiche dell’edificio considerato 210
 5.3.2 Caratteristiche generali del modello e condizioni iniziali ... 213
 5.3.2.1 Generazione della mesh di calcolo ... 213
 5.3.2.2 Rappresentazione della sonda verticale ... 215
 5.3.2.3 Caratterizzazione del terreno ... 215
 5.3.3 Condizioni al contorno ... 217
 5.3.4 I risultati ottenuti ... 218
 5.3.4.1 Risultati ottenuti utilizzando i parametri termici del sedimento argilloso tipici delle condizioni di congelamento .. 223
 5.3.4.2 Risultati ottenuti con lunghezza totale del campo sonde ridotta al 85% 226
 5.3.4.3 Risultati ottenuti considerando il sedimento sabbioso ... 232

5.4 Implementazione del modello completamente discretizzato di una singola slice del sistema
sonda-terreno .. 235
 5.4.1 Caratteristiche generali del modello .. 236
 5.4.1.1 Generazione della mesh di calcolo ... 236
 5.4.1.2 Caratterizzazione del terreno ... 238
 5.4.1.3 Condizioni di temperatura imposte ... 240
 5.4.1.4 Condizioni di temperatura e flusso imposte all’interno della sonda 241
 5.4.2 La rappresentazione del fenomeno del cambiamento di fase ... 243
 5.4.2.1 Caratterizzazione delle proprietà termiche del terreno ... 243
 5.4.3 I risultati ottenuti ... 245

5.5 Conclusioni e possibili sviluppi .. 251

6 IMPLEMENTAZIONE DELLA BANCA DATI STRATIGRAFICA E
REALIZZAZIONE DELLA MAPPAGRAFICA DI SENSIBILITÀ’ DEL TERRITORIO ALLE
VARIAZIONI TERMICHE ... 255
6.1 La banca dati geologico stratigrafica della provincia di Venezia .. 256
 6.1.1 Tipologia di informazioni presenti e struttura della banca dati ... 257
 6.1.2 Aggiornamento della banca dati geologico-stratigrafica ... 259
 6.1.2.1 Riferimento altimetrico dei punti informativi ... 259
6.2 Elaborazione dei dati geologico-stratigrafici per la realizzazione della mappa di sensibilità 260
 6.2.1 Definizione delle macro-classi litologiche .. 261
 6.2.2 Definizione dell’area di studio ... 262
 6.2.3 Distribuzione percentuale dei sedimenti granulari e coesivi nel sottosuolo 263
 6.2.3.1 Rappresentazione per punti di informazione ... 264
 6.2.3.2 Interpolazione dei dati puntuali e produzione di mappe areali ... 267
 6.2.4 Prodotti cartografici relativi alla prima fascia di profondità (fino a -15msmm) 269
 6.2.5 Distribuzione delle macro-classi principali nei primi 50 m e 100 m di profondità 274
6.3 La mappa della sensibilità geologica del territorio alle sollecitazioni termiche 277
6.4 Distribuzione spaziale del livello sovra-consolidato denominato caranto 279
 6.4.1 Rappresentazione della distribuzione spaziale del livello guida limoso-argillose sovraconsolidato denominato caranto ... 281
 6.4.2 Limite Olocene-Pleistocene – Carta delle isobate ... 283
7 DISCUSSIONE DEI RISULTATI .. 287
8 CONCLUSIONI ... 297

BIBLIOGRAFIA .. 299

APPENDICE .. 309

Giorgia Dalla Santa - Effetti sulle proprietà meccaniche, idrauliche e termiche prodotti da scambiatori geotermici nei terreni argillosi: il caso studio della città di Venezia
Giorgia Dalla Santa - Effetti sulle proprietà meccaniche, idrauliche e termiche prodotti da scambiatori geotermici nei terreni argillosi: il caso studio della città di Venezia
SUMMARY

In Ground Source Heat Pump systems (GSHP) a continuous circulation of a fluid inside the exchangers installed in the ground transfers heat between the ground and the building’s conditioning system. The heat exchange connected to a GSHP has been shown to alter the natural thermal status of the surrounding subsoil (Banks, 2012). Often the carrier fluids are brines consisting of a mixture of water and anti-freezing solutions, which lower their working temperature in order to improve the heat extraction from the ground during the cold season. The international community has already pointed out the importance of assessing a minimum temperature threshold for the brines inside the probes, in order to constrain the thermal anomalies induced in the soil (Haehnlein et al., 2010; Haehnlein et al., 2013).

This research analyzes how the cyclic thermal stress induced by a borehole heat exchanger (BHE) in the subsoil could change the sediments’ properties, if the BHE works in extreme running conditions which induce freeze-thaw cycles (FTCs) and heating processes in the ground.

The study case of Venice (Italy) is considered, where GSHP systems could be a very interesting solution for the issues related to the particular configuration of the city center, to the density of historical buildings and to the local regulations. Venice represents an example of a densely urbanized area with the subsoil characterized by a continuous alternation between cohesive and sandy layers, as in most lowland plains.

A large laboratory program is undertaken in order to measure how the thermal anomaly affects the mechanical, hydraulic and thermal properties of deposits surrounding a BHE, if FTCs occur. In addition, a first evaluation of the thermal impact on the subground is carried out using finite element modelling (Feflow FEMCode), considering a typical building and the geological context of the study case.

The freezing point of sediments is some degrees below 0°C, and varies depending on the kind of sediment, water content, salt content and imposed load (Bing e Ma, 2011; Marion, 1995). While coarse materials display very few effects to temperature changes, FTCs induce a thermal consolidation process affecting irreversibly the cohesive sediments texture, due to the important role that water molecules play in their structure (Konrad e Morgenstern, 1980; Qi et al., 2008). After
5-7 FTCs, the cohesive samples achieve a new state of equilibrium, characterized by a lower void ratio and a higher state of compaction (Konrad, 1989c).

Experimental results show that a significant settlement is induced in normal-consolidated cohesive layers, while, in the case of overconsolidated layers, a negligible expansion occurs. The effects are intensified in more active clayey sediments characterized by a higher plasticity index and with the presence of smectite minerals, which are more sensitive to temperature changes. The induced thermal settlement is measured considering several conditions of thermal and mechanical loads, degree of overconsolidation and interstitial water salinity, by means of a special device consisting in a thermostatically controlled oedometer.

The irreversible compaction effect induced on cohesive sediments increases with higher salinity concentration, despite the fact that the increasing salt content lowers the sediment freezing point, thereby protecting the soil from freezing processes.

The thermal induced consolidation is achieved in clayey layers with different intensity along the probe, decreasing with increasing applied mechanical stress corresponding to increasing depth. These layers will display hereafter a higher stiffness to higher loads and a sort of insensitivity to further thermal stress.

The obtained results also demonstrated that the BHE’s thermal stress can significantly increase the vertical hydraulic conductivity in cohesive layers, if FTCs are established. The effect is higher in shallow deposits and in overconsolidated layers.

Therefore, it is important to estimate the propagation of the frost front induced by a GSHP system in terms of time and position, in order to evaluate the volume involved in the critical thermal processes.

The propagation of the thermal plume induced in the ground is gained from several modelling simulations performed considering different conditions. A first model represents a 100m length BHE inserted into the ground, characterized consistently with the urban features and the geological context of the study case considered. A real case scenario is analyzed where the thermal requests are unbalanced towards heating. The results show that the volume of ground involved in the freezing processes is very constrained next to the probe; hence a correct representation of the studied phenomenon needs a new and more defined modelling mesh.

For this purpose, another fully discretized model of a double-U BHE was performed, in order to increase the accuracy of the representation of the heat transfer process in frozen ground conditions, providing a more reliable evaluation of the induced thermal anomaly. The sediments phase change is considered by means of a recently developed plug-in (Anbergen et al., 2014), which takes into account the release of latent heat and incorporates the sediments’ thermal properties in frozen state, which affect the extension of the induced thermal anomaly. Hence, specific experimental measures of thermal properties of cohesive sediments sampled in the Venetian area are performed in both frozen and unfrozen conditions. Four different 50cm deep slices of the probe-ground system are analyzed by using the fully discretized model, characterized with the boundary conditions provided by the total-length model and by the experimental measures.
Results show that the freezing front is very constrained around the probe (with a radius <20cm from the filling grout) in the studied conditions, decreasing with increasing depth along the probe.

Despite the fact that only a limited volume close to the probe will experience FT cycles, the consequences of the thermal alteration on cohesive layers cannot be neglected. A significant settlement could occur next to the probe, derived from the compaction gained in the clayey layers present in the local stratigraphic sequence. Furthermore, the increased vertical permeability of the BHE surrounding cohesive layers could constitute a possible hydraulic connection of different aquifers previously separated. These occurrences have to be taken into account in the boreholes field design and during the running phase, because their relevance increases with the abundance of clayey layers and with the number of BHE in the array.

The issues studied are particularly hazardous in dense urbanized areas, characterized by abundance of cohesive layers in the stratigraphic sequence, where the lack of external spaces implies that the BHEs have to be bored under or close to the buildings’ foundations. In order to regulate the installation of new BHE fields and their exploitation avoiding the highlighted issues, it is important to identify the areas more suitable for this application. Finally this work presents the map of geological sensibility to the thermal stress induced by a BHE of Venice’s historical center, which is based on the distribution of sensitive cohesive sediments in the subsoil, obtained by a high density stratigraphic data-base.

In conclusion, low enthalpy geothermal systems should be designed taking into account the thermal sensitivity of the subsoil. The obtained results could contribute to the definition of the environmental hazards connected to the use of GSHP systems.
RIASSUNTO

Gli impianti geotermici di bassa entalpia per la climatizzazione degli edifici sono una tecnologia emergente che permette di avere una più elevata sostenibilità e un minor impatto ambientale, grazie all’uso di energie alternative ai combustibili fossili e all’abbattimento delle emissioni nocive in atmosfera (Huttrer, 1997; Lund et al., 2005).

Negli impianti a circuito aperto detti GWHP (Ground Water Heat Pump) l’energia termica è scambiata direttamente con l’acqua sotterranea che viene prelevata e reimessa nel sottosuolo. Negli impianti a circuito chiuso invece, detti GSHP (Ground Source Heat Pump), lo scambio termico tra l’edificio e il terreno è affidato ad un fluido termovettore che scorre all’interno di sonde inserite nel sottosuolo. Il terreno funziona come sorgente di energia termica che viene fornita all’edificio durante l’inverno, e come serbatoio a cui cedere calore durante l’estate. La tipologia di scambiatori di calore a terreno più diffusa è la sonda verticale, inserita nel sottosuolo per una profondità di circa 100m. Una pompa di calore controlla il sistema spendendo energia elettrica, fornendo un incremento di energia termica quando necessario. La sostenibilità energetica ed ambientale del sistema nasce dal fatto che il sottosuolo già a qualche metro di profondità mantiene pressoché costante la temperatura nel corso dell’anno, pari all’incirca alla temperatura media annua dell’aria (Banks, 2012).

Di conseguenza ai processi di scambio di calore tra il fluido termovettore ed il terreno, l’equilibrio termico della porzione di sottosuolo che circonda la sonda viene modificato rispetto alla condizione indisturbata. Spesso, i fluidi termovettori sono acqua miscelata con soluzioni antigelo, che permettono di abbassare la temperatura di lavoro in modo da aumentare l’estrazione di calore dal terreno durante la stagione invernale. La necessità di prestare attenzione alle possibili conseguenze indotte nel sottosuolo dall’anomalia termica generata durante l’esercizio di impianti a circuito chiuso è stata sottolineata recentemente dalla comunità scientifica internazionale, che ha invitato a minimizzarne l’intensità per le possibili conseguenze ambientali provocate, anche considerando l’interazione che può crearsi tra impianti vicini (Haehnlein et al., 2010; Haehnlein et al., 2013). In generale infatti, è noto che le proprietà dei materiali vengono alterate dalle variazioni di
temperatura, ma l’entità di tali alterazioni e la sensibilità alle variazioni termiche delle diverse tipologie dei sedimenti presenti nel sottosuolo non sono ancora ben note.

L’obiettivo della ricerca presentata è consistito nell’indagare l’anomalia termica indotta nel sottosuolo dal funzionamento di una sonda geotermica verticale ed i possibili effetti da questa provocati sulle proprietà dei sedimenti al suo intorno, considerandone sia le proprietà meccaniche ed idrauliche sia le proprietà termiche, le quali possono a loro volta influenzare nel lungo periodo l’integrità e la funzionalità del sistema sonda-terreno. In particolare sono state considerate condizioni critiche di funzionamento dell’impianto che, utilizzando additivi anticongelanti all’interno delle sonde, possono indurre fenomeni di congelamento e scongelamento nel terreno circostante, oltre a riscaldamento.

E’ stato considerato il caso studio del centro storico di Venezia, dove, a causa della particolare conformazione della città e della tipologia degli edifici presenti, spesso gli impianti si trovano a funzionare in condizioni di esercizio estreme. Il caso studio considerato, pur dedicato ad un particolare contesto geologico ed ambientale, può essere considerato esemplare ed estensibile anche ad altri ambienti geologici caratterizzati dalle condizioni litostatografiche tipiche delle basse pianure alluvionali. Le condizioni ambientali considerate, infatti, descrivono una situazione molto frequente a livello nazionale ed internazionale che, inoltre, per la favorevole condizione morfologica e idrogeologica, risultano spesso sede di importanti insediamenti urbani ad elevata densità edificatoria, quindi con problematiche simili a quelle studiate.

E’ stato svolto un ampio programma sperimentale, al fine di determinare le deformazioni e le conseguenti variazioni di deformabilità, resistenza e permeabilità idraulica generate nel sottosuolo dalle variazioni termiche. Le prove sperimentali sono state svolte su materiali diversi e considerando differenti condizioni al contorno (di carico, di stato iniziale, di temperatura, ecc.). Sui medesimi materiali sono state effettuate inoltre misure di conducibilità e diffusività termica a diverse temperature.

Infine, con lo scopo di identificare l’estensione della porzione di sottosuolo effettivamente interessata dalle eventuali modifiche delle proprietà misurate, è stato sviluppato un modello matematico agli elementi finiti di un sistema sonda-terreno con il quale è stato possibile studiare l’evoluzione nel tempo e nello spazio dell’anomalia termica indotta, valutando diverse condizioni di esercizio.

Il punto di congelamento dei sedimenti è qualche grado al di sotto di 0° C, e varia a seconda del tipo di sedimento, del contenuto d’acqua, del contenuto di sale e del carico imposto (Bing e Ma, 2011; Marion, 1995). Mentre i materiali più grossolani (sabbiosi) mostrano effetti molto limitati se sottoposti a cambiamenti di temperatura, i cicli di gelo/disgelo inducono un processo di consolidamento termico che modifica in modo irreversibile la tessitura dei sedimenti coesivi, a causa del ruolo fondamentale che le molecole d’acqua svolgono nella loro struttura (Konrad e Morgenstern, 1980; Qi et al., 2008). Dopo 5-7 cicli di gelo/disgelo, i materiali coesivi raggiungono
un nuovo stato di equilibrio caratterizzato da un indice dei vuoti inferiore e da una maggiore compattazione (Konrad, 1989c).

I risultati sperimentali dimostrano che nei livelli coesivi normal-consolidati viene indotto un cedimento significativo, mentre, in caso il materiale sia sovraconsolidato, si verifica una espansione trascurabile. Gli effetti sono intensificati nei sedimenti argillosi più attivi, caratterizzati da un alto indice di plasticità e con la presenza di minerali di smectite, più sensibili alle variazioni di temperatura. Gli esperimenti svolti per misurare il cedimento termico indotto sono stati eseguiti utilizzando uno speciale edometro termostatato, considerando diverse condizioni di carico applicato e sollecitazione termica, diversi gradi di sovraconsolidazione e salinità dell’acqua interstiziale.

L’effetto di compattazione irreversibile indotto sui sedimenti argillosi aumenta all’aumentare della concentrazione salina, nonostante l’aumento del contenuto di sale abbassi la temperatura critica di congelamento, proteggendone così il suolo.

Inoltre, l’effetto di consolidamento indotto termicamente nei depositi coesivi si verifica con diversa intensità lungo la sonda geotermica, diminuendo all’aumentare del carico applicato, corrispondente alla sollecitazione che si riscontra a profondità crescenti. Questi livelli, una volta subito il processo di consolidamento dovuto ai cicli di gelo disgelo, sono dotati anche di una maggiore rigidezza se sottoposti ad ulteriori carichi e non subiscono ulteriori cedimenti se sottoposti ad aggiuntive variazioni di temperatura.

I risultati ottenuti hanno dimostrato, inoltre, che l’anomalia termica indotta nel terreno da una BHE, se genera cicli di gelo/disgelo, può aumentare in modo significativo la conduttività idraulica verticale dei livelli argillosi. L’effetto è maggiore nei depositi superficiali e nei livelli sovraconsolidati.

Pertanto, è importante valutare l’evoluzione temporale e spaziale della propagazione attorno ad una sonda geotermica delle condizioni che portano il sedimento al congelamento, al fine di valutare il volume di terreno effettivamente coinvolto nei processi individuati come critici.

La propagazione del plume termico indotto nel terreno è stata stimata grazie a simulazioni modellistiche, svolte considerando diverse condizioni al contorno. Un primo modello rappresenta una BHE di 100m di lunghezza inserita nel terreno, caratterizzando il modello coerentemente con le caratteristiche urbane e il contesto geologico del caso studio considerato e simulando un caso reale con richieste termiche dell’edificio sbilanciato verso il riscaldamento. I risultati mostrano che il volume di terreno coinvolto nei processi di congelamento è molto limitato attorno alla sonda, evidenziando la necessità di aumentare la scala di rappresentazione del fenomeno, utilizzando un modello con una mesh di calcolo più raffinata. A questo scopo è stato realizzato un altro modello di una sonda a doppia U, completamente discretizzato al fine di aumentare la precisione della rappresentazione del processo di trasferimento di calore in condizioni di congelamento del terreno, fornendo così una stima più affidabile dell’anomalia termica indotta. Il processo di cambiamento di fase del sedimento viene rappresentato con l’applicazione di un plug-in recentemente sviluppato (Anbergen et al., 2014), che tiene conto del rilascio di calore latente ed inoltre assegna specifiche
proprietà termiche ai sedimenti in condizioni di congelamento, che influenzano la propagazione dell’anomalia termica indotta. E’ stata quindi eseguita appositamente una serie di misure sperimentali delle proprietà termiche dei sedimenti coesivi dell’area veneziana, sia in condizioni congelate che a temperature al di sopra dello zero. Utilizzando il modello completamente discretizzato, sono state simulate quattro diverse fasce orizzontali del sistema sonda-terra profonde 50cm, caratterizzandole con condizioni al contorno fornite dal modello di sonda completa e dalle misure sperimentali.

I risultati mostrano che il fronte di congelamento è molto ristretto nei pressi della sonda (19cm) nelle condizioni studiate, e diminuisce all’aumentare della profondità della fascia di terreno considerata.

Nonostante il fatto che solo un volume limitato in prossimità della sonda è effettivamente soggetto a cicli di gelo/disgelo, gli effetti termici indotti sui livelli coesivi non possono essere trascurati. Un cedimento significativo può verificarsi vicino alla sonda, derivato dalla compattazione acquisita nei livelli argillosi presenti lungo la sequenza stratigrafica. Inoltre, l’aumento localizzato della permeabilità verticale dei livelli argillosi potrebbe costituire un possibile collegamento idraulico tra acquiferi differenziati, precedentemente separati. Questi rischi devono essere presi in considerazione nella progettazione del campo sonda e durante la fase di esercizio di un impianto, perché la loro importanza può aumentare con l’abbondanza degli strati argillosi presenti e con il numero di sonde che compongono l’impianto stesso.

I rischi emersi sono particolarmente pericolosi in aree densamente urbanizzate e caratterizzate da abbondanza di strati coesivi nella sequenza stratigrafica, dove la mancanza di spazi esterni implica che le sonde debbano essere realizzate sotto o nelle vicinanze delle fondazioni degli edifici. Al fine di regolare l’installazione di nuovi campi di sonde geotermiche e il loro utilizzo evitando i problemi evidenziati, è importante identificare le aree del territorio più adatte per questo tipo di utilizzo. Avendo individuato e analizzato tipologie litologiche caratterizzate da una diversa sensibilità all’alterazione termica indotta, è stato infine possibile proporre una mappa tematica di sensibilità geologica del territorio di Venezia all’alterazione termica, basata sulla distribuzione nel sottosuolo dei sedimenti coesivi ‘sensibili’, nota grazie ad un database stratigrafico ad alta densità informativa. Questa tipologia di mappa può essere proposta come possibile strumento di analisi del territorio, a supporto del processo decisionale svolto dalle amministrazioni locali per la gestione e la regolamentazione dei processi autorizzativi relativi agli impianti di geo-scambio a circuito chiuso.

In conclusione, gli impianti geotermici a bassa entalpia dovrebbero essere progettati tenendo conto della sensibilità termica del sottosuolo, soprattutto se utilizzano temperature di esercizio che possono indurre cicli di congelamento e scongelamento nei sedimenti circostanti. I risultati ottenuti da questa ricerca possono contribuire a definire i rischi ambientali connessi con l’uso di sistemi GSHP.
1 INQUADRAMENTO DEL PROBLEMA

1.1 IMPIANTO GEOTERMICI A CIRCUITO CHIUSO PER LA CLIMATIZZAZIONE: GENERALITÀ

Gli impianti geotermici di bassa entalpia per la climatizzazione degli edifici rappresentano una delle tecnologie che più si stanno diffondendo negli ultimi anni, perché efficienti dal punto di vista energetico e sostenibili dal punto di vista ambientale. Il funzionamento di un impianto a circuito chiuso per la climatizzazione di un edificio è basato sullo scambio di energia termica che avviene tra il fluido termovettore che scorre all’interno delle sonde e il terreno circostante (Huttrrer, 1997; Lund et al., 2005; Quick et al., 2013).

In regime di funzionamento invernale, il calore viene prelevato dal sottosuolo e reso disponibile in superficie: il fluido scende a basse temperature (solitamente all’incirca intorno ai 5-7°C) e risale dopo aver estratto calore dal terreno lungo tutto il percorso all’interno della sonda, aumentando la sua temperatura con delta termici di circa 3-5 °C. Al contrario, nella stagione estiva, il calore viene prelevato dall’interno dell’edificio e rilasciato nel sottosuolo: il fluido viene inviato alle sonde a temperature superiori (solitamente intorno ai 30-35°C), per uscirne dopo aver ceduto calore al terreno circostante con un abbassamento della sua temperatura di nuovo di circa 3-5°C. In entrambe le stagionalità, i processi di trasporto termico sonda-terreno sono governate dai gradienti di temperatura imposti dalle condizioni di circolazione del fluido termovettore all’interno delle sonde e dal terreno circostante, entrambi variabili nel tempo per raggiungere una situazione di equilibrio dinamico. Il fluido termovettore che fluisce all’interno delle sonde, dopo aver percorso i collettori orizzontali, arriva in ingresso allo scambiatore della pompa di calore a servizio dell’impianto di climatizzazione dell’edificio. La temperatura di mandata del fluido alle sonde quindi può cambiare continuamente, e presenta delle ciclicità sia stagionali che diurne. Questa soluzione impiantistica risulta idonea se a servizio di un edificio ben isolato termicamente e se il sistema è accoppiato con terminali di impianto che utilizzano basse temperature (35-40°C) ed
elevate superfici radianti, sia in riscaldamento che in raffrescamento. Può contemporaneamente anche soddisfare le richieste di riscaldamento dell’acqua calda sanitaria, riscaldandola fino a circa 50-55 °C. Il funzionamento dell’intero sistema è consentito e controllato dalla pompa di calore, che, spendendo energia elettrica, garantisce le richieste termiche dell’edificio asservito, controllando la temperatura e la portata di mandata del fluido alle sonde, e garantendo il supplemento di energia termo-frigorifera quando necessario.

![Diagrama di funzionamento di un sistema geotermico a circuito chiuso.](image)

Figura 1: Rappresentazione schematica del funzionamento di un sistema geotermico a circuito chiuso, con evidenziati i circuiti chiusi della pompa di calore e interno all’edificio, in regime invernale.

La tipologia più diffusa di scambiatori di calore a terreno del tipo a circuito chiuso è rappresentata dalle sonde verticali, costituite da tubi in polietilene a bassa resistenza di piccolo diametro (all’incirca 3cm), e lunghezza dell’ordine degli 80 –120m.

Un campo di scambio geotermico a servizio di un edificio è costituito da un gruppo di sonde tra loro collegate in serie o in parallelo, posizionate a circa 6-7m l’una dall’altra, la cui lunghezza totale viene dimensionata affinché possano venire soddisfatte le richieste termo-frigorifere dell’edificio asservito, dipendenti dal contesto climatico locale e dalle caratteristiche di prestazione energetica dell’edificio stesso. Inoltre, la configurazione del campo-sonde, caratterizzata da numero, posizione relativa e orientamento nello spazio delle sonde, viene progettata valutando le locali condizioni geologiche, considerando quindi la temperatura del sottosuolo nella situazione indisturbata, le proprietà termiche dei sedimenti che lo compongono (conduttività) e le caratteristiche idrodinamiche delle possibili falde acquifere presenti.
Una sonda può avere diverse configurazioni, a seconda del numero di tubazioni (2 o 4) e della posizione relativa dei flussi all’interno (a singola U, doppia U, coassiale). Il diametro delle tubazioni è sufficiente per non offrire troppa resistenza al moto, ma contenuto, in modo da garantire un regime turbolento per migliorare lo scambio termico. In totale, il fascio di tubi e il riempimento del foro effettuato con materiale cementizio migliorato con fluidificanti e additivi, ha un diametro di circa 15cm. Il riempimento è generalmente composto da circa il 40% di acqua, 45% di bentonite e 15% di sabbia, quest’ultima necessaria per diminuire gli effetti di ritiro e aumentare la conducibilità termica, ma anche con pre-miscelati attivati termicamente per garantire la sigillatura idraulica del foro e favoriscono lo scambio termico sonda-terreno.

Le principali funzioni del materiale di riempimento sono infatti quella di assicurare il migliore accoppiamento termico del tubo al terreno per ottimizzare lo scambio, e di garantire la sigillatura idraulica del foro per evitare corto-circuitazione o risalite di falde acquifere, oltre a svolgere la funzione di equilibrio idraulico delle pressioni interne al tubo. Esso deve quindi possedere un’elevata fluidità nella fase di iniezione (viene pompato all’interno del percorso dal fondo in un tubo dedicato), buona conducibilità termica per favorire i processi di scambio termico, caratteristiche di bassa permeabilità idraulica ed elevata compatibilità con l’ambiente (composto quindi da materiali sostanzialmente inerti). Inoltre, per assolvere la funzione di contenimento meccanico delle variazioni volumetriche prodotte sulle tubazioni interne dai cambiamenti di temperatura del fluido termovettore, deve essere leggermente espansivo e debolmente elastico, allo scopo di evitare la formazione di crepe e fessurazioni, e sufficientemente poco viscoso in fase di getto per evitare la formazione di vuoti che possono abbassare la resa termica o favorire l’insorgenza di fenomeni di filtrazione.
Lo scambio di calore tra fluido termovettore e terreno circostante, genera una alterazione termica del sottosuolo, la cui temperatura cambia rispetto a quella iniziale in condizioni indisturbate, prima dell’entrata in esercizio della sonda di scambio termico. L’entità di tale alterazione termica indotta nel sottosuolo, la sua estensione spaziale e l’evoluzione nel tempo, dipendono da molti fattori, primi fra tutti il regime di funzionamento dell’impianto e le caratteristiche del locale contesto geologico. Per contenere l’entità dell’anomalia termica, la comunità geotermica internazionale indica come fondamentale il mantenimento di un uso bilanciato del sistema: la quantità di calore sottratta dal sottosuolo per riscaldare l’edificio deve essere confrontabile con quella restituita al sottosuolo durante il periodo estivo. Per questo motivo, nei contesti climatici in cui si verifica un forte sbilanciamento fra le richieste termiche e quelle frigorifere, spesso questo tipo di sistemi viene accoppiato a pannelli solari termici, grazie ai quali è possibile rilasciare calore nel sottosuolo, consentendone la ricarica termica ed aumentando così le performance energetiche ed il grado di sostenibilità ambientale dell’impianto.

I costi di realizzazione di un impianto di geoscambio sono legati principalmente al costo di esecuzione e installazione delle sonde, che dipende dal loro numero e profondità (i costi aumentano con la profondità, a causa delle maggiori difficoltà di realizzazione e dei diversi tipi di attrezzature utilizzate), nonché dalla resistenza allo scavo offerta dalle tipologie litologiche attraversate nel sottosuolo e dalle condizioni idrogeologiche locali. I costi di esercizio sono invece principalmente legati alla spesa di energia elettrica necessaria per il funzionamento della pompa di calore e delle pompe di ricircolo.
1.1.1 Vantaggi ambientali di un impianto a circuito chiuso

La convenienza energetica dell’utilizzo del terreno come serbatoio di calore è data dalla sua caratteristica stabilità termica, infatti già a partire da pochi di metri di profondità il sottosuolo mantiene una temperatura all’incirca costante nell’arco di tutto l’anno, solo i livelli più superficiali, la cui temperatura è soggetta alle variazioni giornaliere e stagionali, presentano una certa variabilità nel tempo, anche se dimostrano effetti smorzati e sfasati nel tempo rispetto alle variazioni termiche dell’aria. La temperatura del sottosuolo, al di sotto di tali profondità (circa 5-6 metri) e in assenza di anomalie geotermiche, si mantiene pari alla temperatura media annuale dell’aria in quella località. Il salto termico necessario per climatizzare un ambiente edificato risulta quindi inferiore se esso utilizza il terreno come sorgente termica, rispetto all’aria, soggetta a maggiori variabilità di periodo diurno e stagionale e caratterizzata da temperature generalmente sfasate temporalmente rispetto alle esigenze termo-frigorifere degli edifici. Per questo motivo, tali tipologie impiantistiche sono utilizzate come valida alternativa agli impianti tradizionali a combustione e ad impianti con pompa di calore del tipo aria-aria per la climatizzazione di edifici.
Cap 1 Inquadramento del problema

Inoltre, il flusso di calore endogeno proveniente dall’interno della Terra, fornisce un incremento di calore progressivo con l’aumentare della profondità. Il gradiente geotermico globale medio è pari a circa 1°C ogni 30m, ma è variabile da luogo a luogo a seconda della situazione geologica locale. Questo fattore rende più vantaggiosa dal punto di vista della performance energetica la realizzazione di un minor numero di sonde di maggiore lunghezza, piuttosto che tante sonde meno profonde, nel caso di prevalenti necessità di riscaldamento. Inoltre, il fatto che la temperatura del sottosuolo sia pari alla media annuale delle temperature dell’aria in quel luogo, rende lo scambio termico con il terreno più vantaggioso in entrambe le stagioni, rispetto allo scambio effettuato con l’aria come negli impianti tradizionali a pompa di calore. Il salto termico da produrre, tra sorgente e livello termico da raggiungere nell’edificio risulta infatti inferiore, richiedendo quindi minore energia primaria per soddisfare le esigenze di climatizzazione, aumentando di conseguenza le efficiente energetiche del sistema. Ad esempio nel caso della Pianura Padana orientale, la temperatura indisturbata del terreno risulta essere intorno ai 14-15 °C, mentre la temperatura dell’aria nei mesi inverNALi si attesta intorno allo 0°C e nel periodo estivo intorno ai 28°C.

I vantaggi ambientali sono legati quindi alla minor spesa di energia primaria (elettrica) sia in inverno che in estate (sostituzione dei tradizionali chiller aria-aria) e alla diminuzione delle emissioni inquinanti nell’aria, visto che questo tipo di impianti vanno a sostituire le tradizionali caldaie per il riscaldamento, con azzeramento delle emissioni locali in atmosfera e riduzione di quelle globali, per la sola quota parte di consumo elettrico della pompa di calore e dei circolatori.

Infine, il terreno, oltre a configurarsi quindi come un ottimo serbatoio di energia termica di capacità sostanzialmente infinita, è anche ubiquitario: gli impianti geotermici a circuito chiuso possono infatti essere realizzati con vantaggio sostanzialmente ovunque.

Figura 5: Rappresentazione dei regimi annuali della temperatura del sottosuolo al variare della profondità.
1.1.2 **Possibili conseguenze ambientali di un impianto a circuito chiuso**

In generale, questa tipologia di impianti può avere diverse possibili conseguenze ambientali (Bonte et al., 2011, Banks, 2012; Brons, 1991). Prima tra tutte, la possibilità, seppur remota, che il fluido termovettore venga rilasciato nel sottosuolo, potendo così anche penetrare all’interno delle falde acquifere (Banks, 2012, Directive 2009/28/EC). Questo può avvenire sia in corso di realizzazione dell’impianto, per errori di esecuzione o per malconduzione, sia nel lungo termine anche ad impianto dismesso. Per questo motivo, si è discusso spesso circa l’uso di fluidi termovettori costituiti semplicemente da acqua, senza additivi che possano essere dannosi se rilasciati nell’ambiente. Spesso, infatti, il fluido termovettore è additivato con sostanze che abbassano la temperatura di congelamento della miscela, oltre ad anti-algali e anticorrosivi (Klotzbucher et al., 2007).

Un altro fattore da considerare è costituito dal rischio idraulico correlato alle condizioni idrogeologiche locali: in fase di realizzazione del pozzo può infatti verificarci la possibilità di incontrare una falda artesiana in pressione, che può dar luogo a fuoriuscite importanti di acque sotterranee difficili da contrastare ed arrestare in mancanza di impiego di tecniche ed accorgimenti non adeguati al contesto idrogeologico locale. Inoltre, può accadere di creare una interconnessione lungo tutta la lunghezza della sonda tra acquiferi differenziati (Banks, 2012), nelle fasi di realizzazione del foro o anche nelle successive fasi qualora la sigillatura del perforo non sia stata realizzata a regola d’arte o per l’utilizzo di tecniche di perforazione non adeguate. Simili problematiche possono emergere anche nei casi di presenza di gas sotterranei (metano o anidride carbonica principalmente), che si possono trovare associati alla presenza di materiale organico o in calcari ad elevata componente organica. I gas possono fuoriuscire attraverso il condotto costituito dal pozzo, anche se questo è ben sigillato, potendo risalire, se in pressione, creandosi un percorso lungo la discontinuità costituita dalla parete del pozzo stesso. I gas veicolati possono quindi accumularsi vicino alla testa del pozzo e creare portate a rischi di esplosione o asfissia (Banks, 2012). Tutti questi possibili pericoli sono da tener conto anche in fase di dismissione del pozzo.

Un ulteriore possibile rischio è rappresentato dalla possibilità di attraversare durante la realizzazione del pozzo un deposito di formazioni evaporitiche (Banks, 2012; Griffioen, 1993), livelli geologici estremamente solubili formatisi nel passato per evaporazione di laghi salati o nei fondali di mari ad alta concentrazione di sali, preservati nel tempo perché compresi tra strati di rocce impermeabili. In questo caso, i minerali evaporitici possono dissolversi quando entrano in contatto con i fluidi di perforazione in fase di scavo oppure quando una via preferenziale viene a crearsi lungo la sonda fino a mettere in contatto acqua sotterranea con il deposito; in altri casi possono rigonfiare trasformandosi in materiali gessosi per idratazione di anidriti, potendosi così creare anche eventi parossitici di improvvisa subsidenza localizzata. Sebbene questo tipo di depositi siano rari e solitamente ben noti, questo può portare a sinkholes, profonde cavità nel sottosuolo, oppure a sollevamento localizzati, come recentemente è avvenuto nella cittadina tedesca di Staufen, causando significativi danni strutturali ad edifici storici (Goldscheider e Bechtel, 2009).
Oltre a questi rischi, che si possono creare per qualsiasi tipo di pozzo, sia esso per utilizzo idrico o termico, l’installazione delle sonde geotermiche può dar luogo ad ulteriori fenomeni legati allo scambio di calore tra sonda e terreno circostante che inevitabilmente altera il naturale equilibrio termico della porzione di suolo che circonda la sonda. A seconda dei carichi termici richiesti dall’edificio si può assistere ad un riscaldamento o un raffreddamento del sottosuolo, con conseguenze ambientali di varia natura tra cui variazioni dei processi chimici e microbiologici presenti nei livelli acquiferi interessati dagli scambi termici sonda-terreno (Hall et al., 2008; Jesušek et al., 2013). Inoltre le variazioni delle condizioni di temperatura possono avere conseguenze sulle proprietà meccaniche, idrauliche e termiche dei sedimenti presenti in prossimità della sonda (Banks, 2012; VDI, 2001; Gabrielsson et al., 2007), oltre ad indurre una sorta di progressiva migrazione e perdita di contenuto d’acqua con conseguente ritiro (Banks, 2012). Un riscaldamento significativo può portare anche a consolidazione e creep nei sedimenti argillosi sciolti (Gabrielsson et al., 2007).

La ricerca di seguito presentata è stata sviluppata secondo questo aspetto, allo scopo di valutare gli effetti dell’alterazione termica prodotta da sonde geotermiche nel sottosuolo sulla deformabilità, resistenza e permeabilità idraulica verticale dei sedimenti all’intorno di tali scambiatori (come esposto nel cap. 3), considerando particolari condizioni di esercizio degli impianti.

1.2 ESTENSIONE ED INTENSITÀ DELL’ANOMALIA TERMICA INDOTTA NEL TERRENO

L’intensità e l’estensione dell’anomalia termica indotta nel terreno è un elemento ancora non del tutto noto. L’alterazione termica cambia nel tempo con variazioni cicliche giornaliere e stagionali, determinate dal contesto geologico locale, dalla situazione termica precedente del terreno, dalle variazioni climatiche che influenzano la temperatura dei primi metri di terreno e soprattutto dal fabbisogno termico dell’edificio.

I principali fattori che influenzano l’intensità e l’estensione sono quindi (Basta e Minchio, 2007):

- L’andamento della temperatura dell’aria, che influenza la temperatura del terreno nei primi metri di profondità e le richieste termiche dell’edificio;
- Le modalità di funzionamento dell’impianto, che dipendono dalle richieste termiche dell’edificio asservito, variabili a seconda dalla localizzazione dell’edificio (latitudine, altitudine, condizioni climatiche, ecc.), dalla sua destinazione d’uso e caratteristiche generali (dimensione, isolamento termico, ecc.): tutti questi fattori determinano il funzionamento della pompa di calore e di conseguenza l’andamento temporale della portata in ingresso e uscita dalle sonde geotermiche (e quindi la velocità e la turbolenza con cui fluisce all’interno della sonda) e la sua temperatura;
- I materiali e le tecnologie utilizzate per la realizzazione delle sonde: conducibilità termica del materiale, scabrezza della parete interna ed esterna, qualità e quantità
degli additivi presenti nella fluido, caratteristiche termiche della miscela grout di riempimento del foro, densità ed aderenza del riempimento al terreno circostante e alle sonde stesse, ecc.

- Le caratteristiche termiche del terreno adiacente alle sonde: caratteristiche mineralogiche e condizioni natura del terreno (roccia, sedimenti sciolti, ecc.), conducibilità e capacità termica dei diversi livelli deposizionali, grado di addensamento, ecc;
- La presenza o meno di falda e di moto di falda;
- La presenza o meno e l’intensità di anomalie del flusso geotermico locale.

In generale, l’anomalia termica indotta nel terreno da una sonda geotermica è abbastanza ristretta: considerando valori medi di conducibilità del terreno il gradiente termico nei pressi della sonda è molto elevato. Le linee guida di progettazione suggeriscono di distanziare le sonde di circa 7m, in modo da ridurre gli effetti di interferenza termica tra sonde vicine. Ovviamente però, l’alterazione termica indotta nel terreno è più intensa quanto più la temperatura del fluido termovettore si distanza da quella del terreno indisturbato.

Lo scambio termico nel terreno nei pressi di una sonda avviene principalmente per conduzione e, a seconda della temperatura e delle condizioni di permeabilità e di contenuto d’acqua dei livelli deposizionali, anche per convezione tramite circolazione di fluidi. Conducibilità e diffusività termica dei vari depositi attraversati costituiscono quindi i fattori principali che, a parità di condizioni di esercizio dell’impianto, determinano estensione, intensità ed evoluzione nel tempo dell’anomalia termica indotta. Le proprietà termiche di un deposito geologico dipendono principalmente dalla composizione mineralogica e granulometrica, dal contenuto d’acqua e dal grado di saturazione, da condizioni di consistenza o di addensamento e tessiturali (porosità), da dimensioni e forma dei granuli costituenti la matrice (nel caso di materiali sciolti) correlati alla distribuzione granulometrica, dall’area dei grani solidi, dalle condizioni di temperatura allo stato naturale e pressione litostatica, come descritto nel cap.4.

1.2.1 Condizioni estreme di esercizio

Il Il fluido termovettore che scorre all’interno delle sonde veicolando il calore tra il terreno e la pompa di calore che controlla l’impianto, è solitamente semplice acqua. In alcuni casi però, si verificano dei presupposti che portano a condizioni estreme di esercizio: con lo scopo di poter far scendere la temperatura del fluido termovettore anche al di sotto di 0°C si è diffuso l’uso di additivi anticongelanti (di solito glicole propilenico), in modo da aumentare la differenza di temperatura tra fluido interno alla sonda geotermica e terreno circostante, incrementando così il tasso di estrazione di calore per unità metrica di lunghezza di sonda. A seconda della percentuale di glicole presente nel fluido quindi, la temperatura minima di lavoro può essere abbassata. Queste condizioni di esercizio richiedono l’uso di adeguate pompe di calore, con all’interno fluidi refrigeranti che utilizzano temperature di cambio di stato adatte, e inoltre comportano un
Inquadramento del problema

La maggiore spesa di energia elettrica, relativa alle pompe di circolazione del fluido a causa della maggiore viscosità e resistenza al moto rispetto alla sola acqua quale fluido termovettore.

Tali condizioni di esercizio sono molto diffuse nell’Europa settentrionale, Canada e Stati Uniti settentrionali, dove le richieste termiche di riscaldamento dell’edificio sono dominanti e la temperatura indisturbata del terreno è solitamente piuttosto bassa (intorno ai 6°C – 4°C) (Haehnlein et. al., 2013). L’uso di anticongelanti è comunque diffuso anche in aree con condizioni climatiche più temperate, per aumentare la potenza di scambio termico, incrementando l’estrazione di calore dal sottosuolo per metro lineare di sonda. Questo può avvenire in impianti non correttamente dimensionati, ad esempio sottodimensionata per sovrastima delle proprietà termiche del terreno, o per errata valutazione delle necessità termo-frigorifere dell’edificio, o errato calcolo della lunghezza totale degli scambianti a terreno, non valutando gli effetti di derivi termici pluriennali per l’esercizio nel sottosuolo o ancora successivi ampliamenti delle volumetrie asservite senza idoneo adeguamento di impianto. In alcuni casi, la mancanza di spazi esterni in cui realizzare le sonde o altre motivazioni di economicità spingono il progettista a ridurre il più possibile la lunghezza totale del campo sonde.

Inoltre, può accadere che si verifichino a posteriori che la performance energetica effettiva dell’impianto sia inferiore rispetto a quella attesa, ad esempio per problemi occorsi in fase di realizzazione delle sonde, principalmente nella fase di getto del materiale di riempimento del foro, peggiorando la capacità di scambio termico dell’impianto. Anche nel caso in cui si realizzi un forte sbilanciamento del carico termico verso le necessità di riscaldamento, la degradazione dello scambio termico dovuta al progressivo significativo raffreddamento del terreno circostante la sonda può essere in parte risolta abbassando la temperatura di esercizio del fluido termovettore.

In tutti questi casi, l’uso di additivi anticongelanti all’interno delle sonde permette di abbassare in modo significativo le temperature del fluido termovettore (fino anche ad arrivare a -5°C ÷, -8°C (con glicole al 10% della miscela), incrementando così la differenza di temperatura tra fluido e terreno e quindi aumentando la capacità di estrazione di calore dal sottosuolo. In questi casi, quando la variabilità nel funzionamento dell’impianto porta occasionale o per periodi più estesi la temperatura del fluido termovettore qualche grado al di sotto dello zero, l’alterazione termica indotta nel terreno risulta più intensa e può arrivare a generare processi ciclici di congelamento e successivo scongelamento nei depositi circostanti la sonda. E’ noto che cicli di gelo e disgelo degradano le proprietà del materiale di riempimento, riducendone l’efficacia soprattutto nella funzione di isolamento idraulico (Anbergen et al., 2014). E’ noto inoltre, che i sedimenti coesivi risultano particolarmente sensibili agli effetti delle alterazioni termiche, a causa del ruolo fondamentale che la fase liquida svolge nella struttura stessa del sedimento (cap.2). Per questo motivo le sperimentazioni condotte nel corso della ricerca qui presentata si sono concentrate maggiormente su tale tipologia di sedimenti.
1.3 **IL CASO STUDIO: IMPIANTI GSHP NEL CENTRO STORICO DI VENEZIA**

Nell’area circostante Venezia e la sua laguna, sono già attivi numerosi impianti di geoscambio a circuito chiuso, più adatti rispetto a quelli a circuito aperto viste le caratteristiche locali del sottosuolo (terreni granulari e coesivi saturi fino alla superficie) e degli acquiferi (con moderate portate estrattibili in quelli superficiali ed in forte pressione per quelli profondi e con problemi storici di subsidenza naturale e di origine antropica correlata ai prelievi idrici per la conduzione delle attività industriali del vicino polo chimico di Marghera).

Per quanto riguarda il centro città, l’utilizzo dei tradizionali sistemi di climatizzazione nei palazzi storici veneziani, costruiti per la maggior parte tra il 13°secolo e del 19°secolo, è poco efficiente dal punto di vista energetico e comporta costi molto elevati. Questo è principalmente dovuto ai materiali e alle tecnologie costruttive: al fine di preservare la peculiarità architettonica ed estetica della città, le regolamentazioni locali impediscono l’applicazione di materiali isolanti su pareti e finestre esterne ed interne. Inoltre, vista l’età e l’importanza storica degli edifici, anche l’installazione esterna dei tradizionali refrigeratori aria-aria o di torri di raffreddamento sul tetto è limitata da legislazioni locali legate al mantenimento delle peculiarità estetiche ed architettoniche, ed ai limiti strutturali di tali edifici, oltre a presentare effettive difficoltà di realizzazione in edifici storici. Anche l’uso di sistemi di riscaldamento tradizionali può essere pericoloso per la presenza di numerose strutture in legno, che nel passato anche recente hanno dato luogo a fenomeni di incendio.
In questo particolare contesto urbano l'uso di sistemi GSHP (Ground Source Heat Pump) rappresenta un'ottima soluzione, rispetto ai sistemi tradizionali, per superare gli effettivi vincoli.
statici dati dalle caratteristiche degli edifici (portanza del tetto, materiali utilizzati ecc.), oltreché le restrizioni normative relative alle emissioni di inquinamento atmosferico, ai vincoli architettonici e di emissione acustica, che riducono il panorama delle possibili scelte impiantistiche. Per tutti questi motivi, la realizzazione di impianti di geoscambio a circuito chiuso si sta in questi ultimi anni diffondendo nel centro storico di Venezia (figura 7).

D’altro canto però, la particolare conformazione della città con edifici molto vicini tra loro e la carenza di giardini e cortili, nonché la difficoltà di raggiungere i luoghi di installazione da parte di adeguate macchine perforatrici capaci di raggiungere profondità maggiori, costringe a ridurre il più possibile l’estensione areale dei campi sonde e la lunghezza totale delle sonde. Nel centro storico, la mancanza di spazi aperti porta alla realizzazione delle sonde il più possibile vicine tra loro, in prossimità degli edifici stessi e a volte anche all’interno e al di sotto dei sistemi fondazionali, ad esempio nei cortili interni e al di sotto dei porticati (Figura 8-9). A questo vanno ad aggiungersi le difficoltà di realizzazione legate alla tipologia di edifici storici di grande interesse artistico-culturale, vincolati dal punto di vista estetico e quindi non sostanzialmente modificabili con interventi invasivi. Inoltre le aperture di dimensioni limitate e la difficoltà di trasporto in loco di macchine perforatrici di grandi dimensioni, fa sì che nella realizzazione si preferisca utilizzare macchine più piccole, atte quindi a realizzare perforazioni di profondità più ridotte (anche intorno ai 30–50m invece che i più comuni 100m), in contrasto con l’esigenza di realizzazione di campi sonde ridotti nell’estensione areale.

In questo contesto urbano si è diffuso l’utilizzo di fluido termovettore con aggiunta di additivi anticongelanti per incrementare il tasso di scambio termico sonda-terreno nel periodo invernale, in modo da poter realizzare impianti funzionanti con lunghezza totale di sonde il più contenuta possibile, anche se a scapito delle performance energetiche. Nel territorio della Provincia di Venezia, per circa il 50% degli impianti che hanno recentemente richiesto l’autorizzazione è stato dichiarato l’impiego di fluido termovettore addizionato con anticongelante.
Figura 8: Esempio di realizzazione di sonde geotermiche verticali all’interno di un edificio storico, sotto il porticato del cortile interno.
Figura 9: Distribuzione planimetrica delle sonde geotermiche realizzate negli spazi ricavati nel porticato del cortile interno di un edificio storico del 1300, affacciato sul Canal Grande.

Negli ultimi anni l’amministrazione della Provincia di Venezia ha mostrato particolare attenzione ad approfondire le interessanti potenzialità dell’utilizzo della risorsa geotermica di bassa entalpia nel territorio, ricercando le modalità ottimali di utilizzo e le possibili conseguenze ambientali, considerando in particolare la realizzazione di impianti geotermici a circuito chiuso a sonde verticali che, tra le possibilità impiantistiche di carattere geotermico, risultano la più largamente impiegata in quest’area geografica.

1.3.1 La sequenza litostratigrafica della città di Venezia

La laguna di Venezia nel corso del tempo è stata sottoposta ad una complessa combinazione di processi naturali e di interventi umani, che si sono manifestati in subsidenza, eustatismo, erosione della linea di costa, deviazioni fluviali, formazione e scomparsa di canali di marea, tutti elementi che hanno in modi diversi influenzato l’evoluzione delle sue caratteristiche morfologiche negli ultimi 2000-3000 anni. Ma l’attuale morfologia e la sequenza stratigrafica del sistema geologico dell’area veneziana deriva soprattutto da successivi eventi di erosione e deposizione legati alle variazioni climatiche e al conseguente susseguirsi di modifiche del regime fluviale che si sono verificate durante il tardo periodo Pleistocenico e il successivo periodo Olocenico. Dal punto di vista geologico la sequenza sedimentaria, fino a 100 m di profondità, è legata alla presenza di eteropie laterali e transizioni verticali, legate all’evolversi di diversi ambienti di tipo alluvionale, lagunare, deltizio, e litorale, che hanno portato, nell’avvicendarsi del pleistocene-olocene alla deposizione di alternanze comprensive di sedimenti sabbioso-limosi, argilloso-limosi o argillosi e torbosi.

Nell’area lagunare, i sedimenti olocenici di origine marina, ricchi di presenza di materiale organico, si sovrappongono ai sedimenti pleistocenici di origine continentale. In entrambi gli ambienti deposizionali, i successivi eventi di erosione e deposizione dovuti a variazioni climatiche e al susseguirsi di modifiche del regime fluviale hanno caratterizzato l’attuale morfologia del sistema geologico dell’area veneziana, fino a 100 m di profondità, generando una sequenza litostratigrafica caratterizzata da una elevata variabilità sia laterale che in profondità, e dalla presenza diffusa di sedimenti sabbioso-limosi, argilloso-limosi o argillosi (Brambati et al., 2003). Il limite Olocene-Pleistocenico, che si trova in corrispondenza del centro storico ad una profondità variabile tra 4-8 m sotto il livello attuale del mare, è caratterizzato dalla presenza di uno strato di argilla sovraconsolidata chiamato “caranto”, ben riconoscibile grazie al caratteristico aspetto molto compatto, alla tipica colorazione screziata dall’ocra al grigio e alla presenza di noduli carbonatici.

![Figura 10: Rappresentazione semplificata della sequenza stratigrafica tipica dell’area veneziana](image-url)

E’ questo uno strato limoso argilloso altamente sovra-consolidato, che ha cominciato a formarsi circa 18.000 anni BP, subendo, dopo la deposizione di ambiente continentale, un processo...
di esposizione subaerea in condizioni di clima sempre più caldo e umido che ha caratterizzato l’ultima fase del periodo pleistocenico di regressione marina. A causa della prolungata fase di emersione a cui è stata soggetta l’area, quest’orizzonte si presenta sovraconsolidato e ossidato a causa di un’intensa fase pedogenetica che lo ha evoluto nel tempo. Tale livello si presenta con una tipica colorazione screziata dall’oca al grigio e con noduli carbonatici con diametro da pochi millimetri fino a 2cm. Il caranto non si presenta come continuo ma appare interrotto da lenti sabbiose nastriformi larghe da poche centinaia di metri a 1-2 km e lunghe alcuni km, con direzione complessiva NW/SE (Gatto e Previatello, 1974; Mozzi et al., 2004; Donnici et al., 2011). Alcuni autori (Mozzi et al., 2004) definiscono queste lenti sabbiose probabilmente corrispondenti ai dossi del Brenta tardo-pleistocenico, precedentì alla fase di pedogenesi che avrebbe interessato il caranto successivamente. Il letto del caranto risulta notevolmente irregolare, mentre il tetto si presenta molto più uniforme salvo locali accidentalità imputabili a tardivi eventi erosivi o a sedimenti dovuti a carichi superficiali che hanno assottigliato il complesso olocenico e abbassato tutta la serie (Mozzi et al., 2004). Esso tende ad affiorare in terraferma ma ad approfondirsi gradualmente man mano che si procede verso i litorali, dove si rinviene al disotto di una coltre olocenica spessa anche 13 metri. Nonostante la sua parziale discontinuità, lo strato di caranto rappresenta un importante orizzonte “guida” che chiude le sequenze alluvionali di età pleistocenica (Gatto e Previatello, 1974; Mozzi et al., 2004; Donnici et al., 2011) separandole dai successivi depositi marini trasgressivi di epoca olocenica.

Al di sotto del caranto, a causa delle continue alteranze climatiche e deposizionali che hanno contraddistinto il tardo Pleistocene, la sequenza stratigrifica locale si presenta quindi caratterizzata da una continua successione di livelli di sedimenti fini di spessore contenuto (da qualche decina di centimetri a qualche metro) alternati a depositi sabbiosi di origine prevalentemente continentale. Una tale fitta sequenza di livelli permeabili ed impermeabili-semipermeabili, genera un sistema di brevi percorsi di drenaggio ai livelli coesivi, che quindi subiscono processi di consolidamento, con perdita di fluidi interstiziali, relativamente veloci (Culturera et al., 2012; Cola e Simonini, 2002).

I livelli fini presenti negli strati più in profondità, di origine Pleistocenica, al di sotto del livello marcatore rappresentato dal caranto, sono caratterizzati per la maggior parte da depositi argillosi con livelli sabbiosi e limosi di morfologia prevalentemente lentiforme a profondità variabili da circa -8.m fino a -50m dal l. m.m. Essi sono caratterizzati da bassi valori di contenuto d’acqua e bassi indici di plasticità, come rappresentato in figura 11.
Cap 1 Inquadramento del problema

Figura 11: (a) Suddivisione del sottosuolo di Venezia definita in base al concetto di facies con caratteristiche simili. In rosso, lo strato di carano che suddivide i depositi olocenici di bacino lagunare di origine olocenica (in azzurro la facies A con (IP elevato – in rappresentato in colore azzurro chiaro) la facies B), da quelli sottostanti di origine pliocenica (sedimenti di piana alluvionale (in verde i depositi coesivi di media e bassa plasticità delle facies E1 ed, E2 (coesivi di media e bassa plasticità), in arancio le argille con livelli limosi e sabbiosi della facies F (argille con livelli limosi e sabbiosi), in giallo le sabbie). (b) Le caratteristiche dei depositi a comportamento prevalentemente coesivo del complesso lagunare (A-C) e del complesso di piana alluvionale, (D-F) riportati nel diagramma di plasticità di Casagrande (da Zezza, 2010).

Nella sequenza superficiale, di origine Olocenica, la letteratura evidenzia la presenza di materiali spesso a più elevata plasticità, come descritto nella seguente carta di Casagrande (Figura 11b), dove sono riportate le condizioni di plasticità delle facies riconosciute, rappresentate anche nella sezione geologica schematica di Figura 11a (Zezza, 2010). I sedimenti che sono stati raggruppati nella facies “A” sono principalmente costituiti da argille limose e limi, con elevata presenza di sostanza organica e contenuto d’acqua molto vicino al limite di liquidità, con valori di indice plastico IP variabili tra 32 e 43. Questi depositi si presentano quindi poco consolidati e presentano
scarse caratteristiche meccaniche. La facies B è rappresentata da argille molli debolmente limose con resti di molluschi, con un valore di IP medio di 20. Considerando anche le informazioni rappresentate nella sezione geologica schematica, emerge che i depositi coesivi ad elevata plasticità (facies A) risultano generalmente poco rappresentati nella sequenza tipica veneziana e concentrati nei livelli più superficiali di origine olocenica, ricchi di sostanza organica e caratterizzati da spessore molto limitato.

L’area di studio presenta quindi una sequenza litostratigrafica caratterizzata da una elevata variabilità sia laterale che verticale, e dalla presenza diffusa di sedimenti coesivi, che possono ragionevolmente considerarsi in condizioni drenate.

1.4 LE ATTIVITÀ SVOLTE

Il centro storico di Venezia risulta quindi un caso studio di elevato interesse in cui interagiscono la particolarità di un ambiente storico e ambientale di pregio, una situazione di obbligata vicinanza tra sonde geotermiche e sistemi fondazionali degli edifici, e comunque alle strutture edilizie in genere (pavimentazioni), un contesto urbano dove gli impianti geotermici a circuito chiuso possono essere una reale opportunità, ma son costretti a lavorare in condizioni critiche di esercizio, e infine, un contesto geologico particolarmente sensibile alle sollecitazioni termiche indotte da scambiatori geotermici.

D’altra parte, il contesto geologico considerato è tipico di molte delle aree di bassa pianura alluvionale, spesso sede dei più importanti centri urbanizzati (Deckers et al., 1998), trovandosi quindi in condizioni comparabili a quelle dell’area studio.

Il caso studio costituisce quindi un buon esempio di una situazione molto frequente: i risultati ottenuti possono essere estesi anche ad altre aree, in contesti nazionali ed internazionali, che presentano situazioni simili.

Gli effetti provocati nei sedimenti da variazioni termiche cicliche, comprese quelle che provocano fenomeni alternati di congelamento e scongelamento, sono stati oggetto di numerose ricerche riportate in letteratura (Chamberlain and Gow, 1979; Dashjamts and Altantsetseg, 2011; Esch, 2004; Konrad, 1989), svolte nei più svariati contesti applicativi, e considerando di volta in volta diverse tipologie di sedimenti e diverse condizioni di temperatura imposta. Da una attenta ed approfondita analisi dello stato attuale dell’arte, per quanto attiene i temi trattati nel presente lavoro, esposta nel cap. 2, emerge che i processi di alterazione termica inducono, nei sedimenti di natura principalmente coesiva, processi di consolidamento in aggiunta a quelli dovuti all’azione del carico applicato, alterandone di conseguenza le proprietà geotecniche ed idrauliche (grado di compattazione, permeabilità). Gli effetti risultano per lo più contenuti, se la variazione termica considerata produce effetti di riscaldamento, mentre si dimostrano molto più evidenti se il sedimento subisce fenomeni di congelamento e scongelamento ciclico. Nel corso della ricerca svolta, queste osservazioni sono state verificate sperimentalmente (cap.3) considerando il caso
specifico di alterazione termica indotta da una sonda geotermica, sottoposta ad un regime di funzionamento dominante di riscaldamento, con temperature indotte nel terreno minime intorno ai 5°C/-8°C. Si sottolinea è stato appositamente esaminato questa situazione di temperatura al di sotto del punto di congelamento dell’acqua interstiziale con l’obiettivo di indagare gli effetti degli eventuali cambi di fase liquido-solido e solido-liquido dell’acqua sulla struttura e sulle proprietà geotecniche.

Nel cap.3 si espongono quindi i metodi utilizzati e i risultati ottenuti dall’analisi sperimentale degli effetti indotti dalle alterazioni termiche su campioni rappresentativi dei materiali tipici della sequenza litostatigráfica del centro storico veneziano. Si sono considerati in particolare la deformazione indotta, la variazione di rigidezza, resistenza e permeabilità verticale, conseguenti alle perturbazioni termiche imposte.

Data la diffusa variabilità spaziale dei sedimenti veneziani è inoltre emersa l’esigenza di avere un’ulteriore approfondimento nella distribuzione litologica locale, che ha portato alla implementazione della banca dati stratigráfica provinciale con nuove informazioni che hanno consentito di raffinare la densità geoinformativa e ricostruire con maggior dettaglio la distribuzione dei depositi Olocenici-Pleistocenici nel territorio veneziano ed in particolare nel centro storico. Il database stratigráfico già realizzato dalla Provincia di Venezia è stato aggiornato e arricchito di ulteriori dati recuperati e digitalizzazione da indagini stratigráfiche conservate negli archivi di altri enti pubblici; tali aspetti sono trattati estesamente nel Capitolo 6. Tale attività ha inoltre consentito di realizzare una prima mappa tematica di sensibilità geologica del territorio alle sollecitazioni termiche, con lo scopo di individuare i settori in cui si riscontra dominanza di sedimenti coesivi e dove si deve quindi considerare un approccio precauzionale nella realizzazione di impianti geotermici, garantendo il funzionamento a temperature del fluido termovettore superiori al punto di congelamento del sedimento. Nel corso di questo lavoro di raccolta è stata anche prodotta una nuova mappa della distribuzione areale dello strato di caranto nel territorio, che, in virtù del suo stato di sovraconsolidazione, esibisce un comportamento sostanzialmente diverso rispetto a quello caratteristico dei terreni non sovraconsolidati, come riportato nel capitolo 6.

Un altro aspetto preso in considerazione nella ricerca è la valutazione delle proprietà termiche dei sedimenti congelati. E’ infatti noto che un sedimento portato ad una temperatura inferiore al suo punto di congelamento, incrementa la sua capacità di trasmettere calore (conducibilità termica), in conseguenza del cambiamento di fase indotto in gran parte della componente liquida che permea il sedimento stesso. Il ghiaccio è infatti caratterizzato da maggiore conducibilità termica rispetto all’acqua nello stato liquido e alla matrice solida del materiale argilloso, fornendo inoltre continuità fisica al mezzo poroso grazie al processo di riduzione dei vuoti causata dall’espansione di volume dell’acqua durante la trasformazione di fase negli spazi interstiziali. La matrice ghiacciata assume un ruolo dominante nei processi di scambio termico, aumentando le capacità di trasmissione del calore nel sedimento.

Dalle fonti bibliografiche e dagli stessi studi effettuati risulta evidente che sono le proprietà termiche dei sedimenti stessi a determinare l’estensione dell’anomalia termica indotta nel sottosuolo: è fondamentale allora, nello studio dell’estensione dell’anomalia termica indotta, tener
conto delle variazioni di queste proprietà con la temperatura stessa, anche al di sotto del punto di congelamento.

Sono state quindi condotte alcune serie di misure dirette di conducibilità, e indirette di diffusività termica, su sedimenti a matrice fine e su campioni di sedimenti più grossolani, in condizioni di temperatura variabile, considerando anche condizioni di congelamento (cap.4).

Infine, per consentire di considerare, oltre agli effetti prodotti a scala di campione nelle prove di laboratorio, anche quelli ipotizzabili in sito, si è proceduto a quantificare l’estensione della porzione di terreno coinvolta nell’anomalia termica e quindi soggetta alle variazioni nelle proprietà meccaniche, idrauliche e termiche misurate, considerando l’evoluzione nel tempo e nello spazio dell’anomalia termica indotta nel terreno da una sonda geotermica verticale in esercizio mediante la realizzazione di modelli numerici. Con questo scopo, utilizzando il codice di calcolo FEFLOW® (Final Element Modelling of Flow) versione 6.2 nel corso della ricerca è stato realizzato un modello agli elementi finiti, per valutare le caratteristiche dinamiche dell’anomalia termica indotta nel sottosuolo da scambiatori geotermici verticali, e quindi l’estensione dei volumi di terreno coinvolti nei processi critici di congelamento e scongelamento ciclico. Il modello prodotto simula il funzionamento di una sonda geotermica in diverse condizioni di esercizio, verificando in particolare l’estensione delle condizioni termiche che inducono congelamento nei sedimenti (cap.5). Il profilo di carico utilizzato nelle simulazioni è quello tipico di un edificio storico veneziano, valutato mediante il software termodinamico Transys.

Al fine di modellare in modo più verosimile il processo di congelamento e scongelamento del terreno, tenendo conto sia del rilascio di calore latente durante il cambiamento di fase della parte liquida del sedimento, sia della variazione delle proprietà termiche in condizioni di congelamento, al modello FEM del sistema sonda-terreno è stato accoppiato un plug-in sviluppato dal Technische Universität di Darmstadt (Germania), appositamente per rappresentare i due fenomeni citati. Nel modello sono stati utilizzati i valori dei parametri costitutivi del terreno geotecnici e termici, ricavati dalle misure condotte in laboratorio, sia per identificare la temperatura che induce il cambiamento di fase nei sedimenti, sia per quantificare conducibilità e diffusività termica del sedimento alle diverse temperature e densità/stato di compattazione. Lo scambio energetico che avviene tra sonda e terreno circostante e l’estensione dell’anomalia termica indotta, dipendono, infatti, da conducibilità e diffusività termica dei livelli deposizionali attraversati, oltre che dalla differenza di temperatura tra fluido termovettore e terreno circostante.

Le analisi numeriche hanno permesso di definire l’evoluzione del plume termico, fornendo una stima dei volumi di terreno indotti al congelamento nelle diverse situazioni considerate.

Infine, estrapolando dei risultati sperimentali ottenuti, nelle conclusioni (cap.7) sono state sviluppate alcune osservazioni sui possibili effetti dei fenomeni osservati a livello di un campo di sonde reale, considerando possibili rischi ambientali, funzionalità ed integrità delle sonde, e performance energetiche del sistema.
2 **EFFETTI TERMO-MECCANICI NEI MATERIALI COESIVI**

Gli effetti provocati da cicli di variazione termica su sedimenti sono stati oggetto di numerose ricerche riportate in letteratura. Molte di queste ricerche riguardano principalmente fenomeni di riscaldamento dei sedimenti, considerando aumenti di temperatura rispetto a quella di riferimento (circa 15°C - 20°C) fino a 70°C o 90°C (Abuel-Naga et al., 2007; Campanella and Mitchell, 1968; Cekerevac and Lalouï, 2004; Towata et al., 1993; Gabrielsson et al., 1997), conseguenti, ad esempio, alla gestione di impianti di *heat storage* tramite sonde inserite nel terreno, realizzazione di siti di stoccaggio di scorie radioattive ecc.

Altre ricerche invece riguardano lo studio del congelamento dei terreni, e i possibili effetti dell’alternanza di cicli di gelo e disgelo, principalmente allo scopo di conoscere e contenere il fenomeno del *frost-heave*, molto diffuso nei paesi nordici come Canada, Stati Uniti settentrionali, penisola scandinava e Russia (Dashjamts and Altantsetseg, 2011; Esch, 2004; Konrad, 1989). Si tratta della formazione stagionale di cristalli di ghiaccio di grosse dimensioni negli strati più superficiali di sedimento e del successivo scongelamento, che porta alla formazione di rigonfiamenti ed avvallamenti superficiali di alcuni centimetri, che possono danneggiare sottofondi stradali e fondazioni superficiali (Figura 12).

![Figura 12: Fenomeno del frost heave e un esempio di danneggiamento del piano stradale dovuto alle deformazioni stagionali indotte nei primi strati di terreno a causa del fenomeno ciclico di gelo e disgelo.](image)

In questo capitolo si presenta il risultato della ricerca bibliografica effettuata circa gli effetti sulle proprietà meccaniche dei sedimenti, indotte da variazione imposte di temperatura, in
relazione al range termico considerato e dalle caratteristiche petro-termofisiche del sedimento studiato. Tale indagine ha riguardato studi relativi sia ai processi di congelamento e scongelamento, che di riscaldamento, che interessano i materiali non consolidati costituenti il sottosuolo e gli effetti prodotti sulle loro condizioni strutturali e meccaniche. La tipologia di sedimenti principalmente considerata riguarda i sedimenti fini più diffusi a prevalente matrice limosa-argillosa, di origine naturale.

Dallo screening bibliografico affettuato è stato possibile ottenere le informazioni di base per indirizzare la ricerca di interesse seguendo un percorso originale finalizzato a colmare le lacune di conoscenza nel campo degli effetti termo-mecanici indotti nel sottosuolo dall’impiego di sistemi di sonde di scambio termico dedicate alla climatizzazione di edifici.

2.1 CARATTERISTICHE MINERALLOGICHE ED ELETTRICHE DEI MINERALI ARGILLOSII ED EFFETTI INDOTTI DA VARIAZIONI DI TEMPERATURA

Gli effetti generati dall’alterazione termica sulle proprietà meccaniche e termiche dei sedimenti interessano in particolare i sedimenti fini di matrice prevalentemente limoso-argillosa (in questo capitolo successivamente indicati per brevità con il termine ‘argilloso’). Questi infatti sono caratterizzati da una forte interazione di natura elettrostatica che si genera tra le particelle argillose cariche negativamente sulla superficie e le molecole d'acqua interstiziali (e/o gli ioni disciolti nel fluido interstiziale caratterizzati da carica positiva), che vengono fortemente orientate e attratte verso la superficie delle particelle.

![Figura 13](image.png)

Figura 13: Andamento delle forze di attrazione elettrica con la distanza tra particelle solide e molecole d’acqua.
La forza del legame elettrico dipende dalla distanza delle molecole d’acqua dalla supericie della particella (Figura 13) e genera la formazione di quello che viene chiamato double electrical layer, o doppio strato elettrico, che presenta una struttura a gusci concentrici (shell-like structure). Le molecole d’acqua più vicine alle particelle risultano fortemente legate (acqua adsorbita), mentre all’aumentare della distanza la forza di legame diminuisce, fino ad arrivare a molecole che risultano libere (acqua libera) che si concentrano nelle zone centrali dei pori di maggiori dimensioni (Meunier, 2005).

L’equilibrio del diffuse-double-layer è un equilibrio dinamico, costantemente in evoluzione, e fortemente dipendente dalla temperatura. E’ il risultato tra due forze che si contrastano: da una parte l’attrazione elettrica tra le cariche opposte, e dall’altra l’effetto disordinante e dispersivo dato dall’energia cinetica, fortemente dipendente dalla temperatura. Al diminuire della temperatura, lo spessore del doppio strato elettrico diminuisce, mentre, al contrario, un aumento della temperatura incrementa l’energia cinetica delle molecole d’acqua e induce effetti di dispersione e scambio di molecole d’acqua tra i vari ‘gusci’: alcune, appartenenti agli strati più esterni della struttura, possono diventare libere e viceversa.

All’approssimarsi della temperatura a valori vicini a quelli di congelamento (o a valori superiori a 70°C), mentre la matrice solida di per sé subisce variazioni trascurabili, la componente liquida viene fortemente influenza, subendo variazioni delle proprietà fisiche, cambiamenti di fase, modifiche nella distribuzione e nel grado di mobilità. Tutto ciò varia la capacità di legame delle molecole d’acqua, il grado di ordinamento e le relazioni della matrice solida con la componente liquida del terreno.

In particolare, le variazioni di temperatura al di sotto dello zero sono quelle che generano gli effetti più significativi. Il fatto che il comportamento di un sedimento coesivo, a causa delle proprietà elettriche delle particelle fillosilicatiche, sia dominato dall’acqua di legame ed interstiziale, fa sì che i cambiamenti di fase della componente liquida generati da variazioni di temperatura al di sotto degli 0°C comportino una significativa alterazione dell’intera struttura del terreno stesso, che si dimostra possedere un carattere irreversibile (Konrad, 1989; Farouki, 1981; Esch, 2004).

2.2 EVOLUZIONE DEL PROCESSO DI CONGELAMENTO IN UN SEDIMENTO

Quando la temperatura di un sedimento scende di qualche grado al di sotto dello zero Celsius, i processi di congelamento del sedimento iniziano con la formazione delle cosiddette ice lenses: le molecole di acqua libere nella parte più centrale dei pori di maggiori dimensioni iniziano a congelare formando dei centri di nucleazione di ghiaccio, che successivamente agiscono come nuclei di aggregazione, attirando altre molecole d’acqua che migrano e vanno ad accrescere le aree ghiacciate.
2.2.1 La formazione delle lenti di ghiaccio

In condizioni di stabilità, le forze di interazione tra le particelle e la pressione idrostatica nei film liquidi si equilibrano, mantenendo un determinato spessore ‘di equilibrio’ del film liquido intergranulare, dipendente anche dalle altre condizioni al contorno in cui il sedimento si trova. La nucleazione spontanea di una lente di ghiaccio all’interno dei pori interni ad un sedimento, inizia quando si realizzano contemporaneamente diverse condizioni che portano ad uno stato di disequilibrio chimico e fisico, rispetto alla condizione iniziale a temperatura ambiente. Innanzi tutto, nel punto in cui verrà poi a formarsi la nucleazione spontanea del ghiaccio, si instaura un iniziale locale disequilibrio tra le forze di coesione intergranulare tra particelle contigue, che vengono sovrastate dalle forze ‘dissocianti’ (Henry, 1988). La componente più significativa di tali forze è costituita dalla repulsione elettrica prodotta tra ioni caratterizzati dalla medesima carica elettrica. Essa sono proporzionali all’inverso della pressione idrostatica all’interno dei film liquidi: una diminuzione dello spessore del film liquido porta ad un aumento delle forze disgreganti tra le particelle solide. Quando l’inizio del processo di formazione dei nuclei di ghiaccio comincia a sottrarre molecole d’acqua dallo stato liquido intergranulare, lo spessore dei film liquidi aggregati elettrostaticamente alle particelle, in quel punto si assottiglia diminuendone la pressione, le forze disgreganti tra le particelle solide aumentano e superano le forze di coesione, instaurando le condizioni di disequilibrio che rendono possibile l’aggregazione e la formazione delle ice lenses.

L’abbassamento locale di potenziale idraulico provoca un gradiente idraulico che attira altre molecole d’acqua, realizzando una sorta di ‘migrazione’ di molecole d’acqua lungo il gradiente idraulico e termico dalle aree a temperatura maggiore verso le aree a temperatura minore, che continua fino a che si mantengono le condizioni di disequilibrio, accrescendo le dimensioni dell’area ghiacciata (Henry, 1988).

![Figura 14a,10b: Rappresentazione schematica della formazione delle lenti di ghiaccio all’interno dei pori di maggiore dimensione e successiva migrazione delle molecole d’acqua verso i nuclei di aggregazione (a), fino all’ingrossamento della parte congelata e diminuzione dello spessore dell’unfrozen water relativa alle particelle solide adiacenti (b).](image)

Alle forze di attrazione verso i nuclei di congelamento si contrappongono i legami elettrici che tengono le molecole d’acqua unite ai grani solidi. La crescita delle lenti di ghiaccio dipende quindi innanzi tutto dalla quantità di molecole d’acqua interstiziale che possono effettivamente essere coinvolte in questo processo, e che siano quindi disponibili a lasciare la zona di legame.
elettrostatico con le particelle solide e partecipare alla ‘migrazione’ lungo il gradiente termico ed idraulico. Questa disponibilità dipende dalla forza del precedente legame elettrico instaurato con le particelle solide nell’ambito del *double electrical layer*: essa dipende quindi dalla quantità d’acqua presente nel sedimento, dalla estensione della superficie libera delle particelle solide e quindi dalla loro composizione mineralogica, granulometria, stato di compattazione.

Inoltre, il valore del contenuto d’acqua del sedimento e la sua relazione con i Limiti di Atterberg, forniscono una indicazione importante circa la disponibilità del sedimento a congelare. Più elevato è il contenuto d’acqua di un sedimento coesivo, più è facilitato il processo di congelamento; in particolare si osserva una stretta relazione tra il contenuto d’acqua ed il Limite Liquido nella disponibilità di acqua libera che può partecipare ai processi di congelamento (Figura 15). Se il contenuto d’acqua è superiore al limite liquido si rileva una condizione favorevole alla formazione e crescita di aggregati di congelamento, se invece il contenuto d’acqua risulta compreso tra il Limite Liquido e il Limite Plastico, le molecole d’acqua risulteranno disponibili al cambiamento di fase solo quando l’intensità delle ‘forze congelanti di cristallizzazione’, agiscono per periodi di tempo sufficientemente lunghi che consentano di superare le forze di attrazione elettrostatica intermolecolari. Infine, nel caso in cui il contenuto d’acqua del sedimento sia molto contenuto, inferiore al valore del Limite Plastico, le molecole d’acqua presenti nel sedimento appartengono al dominio di adsorbimento reticolare, non disponibili al congelamento nemmeno a temperature molto basse (Anderson e Hoekstra, 1965; Horiguchi, 1979).

Inoltre, l’ampiezza dell’Indice Plastico (pari alla differenza tra il Limite Liquido e il Limite Plastico), esprime quanto è ampio l’intervallo di contenuto d’acqua che mantiene il terreno in comportamento plastico, fornendo quindi un’indicazione dell’ampiezza della ‘fascia’ di acqua debolmente adsorbita e quindi la predisposizione del materiale al congelamento: maggiore è l’Indice Plastico del materiale, maggiore sarà la quantità d’acqua contenuta nel sedimento disponibile al congelamento.
In generale, si può quindi dedurre, che l’equilibrio tra le forze descritte e la disponibilità di acqua interstiziale gioca un ruolo determinante nei processi di congelamento di un sedimento coesivo e la loro propagazione all’interno di sedimenti (Henry, 1988).

2.2.2 Unfrozen water

Alle forze di attrazione verso le regioni di congelamento si contrappongono i legami elettrici che tengono le molecole d’acqua unite ai grani solidi, tanto che quelle più strettamente legate non partecipano al processo di cambiamento di fase, costituendo la parte più interna della struttura a guscio e quindi i cosiddetti film di unfrozen water (Farouki, 1988; Konrad 1989; Dashjamts & Altantsetseg, 2011).

Anche in condizioni di congelamento di un sedimento, ad una qualsiasi temperatura inferiore allo zero Celsius (anche fino a -50°C), una certa quantità di molecole d’acqua rimane sempre allo stato liquido. Le molecole che non partecipano al cambiamento di fase sono quelle più vicine ai grani solidi, trattenute dalle forze elettrostatiche nella parte più interna della shell water structure (Horiguchi, 1979; Konrad, 1989; Meunier, 2005).

I film di acqua adsorbita che circondano le particelle solide e che rimangono allo stato liquido rivestono una primaria importanza nel processo di congelamento del sedimento perché sono questi, tra loro interconnessi, che costituiscono il mezzo attraverso cui le molecole d’acqua migrano verso i nuclei di congelamento garantendo la mobilità delle molecole di acqua e lo sviluppo del processo, anche nei sedimenti già parzialmente ghiacciati dove la parte centrale dei pori è già occupata dal ghiaccio (Henry, 1988).

Lo spessore dei film che rimangono allo stato liquido e quindi la quantità di unfrozen water presente ad una data temperatura (T<0°C) dipende da diversi fattori legati al tipo di sedimento (come composizione mineralogica, dimensioni ed eterogeneità delle particelle, tessitura del suolo).
Dalla Santa Giorgia - Effetti sulle proprietà meccaniche, idrauliche e termiche prodotti da scambiatori geotermici nei terreni argillosi: il caso studio della città di Venezia

(Pusch, 1978) e al grado di consolidamento (Konrad, 1989). Inoltre, essa dipende dal contenuto d’acqua (Young, 1963), dal grado di saturazione (Horiguchi, 1979), e dalla concentrazione e tipo di soluto presente nell’acqua interstiziale (Banin e Anderson, 1974; Bing e Ma, 2011). Si tratta comunque di una quantità contenuta: osservando i grafici seguenti (Figura 16 - 17) si vede che già a -5°C la quantità di unfrozen water è intorno al 5-20% a seconda del tipo di sedimento considerato e delle condizioni in cui si trova.

Figura 16: Quantità di unfrozen water al variare della temperatura e della granulometria a sinistra (da Williams, 1988); e al variare dalla tipologia di cationi presenti (da Farouki, 1988).

2.2.3 Temperatura di congelamento di un terreno

In condizioni normali, l’acqua pura congela a 0°C. La temperatura che induce il cambiamento di fase nella parte fluida di un sedimento, che viene quindi identificata come freezing point del sedimento stesso, è qualche grado al di sotto di 0°C, anche considerando come fluido interstiziale l’acqua pura. Questo è dovuto al fatto che l’acqua è dispersa in tantissimi micropori, dove risente delle forze di attrazione generate dalle particelle solide, e dell’interazione elettrica tra grani solidi e molecole d’acqua, che abbassano il punto di congelamento del sistema trifasico costituito da matrice solida, aria ed acqua interstiziale (Bing e Ma, 2011).

Per un dato sedimento, caratterizzato dal punto di vista mineralogico e tessurale, l’abbassamento della temperatura di congelamento è influenzata principalmente dal contenuto d’acqua, dal contenuto e dalla tipologia dei sali disciolti nel fluido, stato di compattazione e carico imposto.

A seconda delle variazioni di temperatura che avvengono all’interno del sedimento, il processo di congelamento di un sedimento può essere suddiviso secondo Bing e Ma (2011) nelle seguenti fasi, come rappresentato in Figura 18:

1) fase precedente alla nucleazione spontanea (T < T_{sn}): l’acqua all’interno dei pori non comincia a ghiacciare fino a che non viene raggiunta la temperatura T_{sn} (temperatura di nucleazione spontanea). Al suo raggiungimento, inizia la formazione di nuclei di ghiaccio che inizialmente coinvolgono poche molecole. In questo stadio il sistema si trova ad una temperatura di pochi gradi inferiore al punto di congelamento di equilibrio del sistema suolo-acqua interstiziale e l’acqua è supercooled (cioè a temperature inferiori a quella di congelamento), in un equilibrio instabile. E’ questa la fase in cui si creano le condizioni di disequilibrio che inducono alla formazione delle prime lenti di ghiaccio, come descritto nel par. 2.2.1;

2) fase di nucleazione spontanea con brusco aumento di temperatura: la temperatura aumenta dal valore a cui avviene la nucleazione spontanea (T_{sn}) fino alla cosiddetta temperatura di congelamento (T_{f}): durante la formazione dei primi nuclei di ghiaccio, viene infatti rilasciato il calore latente, che innalza la temperatura del sistema velocemente fino al raggiungimento del freezing point del sistema suolo-acqua (T_{f}). Se nell’acqua interstiziale sono presenti ioni disciolti, al crescere della concentrazione di sale, cresce la differenza tra T_{sn} e T_{f}. Il freezing point viene raggiunto quindi effettivamente solo se il calore latente rilasciato è sufficiente: se non è così (per basso contenuto d’acqua, che produce quindi una quantità limitata di calore latente nel congelamento della fase iniziale, o per elevato contenuto di sale, e conseguenza T_{sn} è molto più bassa della T_{f} e il fluido interstiziale è in condizioni supercooled molto accentuate) il fenomeno di congelamento si ferma alla fase di formazione delle prime lenti di ghiaccio e non procede.
3) Periodo di equilibrio a temperatura costante: raggiunta la temperatura di congelamento del sistema suolo-acqua interstiziale, mentre si sviluppa in modo stabile il processo di congelamento dell’acqua libera nei pori, la temperatura si mantiene costante per un certo tempo in dipendenza dall’equilibrio instauratosi tra le forze in contrapposizione (di legame elettrico acqua-sedimento da una parte e di attrazione di cristallizzazione verso le lenti di ghiaccio dall’altra);

4) decremento graduale della temperatura: al procedere dell’estrazione del calore dal terreno, una volta che tutta l’acqua libera ha effettuato il cambiamento di fase, il processo di raffreddamento e congelamento procede coinvolgendo anche molecole d’acqua debolmente legata e in fasi successive quelle appartenenti a gusci sempre più interni alla struttura del doppio strato elettrico, pur sempre mantenendo la presenza di una specifica quantità di unforzen water.

E’ in questa ultima fase che, fino a che la temperatura viene mantenuta costantemente sotto lo zero, le lenti di ghiaccio agiscono come nuclei di aggregazione attirando altre molecole d’acqua, cominciando da quelle più ‘disponibili’ a lasciare il precedente legame elettrico con le particelle solide (debolmente adsorbite) (Chamberlain e Gow, 1979). Si instaura quindi una sorta di migrazione di molecole d’acqua verso i nuclei di congelamento in risposta al gradiente di temperatura e al gradiente idraulico, che produce l’accrescimento delle dimensioni delle lenti di ghiaccio (Dashjamts e Altantsetseg, 2011; Perfect, 1991).
2.2.4 Struttura del terreno congelato

Al termine del processo di congelamento del sedimento, quando viene raggiunto l’equilibrio con la temperatura imposta, la struttura del sedimento appare modificata, come schematicamente rappresentato in Figura 14:

- le dimensioni dei macro-pori, all’interno dei quali si sono formate le lenti di ghiaccio, risultano aumentate rispetto alla situazione precedente: le lenti di ghiaccio che vi si sono formate hanno richiamato altre molecole d’acqua, che a loro volta hanno subito il cambiamento di fase con il conseguente aumento di volume, generando nuove tensioni trasversali interne alla struttura e provocando una dilatazione dei pori interessati dal congelamento;

- le particelle solide nell’intorno dei pori dove si sono accresciute le lenti di ghiaccio, subiscono degli spostamenti dovuti all’accrescimento del ghiaccio: vengono quindi compattate lateralmente e aggregate tra loro a causa delle forze interne generate dall’espansione del ghiaccio; inoltre i film liquidi che le circondano risultano più sottili, impoveriti delle molecole d’acqua che hanno partecipato al fenomeno di congelamento.

Il processo di congelamento modifica quindi la struttura interna del sedimento, ed il cambiamento risulta irreversibile: la struttura interna originale viene distrutta dalla dislocazione e diversa spaziatura tra le particelle solide e dalla migrazione forzata delle molecole d’acqua. Il fenomeno di congelamento, con l’espansione volumetrica dovuta al cambiamento di fase dell’acqua intergranulare e alla migrazione delle molecole d’acqua verso i nuclei di congelamento, porta alla formazione di aggregati solidi più grandi e poveri d’acqua (disidratati) tra i quali si interpongono zone di accumulo di acqua ghiacciata (Konrad, 1979; Konrad, 1990; Esch, 2004; Bing e He, 2010).

2.2.5 Fenomeni di congelamento naturale dei terreni

La maggior parte della letteratura presa in esame riguardante i fenomeni di congelamento e scongelamento dei sedimenti, si è sviluppata principalmente per approfondire la conoscenza dei processi e delle conseguenze legate ai naturali processi di congelamento generati dalle alterazioni climatiche stagionali. Questi avvengono solitamente concentrati negli strati più superficiali del terreno, nelle aree del pianeta soggette a temperature invernali più rigide, tali da congelare gli strati superiori del terreno, generalmente interessati da elevati livelli di saturazione. In questi casi la perturbazione termica ha origine dall’atmosfera. La fascia di terreno interessato localmente dai fenomeni di congelamento viene detta frozen fringe ed avanza penetrando dalla superficie in profondità, mentre perdurano le condizioni esterne di temperatura inferiore a quella critica di congelamento.

Uno dei fenomeni che derivano dal congelamento stagionale del terreno viene detto frost heave ed è tipico delle aree soggette a formazione di permafrost: si realizza localmente in corrispondenza delle zone dove è maggiore la presenza di acqua interstiziale, che formano cristalli di ghiaccio di
dimensioni ragguardevoli, provoca la formazione di rigonfiamenti localizzati del terreno che espandendosi generano deformazioni locali in superficie. Il crio-sollevamento può risultare molto dannoso sia per le radici delle piante in cui si generano fratture o essiccamento, ma soprattutto per le opere antropiche, causando rotture e cedimenti differenziali a pavimentazioni, binari ferroviari, strade e fondazioni degli edifici (Figura 19). Il rigonfiamento è in generale maggiore in volume di quanto sia imputabile all’aumento dovuto all’espansione dell’acqua presente in sito durante il passaggio da fase liquida a solida: questo aspetto è spiegabile con l’instaurarsi di richiami di acqua liquida proveniente dagli strati di sedimento più profondi, verso le porzioni di terreno più superficiali in fase di congelamento. Generalmente si è osservato che le lenti di ghiaccio si formano con l’asse maggiore generalmente orientato con assetto parallelo alla superficie (ortogonali alla direzione del gradiente termico).

Figura 19: Effetti prodotti in superficie a causa del fenomeno del frost heave

In Figura 20 viene rappresentata la sequenza caratteristica dei vari gradi di congelamento del terreno: la parte superiore si congela velocemente, a causa del cambiamento di fase dell’acqua presente in situ. Quando però il freezing front oltrepassa lo strato più superficiale e inizia la formazione di lenti di ghiaccio nei livelli sottostanti, esse vengono alimentate ed accresciute dalla migrazione verso il freezing front di molecole d’acqua provenienti da zone limitrofe sature. Nella zona di formazione di una lente di ghiaccio, la temperatura rimane pressoché costante dopo il periodo di nucleazione spontanea, finché le molecole d’acqua, attratte dal gradiente idraulico e termico, congelano a causa del calore latente rilasciato nel cambiamento di fase che contrasta i processi di congelamento, impedendo per un certo periodo l’abbassamento di temperatura (Bing e Ma, 2011). L’aumento di volume di una lente di ghiaccio continua fino a che permane la disponibilità di acqua per accrescerla: il fenomeno si interrompe quindi quando il flusso di molecole d’acqua diventa insufficiente in conseguenza alla riduzione progressiva di permeabilità del sedimento stesso dovuta alla funzione impermeabilizzante del ghiaccio che occupa i pori, oppure quando le condizioni di temperatura necessarie non sono più garantite a causa del rilascio di calore latente.
Quando questo avviene, la temperatura in quella zona decresce improvvisamente e la superficie isotermica scende più in profondità nel terreno. Il freezing front si approfondisce, oltrepassando rapidamente il contiguo livello di sedimento in cui il contenuto d’acqua risulta insufficiente, perché l’umidità precedentemente presente è migrata verso lo strato più superficiale, alimentando la formazione delle lenti di ghiaccio. La frozen fringe si stabilizza così ad un livello più profondo, dove si realizzano le condizioni necessarie per instaurare nuovamente il fenomeno di formazione delle lenti di ghiaccio (Konrad e Morgenstern, 1980; Farouki, 1981; Esch, 2004).

La dimensione che viene raggiunta dalle lenti di ghiaccio è inversamente proporzionale al gradiente di temperatura e quindi alla velocità di avanzamento in profondità del freezing front (Konrad e Morgenstern, 1980). Negli strati di terreno più superficiali si troveranno quindi numerose lenti di ghiaccio di piccole dimensioni, ma al crescere della profondità, la frequenza di lenti diminuisce e la loro dimensione aumenta (Othman et al., 1994).

La penetrata del freezing front all’interno del terreno a partire dalla superficie e la propagazione delle isoterme nell’area del frozen fringe, dipendono principalmente dalla intensità del gradiente termico che provoca i fenomeni di congelamento e delle caratteristiche del terreno: soprattutto la granulometria e la tessitura, il contenuto d’acqua e la permeabilità, in dipendenza anche dal grado di saturazione e dalla viscosità del fluido interstiziale (Henry, 2008).

La struttura del terreno in condizioni ghiacciate risulta a bande alternate: nei livelli più superficiali il terreno appare ghiacciato (le parti fluide), appena più in profondità si riscontra la presenza molto ravvicinata di lenti di piccole dimensioni, a causa di un veloce avanzamento del freezing front, che ne ha impedito la crescita. A seguire, si realizza una successiva alternanza di bande orizzontali ricche di lenti di ghiaccio accresciute e di altre non ghiacciate e quasi prive di acqua (Figura 20): la dimensione degli strati aumenta con l’aumentare della profondità a causa del fatto che man mano diminuisce la forza motrice del fenomeno cioè il gradiente di temperatura (Konrad e Morgenstern, 1980).
Le studio condotto riguarda i fenomeni di congelamento indotto nel terreno circostante da una sonda geotermica in esercizio nel caso in cui siano verificate le necessarie condizioni di temperatura, contenuto d’acqua e permeabilità: dalla ricerca bibliografica riguardante gli aspetti microstrutturali, è possibile ritenere che le lenti di ghiaccio saranno ad asse verticale (poiché ortogonali alla direzione del gradiente di temperatura), di dimensioni dipendenti dalla velocità di variazione di temperatura (più è rapido il gradiente, minori sono le dimensioni delle lenti di ghiaccio) e dalla disponibilità di acqua e permeabilità del terreno.

2.2.6 **Effetti del carico verticale e dello stato di consolidazione**

E’ già stato detto che gli effetti di compattazione e espulsione parziale del contenuto d’acqua dal sedimento a seguito di cicli di gelo e disgelo avviene a causa della presenza anche del carico verticale imposto. Il fenomeno di consolidazione è quindi frutto della combinazione di carico a cui il sedimento viene sottoposto, composta dall’azione combinata di carico verticale e variazione delle condizioni termiche.

La ricerca bibliografica indica che, all’aumentare del carico applicato, la struttura dei sedimenti argillosi diventa più compatta e le particelle si orientano esibendo un orientamento ortogonale alla direzione di stress litostatico: a causa della minore distanza tra le particelle solide e le ridotte dimensioni dei pori, i legami elettrici tra particelle solide e acqua adsorbita risultano più intensi e, sebbene l’indice dei vuoti complessivo diminuisca, la quantità di acqua adsorbita aumenta aumentando anche la quantità di *unfrozen water* come rappresentato in figura 21 (Konrad, 1989a; Konrad, 1989b).

Di conseguenza, se il sedimento viene sottoposto a cicli di congelamento sotto carico verticale maggiore, a parità di altre condizioni, la resistenza opposta dalle condizioni di pressione sul terreno al processo di congelamento della componente fluida sarà maggiore, portando ad una temperatura critica (di congelamento) inferiore ed una maggiore quantità di *unfrozen water*. Inoltre, una volta avviato il fenomeno di formazione delle *ice lenses*, il carico applicato tende ad inibire la formazione del ghiaccio nei macro-pori diminuendo la permeabilità e quindi la mobilità delle molecole d’acqua verso i centri di nucleazione, oltre ad esercitare una pressione di contrasto all’azione espansiva del processo di congelamento.
Figura 21: Effetto di un carico verticale applicato sulla microstruttura del sedimento (Konrad, 1989a)

Anche lo stato di sovraconsolidazione del sedimento e quindi la storia tensionale precedente ai cicli termici, influenza fortemente gli effetti che i cicli di gelo e disgelo generano nella texture del sedimento e i cambiamenti delle proprietà fisiche e meccaniche che ne derivano. In condizioni di sovraconsolidazione, il sedimento argilloso presenta già una struttura compatta, in equilibrio con il massimo carico sperimentato nella sua storia precedente: la maggiore densità fa sì che i fenomeni di congelamento/scongelamento indotti dai cicli termici agiscano sulla fase fluida e sulla struttura stessa in modo differente (Romero et al., 2005; Konrad, 1989a; Konrad, 1989b).

Per quanto riguarda l’effetto deformativo generato su questo tipo di struttura da cicli di gelo e disgelo, recenti ricerche (Qi e al., 2006; Qi e al., 2008) identificano due diversi tipi di comportamento, in relazione alle condizioni di densità iniziale del sedimento (Figura 22 e 23). Viene individuato un valore di densità critico che suddivide i due comportamenti: nel caso in cui la situazione iniziale presenti un valore di densità minore di quello critico (come avviene per i sedimenti argillosi normal-consolidati), il campione subisce un effetto di compattazione e dunque un aumento della densità; al contrario, in caso di sedimenti compatti e sovraconsolidati, essi subiranno una deformazione di dilatazione e quindi una diminuzione della densità.

Il valore critico cambia per ciascun tipo di materiale, ma da queste indicazioni fornite dalla letteratura, è possibile dedurre che, nel caso in cui il sedimento si presenti sovraconsolidato, i cicli termici provocheranno una deformazione di segno contrario a quella registrata nei sedimenti sciolti o normal-consolidati, e quindi subirà un processo di espansione.
Figura 22: Andamento della deformazione volumetrica (rappresentata dalla variazione della densità del materiale sull’asse y) a seguito di cicli di gelo/disgelo al variare della densità iniziale del campione (da Qi e al., 2008).

Figura 23: Andamento della deformazione volumetrica col passare dei cicli di gelo/disgelo (da Qi e al., 2006)

Considerando la sequenza stratigráfica di depositi che circondano una sonda geotermica, il carico verticale è rappresentativo del carico litostatico e quindi della profundità della giacitura del livello di sedimento considerato. Dalle informazioni emerse dalla ricerca bibliografica, si può dedurre che livelli argillosi che si trovano a maggiori profondità (sottoposti quindi ad un carico litostatico maggiore e quindi in condizioni di maggiore compattazione) offriranno più resistenza al congelamento, che avverrà a temperature più basse, e indurrà deformazioni sempre più contenute. Nel caso invece di livelli molto compatti o sovraconsolidati, le variazioni indotte nella struttura dai cicli di congelamento e scongelamento, porteranno a deformazioni di espansione, invece che di compressione. La distinzione dei due comportamenti dipende dall’identificazione del valore di densità critico, variabile a seconda del sedimento.
2.3 **IL PROCESSO DI SCONGELAMENTO**

Quando la temperatura si alza nuovamente, le parti di acqua ghiacciata, concentrate nei pori di maggiori dimensioni, si sciolgono. La maggior parte delle molecole d’acqua che sono migrate a partecipare nei processi di accrescimento delle lenti di ghiaccio non sono più nelle condizioni di re-instaurare i preesistenti legami elettrici con i grani solidi, a causa della loro nuova posizione all’interno della struttura solida (le zone di segregazione del ghiaccio concentrano infatti l’acqua nei pori di maggiore dimensioni), e alla maggiore distanza dalle superfici elettricamente cariche delle particelle solide.

Al risalire della temperatura, a seguito del processo di scongelamento, si realizza un fenomeno di compattazione istantanea importante, in conseguenza a tre componenti che si combinano tra loro: a) la diminuzione istantanea di volume legata al passaggio di fase da ghiaccio ad acqua liquida, b) l’effetto di ri-arrangiamento sotto l’azione del carico verticale, permessa alla struttura solida fino ad acquisire un grado di maggiore compattazione rispetto allo stato indisturbato, permessa dalla improvvisa abbondanza di molecole d’acqua libera intergranulare che ‘fluidifica’ gli spostamenti tra un grano e l’altro e c) la parziale espulsione di fluido interstiziale sotto l’azione del carico verticale (Chamberlain e Gow, 1979; Konrad, 1989; Dashjamts & Altantsetseg, 2011).

Dagli studi presenti in letteratura risulta che, in un sedimento argilloso normal-consolidato che ha subito fenomeni di congelamento e successivo scongelamento, il consolidamento totale indotto al termine dell’intero processo risulta superiore al consolidamento ottenuto nello stesso sedimento sollecitato dallo stesso carico verticale, ma che non ha mai subito il processo di congelamento (Figura 24) (Dashjamts & Altantsetseg, 2011).

2.3.1 Effetto di isteresi

Durante le fasi di gelo-disgelo di un sedimento, si evidenzia inoltre un processo evolutivo delle variazioni dei rapporti di fase del materiale stesso, che risente di effetti di memoria dello stato precedente (Nerpin, 1974). Questo fenomeno, simile ad altri che implicano effetti di isteresi nei materiali, è stato chiamato ‘creep ereditario’ e produce una variazione progressiva dell’assetto strutturale, particolarmente evidente durante i cambiamenti di fase della frazione liquida. La memoria dello stato precedente si manifesta in una variazione della quantità di unfrozen water presente al passaggio di fase seguente. In studi recenti è stata evidenziata la presenza di un effetto di memoria anche nelle curve che rappresentano il calore specifico di un sedimento nei successivi cicli di gelo e disgelo, come del resto è già noto per quanto riguarda i cicli di essicazione e ri-umidificazione.

[Diagrama della variazione della quantità di unfrozen water nel sedimento Leda.]
2.4 **CONDIZIONI DI VARIAZIONE CICLICA DI TEMPERATURA**

A seguito di processi di congelamento/scongelamento ripetuti, le variazioni della struttura del sedimento e i conseguenti cedimenti irreversibili avvengono al termine di ciascun evento di sollecitazione termica. L’effetto prodotto non è però quantitativamente uguale per tutti i cicli termici subiti: da studi descritti in letteratura risulta, infatti, che il primo ciclo termico è il più efficace mentre nei cicli successivi le variazioni tessiturali termo-indotte sono sempre di minore entità (figura 27). Al termine del quarto o quinto ciclo di gelo/disgelo il campione raggiunge uno nuovo stato di equilibrio (Konrad, 1979; Konrad, 1990; Farouki, 1981; Qi et al., 2006; Qi et al., 2008).

Probabilmente questo effetto di attenuazione è da attribuire alle mutate condizioni di legame elettrico che interessa le molecole di acqua coinvolte nei processi di cambiamento di fase. Nel primo ciclo una grande quantità di acqua libera si rende disponibile a congelare, quindi l’espansione del materiale sottoposto al primo ciclo di congelamento risulta molto importante, come anche l’effetto di compattazione conseguente. Nei cicli successivi invece, poiché parte dell’acqua è stata già espulsa per effetto del carico verticale e della avvenuta compattazione, la quantità di acqua libera risulta minore e il processo di congelamento inizia coinvolgendo molecole debolmente legate alle particelle solide, appartenenti ai livelli più esterni del double electrical layer. Nei cicli successivi di congelamento, il processo coinvolge molecole d’acqua appartenenti a livelli sempre più interni della struttura a gusci e quindi sempre più fortemente legate, che offrono sempre maggiore resistenza a migrare verso i nuclei di congelamento.

![Figura 27: Andamento della deformazione volumetrica col passare dei cicli di gelo/disgelo (da Qi, Vermeer, Cheng, 2006)](image)

I cedimenti irreversibili subiti dal sedimento argilloso normalmente consolidato si accumulano ciclo dopo ciclo, fino ad accumulare un cedimento totale irreversibile significativo, accompagnato da un addensamento (Qi et al. 2006).
Inoltre, ad ogni ciclo di sollecitazione termica, aumenta la permeabilità idraulica verticale a causa della dilatazione dei pori e della formazione delle fessure verticali in fase di scongelamento (Chamberlain e Gow, 1979; Othman et al., 1994), come verrà descritto nel par. 2.9.2

2.5 EFFETTI DEI PROCESSI DI RISCALDAMENTO

Per quanto riguarda gli effetti di processi di riscaldamento (considerando con questo termine un aumento di temperatura a partire da quella di riferimento $T=15^\circ C$) sulle proprietà di un sedimento argilloso, Campanella e Mitchell (1968) per primi hanno osservato un effetto indotto di variazione di volume in una illite satura, generato dal riscaldamento e raffreddamento ciclico tra $18^\circ C$ e $60^\circ C$ in condizioni drenate. I dati riportano una compressione irreversibile pari a circa l’1% del volume iniziale del campione, che avviene per la maggior parte al termine del primo ciclo di riscaldamento/raffreddamento (Figura 28). La contrazione è stata attribuita principalmente a variazioni fisico-chimiche irreversibili che avvengono all’interno della struttura del sedimento, necessarie al terreno per sostenere l’avvenuta variazione di tensione efficace applicata in combinazione con la variazioni di pressione dei pori. In presenza di cicli termici ripetuti, anche in caso di aumento della temperatura, la deformazione viene espressa con maggiore intensità durante il primo ciclo di variazione termica, mentre nei successivi l’effetto risulta inferiore.

![Figure 28: Effetto sulle variazioni di volume in condizioni drenate di variazioni di temperatura da $18^\circ C$ (62°F) a $60^\circ C$ (140°F) (da Campanella and Mitchell, 1968).](image)

Più recentemente, sono stati condotti ulteriori studi applicando diversi intervalli di variazioni di temperatura, considerando l’effetto di riscaldamento su sedimenti caratterizzati da differenti valori dei Limiti di Atterberg e capacità di rigonfiamento, considerando diversi gradi di
sovraconsolidazione (Abuel-Naga et al., 2007; Cekerevac e Laloui, 2004; Burgugnoli et al., 2000). I risultati hanno dimostrato che l’entità delle variazioni volumetriche indotte da modificazioni di temperatura in materiale di natura argillosa dipendono in gran parte dalla precedente storia tensionale (stato di consolidamento) e dalle variazioni di pressione dei pori in relazione alla temperatura subita (Towhata et al., 1993; Gabrielsson et al., 1997; Moritz, 1995). Gli effetti dipendono ovviamente anche dalla composizione mineralogica dei sedimenti analizzati, indirettamente rappresentati nel valore dell’indice di plasticità (Figura 29b) e nel grado di attività del sedimento. Anche nel caso del riscaldamento, la deformazione indotta dipende fortemente dallo stato di sovraconsolidazione del sedimento (figura 29a). Per condizioni di sovraconsolidazione, la deformazione indotta cambia segno e invece di indurre compressione, si assiste ad una espansione del materiale.

Figura 29: Effetto sulle variazioni di volume di variazioni di temperatura a partire da 20°C di sedimenti coesivi a diverso grado di consolidamento (a) (Cekerevac e Laloui 2004) e (b) in dipendenza dell’indice plastico (da Abuel-Naga et al., 2007).
Nell’ambito di tipologie di sedimenti e intervalli di temperatura che possono essere simili a quelli considerati nel corso di questo studio, la letteratura evidenzia che sedimenti limo-argillosi di tipo normal-consolidati come quelli tipici della sequenza litostratigrafica veneziana e caratterizzati da indice di plasticità basso (nel range compreso tra 8 e 20), quando esposti ad un incremento della temperatura ΔT pari a 65-70$^\circ$ C a partire da una temperatura di partenza T_0 pari a 20$^\circ$C mostrano contrazioni volumetriche irreversibili di circa l’1% del volume iniziale (Abuel-Naga et al., 2007; Cekerevac e Laloui 2004) (Figura 29).

Considerando la composizione mineralogica dei materiali testati, mentre i risultati presenti in letteratura in alcuni casi si riferiscono a campioni di illite pura, nel caso presentato nello studio di dottorato i sedimenti sono caratterizzati da un contenuto medio ponderale di fillosilicati pari a circa 30%, per la maggior parte costituiti da illite e clorite. Quindi l’effetto di compattazione atteso dovuto al riscaldamento è estremamente contenuto.

2.6 STATO DI RI-EQUILIBRIO FINALE

Riassumendo, dalla revisione bibliografica emerge che, se un livello a prevalente matrice limoso-argillosa viene sottoposto all’azione di una combinazione di carico composta da carico verticale e cicli termici che inducono processi di congelamento e scongelamento-riscaldamento, la struttura stessa del sedimento si adatta fino a raggiungere, in condizioni drenate, un nuovo stato in equilibrio con la sollecitazione subita. I fenomeni connessi con il congelamento della parte fluida del sedimento, combinati con l’azione del carico verticale, modificano la struttura del sedimento, portando alla formazione di aggregati solidi di maggiori dimensioni, allargando i macro-pori, e diminuendo il contenuto d’acqua del sedimento. La variazione della struttura è irreversibile: anche nel caso in cui le condizioni di temperatura vengano riportate allo stato iniziale, la struttura del materiale precedente alla sollecitazione termica non viene recuperata.

Se la sollecitazione termica viene ripetuta, il processo di adattamento del sedimento e le modificazioni acquisite dalla struttura del sedimento continuano e si accumulano ciclo dopo ciclo, anche se l’effetto è massimo a seguito del primo ciclo termico, mentre per i successivi risulta sempre di minore entità. Quindi, da una parte basta un solo ciclo di congelamento per disturbare la struttura del sedimento precedente, e dall’altra, lo stato di equilibrio con le sollecitazioni subite viene raggiunto dopo un certo numero di cicli (5-7).

Il nuovo stato di equilibrio è caratterizzato anche da una diversa densità/grado di compattazione del sedimento: la modifica della struttura è infatti combinata con un effetto di deformazione di compattazione nei sedimenti sciolti e normal consolidati, e di dilatazione nei depositi che si presentano molto compatti o sovraconsolidati.

Inoltre lo stato di equilibrio è caratterizzato anche da un inferiore contenuto d’acqua.

Anche sollecitazioni termiche di riscaldamento inducono processi di compattazione nei sedimenti sciolti, e di dilatazione in quelli compatti o sovraconsolidati.
2.7 **Processi di Congelamento in Terreni Argillosi in Ambiente Salino**

Fino ad ora è stato descritto il processo di congelamento e successivo scongelamento di terreni senza considerare le caratteristiche chimiche del fluido interstiziale. In generale, i principali effetti della presenza di sali nell'acqua interstiziale di un sedimento sono l'abbassamento della temperatura di congelamento e l'aumentare della quantità di *unfrozen water* presente ad una data temperatura, fermo restando le altre condizioni. Gli effetti cambiano a dipendenza della tipologia di sali presenti e della loro concentrazione (Marion, 1995; Bing e Ma, 2011; Hivon e Sego, 1995; Henry, 1988).

2.7.1 Soluzioni saline bi-fasiche

Osservando un diagramma di fase di una soluzione bi-fasica (acqua con un sale discolto) a temperature inferiori allo zero, si osserva che il processo di congelamento ha l’effetto di ‘separare’ i due elementi presenti in soluzione: a seconda della temperatura e della concentrazione iniziale di sale presente nella soluzione, si forma da una parte ghiaccio, che precipita per la maggior parte come puro (contiene solo molecole d’acqua) a causa del cambiamento di fase dovuto alle basse temperature. Contemporaneamente parte del sale precipita in fase solida, e una parte rimane in soluzione come ioni disolventi. Le quantità relative di sale che precipita e quello che rimane in soluzione dipendono dalla concentrazione di saturazione della soluzione a quella data temperatura: in soluzione i sali si trovano separati in anioni e cationi e si dicono quindi idrati, poiché le cariche elettriche attraggono le molecole polari di acqua che li circondano. Quando la concentrazione supera il valore di saturazione, gli ioni in eccesso si legano e precipitano formando cristalli di sale.

In Figura 30 si rappresenta il diagramma di fase di una soluzione di Na-Cl – H₂O a temperature inferiori allo 0°C. Le linee nere rappresentano lo stato di equilibrio tra le due fasi solide che vengono a formarsi e la soluzione liquida, al variare della temperatura. L’andamento curvo della linea di equilibrio dimostra che la temperatura di congelamento della soluzione man mano diminuisce all’aumentare della concentrazione della soluzione.

Seguendo le frecce rosse, si osserva che a partire da una soluzione con una concentrazione pari a 1mol/kg, al diminuire della temperatura, intorno ai 3°C comincia la formazione del ghiaccio, che precipita puro, mentre la soluzione si arricchisce di sali, aumentando la concentrazione. La temperatura di congelamento della fase liquida residua diminuisce a causa della aumentata concentrazione del sale. Il processo continua, fino ad arrivare al punto eutettico, dove coesistono le due fasi solide ghiaccio ‘puro’ e sale precipitato in quantità definite. A seconda della molalità iniziale della soluzione (maggiore o minore della molalità corrispondente al punto eutettico), cambia non solo la temperatura di congelamento ma anche la quantità di fase solida che si forma (Marion, 1995).
La tipologia e la valenza elettrica del sale presente (monovalente o bivalente) influenzano l’abbassarsi della temperatura di congelamento. L’equazione di Van’t Hoff (figura 31) rappresenta la curva di limite inferiore dello stato di equilibrio ghiaccio-soluzione. Dall’equazione si discostano maggiormente le soluzioni che si dissoino in ioni con valenza maggiore (Mg > Na), vale a dire che questo tipo di sali hanno minore influenza sulla soluzione, che presenta temperature di congelamento più vicine allo 0°C. L’effetto aumenta all’aumentare della molalità.

Figura 30: Diagramma di fase per una soluzione Na-Cl – H₂O a temperature inferiori allo 0°C. (Marion, 1995)

Figura 31: Abbassamento delle temperature di congelamento di diverse soluzioni, al variare della molalità e linea di Van T’Hoff. (Marion, 1995)

Possiamo quindi concludere che in una soluzione bifasica, gli effetti principali della presenza del sale sono (Marion, 1995; Henry, 1988; Hivon e Sego, 1995):
L’abbassamento della temperatura di congelamento, rispetto a quella che si avrebbe se il fluido interstiziale fosse privo di sali, in misura dipendente dalla concentrazione;

il fenomeno di esclusione dei sali dalla formazione del ghiaccio, e l’effetto derivato di aumento della concentrazione di sali nella fase liquida residuale al diminuire della temperatura, che ne abbassa conseguentemente il freezing point;

a seconda della valenza degli ioni dischiusi, gli effetti variano: le soluzioni che contengono ioni a valenza maggiore (Mg>Na) presentano effetti di abbassamento della temperatura inferiori, vale a dire subiscono il cambiamento di fase a temperature più vicine allo 0°C, e all’aumentare della molalità gli andamenti delle linee di equilibrio si discostano maggiormente.

2.7.2 Effetti della presenza di sale nei fluidi interstiziali di un sedimento

Gli andamenti descritti nei diagrammi di fase delle soluzioni pure non possono essere applicati direttamente ai fluidi interstiziali presenti in un sedimento coesivo, perché non considerano l’interazione elettrica tra le particelle solide e le molecole d’acqua.

Queste interazioni rivestono invece una fondamentale importanza nel determinare il comportamento del sedimento nel suo complesso, composto da matrice solida e fluido interstiziale che si influenzano attraverso l’interazione elettrica. Nella soluzione interstiziale in prima approssimazione avvengono i processi descritti nella soluzione bifasica: l’esclusione dei sali presenti nel fluido interstiziale dal processo di congelamento fa sì che da una parte si formi ghiaccio formato da sola acqua (che si concentra quindi nei macropori dove si formano e si ingrossano le lenti di ghiaccio) e dall’altra, il sale rimane in soluzione nella unfrozen water, aumentandone la concentrazione abbassandone il punto di congelamento, e in parte precipita nel caso in cui venga superata la concentrazione di saturazione, cristallizzando sulle particelle solide che fungono da nuclei di aggregazione dei processi di cristallizzazione dei sali residuali (Banin e Anderson, 1974).

Gli effetti della presenza di sali dischiusi nel fluido interstiziale di un terreno, o cristallizzati all’interno della struttura delle particelle solide, hanno particolare influenza sulle proprietà meccaniche ed idrauliche del sedimento nel suo complesso, e sull’evoluzione dei processi di congelamento. I principali effetti della presenza di sali si riscontrano sulla forza dei legami elettrici tra molecole d’acqua e ioni in soluzione e tra matrice solida e soluzione interstiziale adsorbita, influenzando di conseguenza il comportamento fisico e la mobilità della soluzione interstiziale. La presenza di sali agisce sulla distribuzione e migrazione delle molecole d’acqua all’interno del mezzo poroso: sia condizionando lo spessore dei film liquidi (che dipende dalle forze di attrazione elettrica), e quindi anche la capacità di trasporto del mezzo poroso, sia influenzando le forze motrici degli spostamenti, modificando l’intensità e la distribuzione spaziale dei gradienti chimici e idraulici. Dall’altra parte, la presenza di sali nel fluido interstiziale cambia la chimica del sedimento e la sua stessa struttura, che può assumere carattere flocculato o disperso, e quindi maggiore o minore rigidezza. Infine, agisce direttamente sui processi di congelamento abbassando
direttamente il valore della temperatura a cui inizia il processo di nucleazione spontanea del ghiaccio e, in conseguenza al fenomeno di esclusione dei sali dalla formazione del ghiaccio, i processi di congelamento della rimanente unfrozen water (Farouki, 1981; Henry, 1988).

2.7.2.1 Effetti sulla struttura del sedimento

E’ noto che le proprietà elettrostatiche dei minerali argillosi, connesse alla loro struttura cristallografica, interagiscono con le molecole ioniche incluse quelle dell’acqua che esibiscono un carattere polare. Tali forze di natura elettrostatica decrescono drasticamente all’aumentare della distanza. Le superfici delle particelle dei minerali argillosi risultano cariche negativamente, provocando l’orientamento delle molecole d’acqua in prossimità: quelle più vicine diventano dei dipoli e vengono attratte fortemente, andando a formare così un primo strato molto prossimo e fortemente legato elettricamente alla particella, che presenta una struttura estremamente ordinata, quasi paragonabile a quella del ghiaccio (Meunier, 2005).

Nel caso dei fillosilicati infatti, le cariche elettriche superficiali (negative) esercitano anche una forza di attrazione sui cationi presenti in soluzione ed una di repulsione verso gli anioni, che vengono allontanati e si concentrano ad una certa distanza dalla superficie piana della particella. Il numero di cationi presenti quindi decresce all’aumentare della distanza dalla superficie, mentre il numero di anioni aumenta (effetto di Workmann-Reynolds) (Perfect, 1991; Meunier, 2005). Questo effetto è particolarmente evidente nei sedimenti con particelle molto cariche elettricamente come montmorillonite, o altri tipi di smectite, ecc. dove la superficie respinge con forza gli anioni (–) e attira i cationi (+), formando in prossimità della superficie delle particelle una zona a concentrazione di sale controllata dalla superficie del minerale e non dalla salinità della soluzione, tanto che la concentrazione degli anioni raggiunge il massimo ad una certa distanza, che corrisponde proprio all’interfaccia tra ghiaccio e unfrozen water.

All’interno del diffuse-double-layer (figura 32) i cationi presenti disturbano i legami idrogeno e producono una ri-organizzazione della struttura dell’acqua. I dipoli costituiti dalle molecole d’acqua si orientano attirati dai cationi, formando un doppio strato elettrico maggiormente compattato: in presenza di sali disciolti nel fluido interstiziale la struttura risulta dunque più forte, più sottile e di conseguenza dotata di una minore libertà di movimento.

Lo spessore del doppio strato elettrico e la struttura stessa del sedimento sono fortemente influenzati dalla natura (valenza, che determina anche il raggio di uno ione) e concentrazione della tipologia dei cationi presenti in soluzione. Anche gli anioni provocano l’orientamento dei dipoli, ma essendo lontani dalla superficie solida, il loro effetto risulta più blando (Perfect, 1991; Meunier, 2005; Bing e Ma, 2011).
Figura 32: Il campo elettrico esercitato dalla superficie delle particelle, carica negativamente: a) la formazione del legame con i cationi e l’orientazione delle molecole polarizzate (acqua). b) andamento del numero di cationi e anioni con la distanza, considerandoli puntiformi (Meunier, 2005).

Per terreni naturali la natura e la valenza dei sali presenti in soluzione nel fluido interstiziale sono dati sia dall’ambiente di deposizione (marino, quindi con elevata concentrazione, oppure di acqua dolce, quindi con inferiori concentrazioni), sia dalle caratteristiche della soluzione interstiziale del momento. La struttura cristallina dei minerali argillosi è costituita da ‘pacchetti paralleli’, chiamati ‘aggregati’, connessi tra loro da ‘ponti’ di particelle più sottili che formano la parte più debole della struttura.

La concentrazione di elettroliti presenti, e la quantità relativa di Na⁺ rispetto a quella di cationi bivalenti, condizionano la texture del sedimento. La struttura risulta dispersa nel caso in cui la concentrazione di ioni Na⁺ sia prevalente in situazioni di basse concentrazioni. Negli altri casi (predominanza di cationi bivalenti o alte concentrazioni di sale in genere) predomina la struttura flocculata. Inoltre, la modifica della struttura del sedimento dovuta alla presenza di elementi chimici disciolti, fa variare di conseguenza le proprietà meccaniche e idrauliche (figura 33), il contenuto d’acqua e la velocità di migrazione delle molecole d’acqua, e quindi l’evoluzione dei processi di congelamento:

- In presenza di cationi monovalenti (K⁺, Na⁺) o basse concentrazioni di elettroliti (ambiente di deposizione continentale) l’interstrato fillosilicatico nel quale vengono adsorbiti le molecole ioniche risulta più spesso formandosi aggregati ionici più piccoli, più porosi e disordinati, con una maggiore quantità di vuoti. Gli aggregati si posizionano parallelamente agli strati della tipica geometria cristallografica, formando una struttura che viene detta dispersa. Questa struttura è caratterizzata da scadenti proprietà meccaniche come bassa rigidità e bassa resistenza, inferiore permeabilità ed elevata capacità di rigonfiamento (Pusch, 1979);
- In presenza di cationi bivalenti (Mg⁺⁺, Ca⁺⁺) o concentrazioni molto elevate di elettroliti, quindi in un ambiente di deposizione marino, lo strato adsorbito risulta sottile, lo spessore
dei film si riduce e la struttura a gusci concentrici risulta schiacciata a causa della maggiore attrazione elettrostatica. Di conseguenza, le forze di attrazione elettrica vengono risentite anche tra un aggregato e l’altro (tra la parte piana carica negativamente del primo e una estremità, carica positivamente, del secondo). La struttura del sedimento è quindi formata da aggregati grossi e solidi, con larghi vuoti tra uno e l’altro: essa presenta una configurazione rigida che viene detta **floculata**, quasi come se il sedimento avesse una grana maggiore. In questo caso il sedimento presenta migliori caratteristiche meccaniche, come elevata resistenza meccanica e rigidezza (bassa deformabilità), limitato rigonfiamento e maggiore permeabilità (Pusch, 1979; Meunier, 2005).

Figura 33: Illustrazione schematica della struttura dispersa (a) (formazione in ambiente continentale) e floculata (b) (formazione in ambiente marino) (Pusch, 1979).

In caso la concentrazione ionica del fluido interstiziale sia piuttosto elevata, qualora gli effetti di esclusione dei sali nei processi di cristallizzazione del fluido interstiziale porti a superare la concentrazione di saturazione nell’**unfrozen water**, una certa quantità di sali possono precipitare depositandosi sulle particelle solide (Banin e Anderson, 1974).

Quando si calare della temperatura, mentre comincia a formarsi ghiaccio ‘puro’, la **unfrozen water** si arricchisce degli ioni esclusi dal fenomeno di congelamento, se la concentrazione supera la concentrazione di saturazione a quella data temperatura parte degli ioni cristallizzano formando sali che precipitano appoggiandosi alle particelle solide di sedimento. I sali precipitati possono andare a colmare vuoti presenti nella singola particella solida, formando con essa nuovi legami elettrici ed entrando a far parte del reticolo cristallino. Oppure possono andare a riempire degli spazi presenti tra particella e particella. Il risultato è comunque un aumento della rigidezza della struttura del sedimento. La cristallizzazione di una parte dei sali avviene quando la concentrazione supera quella di saturazione: quindi sia quando aumenta il contenuto di ioni (apporto di nuovi ioni dischiolti), sia quando diminuisce l’acqua a causa dei fenomeni di congelamento (parte dell’acqua ghiaccia e viene quindi sottratta alla soluzione), oppure a causa della perdita d’acqua per consolidazione del sedimento, per disidratazione ecc. (Meunier, 2005; Henry, 1988; Bing e He, 2011; Perfect, 1991).
Si è già detto che il processo di esclusione dei sali dalla formazione del ghiaccio porta ad aumentarne la concentrazione nella soluzione rimanente, abbassandone così ulteriormente il suo punto di congelamento nel ciclo termico successivo (Konrad, 1989c). Diversi studii sono stati effettuati in passato per stimare l’abbassamento del punto di congelamento di un sedimento a causa della presenza di sali. Inizialmente, i primi ricercatori consideravano solo l’influenza della concentrazione e tipologia dei sali presenti, senza valutare l’influenza della tipologia di sedimento. Banin e Anderson (1974) per primi formulano una equazione per esprimere l’abbassamento della temperatura di congelamento del fluido interstiziale (θ) che valga in un certo range di concentrazione (e), studiando diversi tipi di sale (considerando sali 1-1 tipo NaCl, sali 1-2 tipo CaCl$_2$ e sali 2-2 tipo MgSO$_4$) al variare del contenuto d’acqua (W_u).

Il modello utilizzato è del tipo:

$$\theta' = \frac{a \ast e}{W_u}$$

dove θ' è la diminuzione della temperatura di congelamento in gradi Kelvin, a è il parametro di taratura), e è l’ordine di grandezza della concentrazione di sale e W_u è il contenuto d’acqua.

Dal confronto con i risultati sperimentali il parametro risulta dipendente dalla valenza degli ioni presenti cioè a seconda del tipo di sale (tabella 1). Inoltre, alle basse concentrazioni di sale emerge un buon accordo tra dati misurati e stimati tramite modellazione, mentre alle alte concentrazioni la variazione misurata del freezing point risulta maggiore di quella stimata dal modello. Questa differenza viene attribuita dagli stessi autori alla omogeneità/disomogeneità della distribuzione dei sali nella soluzione, che per la prima volta si ipotizza influenzi la variazione del freezing point (la totale omogeneità nella distribuzione di sali era infatti una ipotesi di base del modello di equazioni).

<table>
<thead>
<tr>
<th>concentrazione</th>
<th>contenuto d'acqua</th>
<th>freezing point shift</th>
</tr>
</thead>
<tbody>
<tr>
<td><0.1 meq/100g solido</td>
<td>10^{-3}</td>
<td>0.01g/g solido</td>
</tr>
<tr>
<td><1 meq/100g solido</td>
<td>10^{-2}</td>
<td>0.1g/g solido --> 10%</td>
</tr>
<tr>
<td>>1 meq/100g solido</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Il risultato principale di questo primo approccio al problema è il fatto di aver evidenziato l’importanza dell’interazione elettrica tra superficie del sedimento e elettroliti presenti nel fluido interstiziale nei processi di congelamento: non solo quindi si deve tener conto del contenuto d’acqua iniziale e della concentrazione e della tipologia dei sali presenti nel fluido interstiziale ma
Cap. 2 Effetti termo-mecanici nei materiali coesivi

anche della tipologia del sedimento considerato ovvero della sua composizione mineralogica (Banin e Anderson, 1974).

![Diagram](image)

Figura 34: Abbassamento della temperatura di congelamento della soluzione intergranulare dovuta all’aumento della concentrazione di sale nella soluzione calcolata con l’equazione descritta, al variare del contenuto d’acqua: a) range delle basse concentrazioni, b) range delle alte concentrazioni (Banin e Anderson, 1974).

Successivamente, Yong et al. (1979) evidenziano l’esistenza di un duplice effetto della presenza di sali nella soluzione interstiziale, a seconda della tipologia del legame elettrico che interessa le molecole d’acqua coinvolte, dovuto alla distanza dai grani solidi (Figura 35). Se si considerano le molecole d’acqua fortemente legate alle particelle (quindi molto vicine ad esse), la presenza di soluti dischiolti aumenta l’intensità delle forze di attrazione elettrica tra le superfici solide e la soluzione: i film liquidi risultano quindi appiattiti e resi più sottili dall’aumentata interazione, portando alla riduzione del volume d’acqua influenzato dalle forze attrattive. Questo elemento, preso da solo, porterebbe alla riduzione della quantità di unfrozen water presente ad una fissata temperatura (Figura 35 lato destro). Viceversa, nella soluzione libera all’interno dei macropori l’effetto del soluto è simile a quello che avviene in una soluzione pura: si riduce la temperatura di congelamento e di conseguenza aumenta la quantità di unfrozen water (Figura 35 lato sinistro). Il primo effetto predomina a concentrazioni di sale molto basse e in caso di sedimenti
con un indice di attività molto elevato (argille attive: smectite, montmorillonite ecc), dove in effetti il volume di acqua legata ai grani solidi è predominante, mentre il secondo effetto prevale negli altri casi (illite, clorite).

Concludendo, questi primi studi sottolineano che il punto di congelamento di un sedimento è determinato non solo dalla tipologia e concentrazione di sali nella soluzione interstiziale ma anche dalla tipologia del sedimento (principalmente dalla granulometria e composizione mineralogica), oltre che dal contenuto d’acqua.

Recentemente, Bing e Ma (2011) hanno condotto un vasto programma sperimentale per confrontare gli effetti di varie tipologie di soluti sul fenomeno di congelamento di quattro tipi di sedimenti a diversa granulometria. In generale, il punto di congelamento aumenta all’aumentare del contenuto d’acqua e decresce all’aumentare della concentrazione di sale, indipendentemente dal tipo di sale presente in soluzione.

Nelle figure seguenti sono rappresentati i risultati sperimentali ottenuti da Bing e Ma (2011) riguardo alla differenza di abbassamento del punto di congelamento di una argilla limosa dovuta alla presenza in soluzione di sali di NaCl o di CaCl\(_2\), al variare del contenuto d’acqua iniziale (Figura 36) o della concentrazione di sale (Figura 37).

Dai risultati presentati emerge che, per una argilla limosa:

- a parità di contenuto d’acqua, all’incremento della quantità di sale discolta, la temperatura di congelamento continua a decrescere;
- a bassi contenuti d’acqua (W = 10%) la differenza nella temperatura di congelamento in terreni caratterizzati da diverse concentrazioni saline è maggiore che a grandi contenuti d’acqua (W = 50%). Si può quindi dedurre che l’influenza della concentrazione di sale è maggiore di quella del contenuto d’acqua. La differenza diminuisce all’aumentare del contenuto d’acqua (Bing e Ma, 2011).
Figura 36: Abbassamento delle temperature di congelamento per una argilla limosa, al variare del contenuto di sali presente: a) NaCl e b) CaCl (Bing e Ma, 2011). In figura sono evidenziati in blu i valori corrispondenti a W = 10% e a W = 50%. In rosso si evidenzia il contenuto d’acqua pari a W = 30%, corrispondente all’incirca al valore di contenuto d’acqua presente negli esperimenti condotti nel corso di questo studio, rappresentativo inoltre delle condizioni in situ nel sottosuolo veneziano.
Nella determinazione del punto di congelamento di un certo sedimento, la concentrazione salina sembra essere l’elemento più influente (rispetto al contenuto d’acqua). La presenza di sale nella soluzione interstiziale, influenza il tipo di legame tra i grani solidi e le caratteristiche della unfrozen water, svolgendo un ruolo fondamentale in tutti i processi.

Se si considera l’influenza di diversi tipi di sale presenti nella soluzione interstiziale, Farouki (1988) afferma che la stabilità termodinamica del doppio strato elettrico di una particella è determinato dalla carica elettrica degli ioni che la compongono. Quindi, al crescere della valenza dei cationi, aumenta la ‘superficie attiva elettricamente’: ad esempio una argilla con presenza di calcio (bivalente) nell’acqua interstiziale veicolerà maggiormente la migrazione di molecole d’acqua durante il congelamento rispetto ad una condizione con presenza di ioni sodio (monovalente), risultando così il primo meno influente nel contrastare il fenomeno di congelamento del secondo. Quindi, anche secondo Bing e Ma (2011), l’NaCl appare avere l’influenza maggiore sull’abbassamento del punto di congelamento del sedimento e si può riconoscere una efficacia diversa dei vari ioni (Figura 38), che risulta essere per gli anioni: Cl⁻ > CO₃²⁻ > SO₄²⁻, mentre per i cationi: k⁺ > Na⁺ > Ca²⁺ (Bing e Ma, 2011).

Le variazioni di efficacia però sono diverse a seconda della tipologia di sedimento considerato.

Figura 37: Abbassamento delle temperature di congelamento per una argilla limosa, al variare del contenuto di sali presente a) NaCl e b) CaCl₂ (Bing e Ma, 2011). In rosso sono segnalati i valori di contenuto d’acqua (W = 30% circa) e gli estremi di salinità (S = 1% e S = 3% circa) testati negli esperimenti condotti.
Figura 38: Influenza sulla temperatura di congelamento di una argilla limosa, al variare della tipologia e concentrazione di sali presente (Bing e Ma, 2011)

Quindi, per quanto riguarda l’influenza dei vari tipi di sale si può concludere che:

✓ Si può riconoscere una efficacia diversa dei vari ioni, che risulta essere:
 a. per gli anioni: Cl⁻ > CO₃²⁻ > SO₄²⁻;
 b. per i cationi: k⁺ > Na⁺ > Ca²⁺.

✓ L’aumentare o il diminuire dell’effetto a seconda della concentrazione di sale, dipende dal tipo di sedimento testato.

La stessa ricerca è stata effettuata da Bing e Ma (2011) considerando altri sali e altri tipologie di sedimenti sciolti e coesivi (un loess, una sabbia limosa e una sabbia).

Se si considerano diverse tipologie di sedimenti, si può dire che a parità di concentrazione di sale e bassi contenuti d’acqua (Figura 39 a), i sedimenti che presentano una granulometria minore (loess) presentano una maggiore sensibilità e quindi un abbassamento più ampio della temperatura di congelamento. Maggiore è la clay fraction, caratterizzata da particelle con una
maggiore area specifica, maggiori le forze di attrazione elettrica con le molecole in soluzione e maggiore l’ampiezza dei film attorno alle particelle solide, che porta ad abbassare la temperatura di congelamento. Al crescere del contenuto d’acqua le disparità di reazione tra le diverse tipologie granulometriche di sedimenti diminuisce (perché risulta una inferiore concentrazione data dal fatto che il medesimo contenuto di sale è discolto in maggiori quantità di acqua).

![Figura 39: Influenza sulla temperatura di congelamento di una argilla limosa al variare del contenuto d’acqua, un loess e una sabbia, a parità di tipologia e concentrazione di sali presente. (Bing e Ma, 2011)](image)

Si riassumono di seguito le conclusioni che si possono trarre dalla letteratura circa gli effetti della presenza di sali nel fluido interstiziale sui fenomeni di congelamento di un sedimento:

- Indipendentemente dal tipo di sale, e dal tipo di sedimento, all’aumentare della concentrazione, la temperatura di congelamento del sedimento decresce;
- Il punto di congelamento aumenta al crescere del contenuto d’acqua;
- La concentrazione di sale è l’elemento maggiormente influente sulla definizione della temperatura di congelamento (in misura maggiore del contenuto d’acqua): nei terreni coesivi l’effetto di depressione del freezing point aumenta all’aumentare del contenuto di sale. La differenza è più contenuta nel caso di elevati contenuti d’acqua;
- A bassi contenuti d’acqua (W = 10%), la differenza nella temperatura di congelamento in terreni caratterizzati da diverse concentrazioni saline è maggiore che a grandi contenuti d’acqua (W = 50%). L’influenza della concentrazione di sale nei processi di congelamento è quindi maggiore di quella del contenuto d’acqua.
- Considerando la concentrazione di sale costante, all’aumentare del contenuto d’acqua la temperatura di congelamento aumenta, fino a raggiungere un certo valore che poi si mantiene costante.
- Si può riconoscere una influenza diversa dei vari ioni nei processi di freezing, che risulta essere per gli anioni: Cl⁻ > CO₃²⁻ > SO₄²⁻ e per i cationi: k⁺ > Na⁺ > Ca²⁺.
- A parità di contenuto d’acqua e di sale, il punto di congelamento di un sedimento coesivo è inferiore di quello di una sabbia. L’influenza della granulometria comunque decresce all’aumentare del contenuto d’acqua.
2.8 Effetti delle variazioni cicliche di temperatura sulla resistenza a compressione di un sedimento argilloso

Numerosi autori si sono occupati di investigare la relazione tra sollecitazione verticale e deformazione indotta in suoli ghiacciati, al variare del contenuto di sale. Dal punto di vista della resistenza a compressione, i suoli salati ghiacciati occupano una posizione intermedia tra i suoli ghiacciati e quelli non ghiacciati perché il cambiamento di fase avviene a temperature inferiori, ed inoltre la quantità di unfrozen water (a parità di altre condizioni) è maggiore che nel medesimo sedimento a temperature superiori a quella critica, ma privi di sale nel fluido interstiziale (Hivon e Sego, 1995; Hass et al., 2006; Bing e He, 2011).

Bing e He (2011) hanno effettuato una serie di esperimenti di compressione uniaxiale su il Lanzhou loess, per studiare la tipologia di rottura, la resistenza massima e la corrispondente deformazione acquisita, considerando diversi valori di concentrazione di sale, contenuto d’acqua e numero di cicli di gelo/disgelo. Confrontando inizialmente dei campioni di terreno con medesima concentrazione di sale e diversi contenuti d’acqua (W = 7%, W = 10% e W = 15%) gli autori osservano che (Figura 40):
- sebbene a basse deformazioni il terreno presenti andamenti della deformazioni anche di tipo plastico (rappresentate all’interno del cerchio nel grafico), al punto di rottura (evidenziato in figura con una X) il loess salato ha un comportamento fragile, con diminuzione ripida della resistenza subito dopo aver raggiunto il valore massimo;
- al crescere del contenuto d’acqua la massima resistenza diminuisce mentre aumenta la deformazione corrispondente. La ripidità della curva diminuisce al crescere del contenuto d’acqua (quindi a maggiori contenuti d’acqua, la rottura è meno fragile, pur considerando intervalli di valori di contenuto d’acqua modesti).

Figura 40: Curva sollecitazione-deformazione del loess salato con contenuti d’acqua crescenti e pari rispettivamente a W = 7%, W = 10% e W = 15% e medesima concentrazione di sale NaSO₄ (da Bing e He, 2011).
Confrontando invece la tipologia di rottura e l’andamento della curva di sollecitazione/deformazione tra campioni con il medesimo contenuto d’acqua (W = 15%), e concentrazione di sale (pari al 2%), quando il materiale è sottoposto a cicli di gelo e disgelo (Figura 41) gli autori osservano che:

* se il terreno subisce processi di gelo/disgelo, il valore di massima resistenza a compressione è di molto inferiore rispetto a quello del sedimento che non ha mai subito congelamento (la curva corrispondente al terreno che ha subito 8 cicli termici (C=8) ha un punto di massima resistenza molto inferiore a quella di riferimento rappresentativa del terreno che non ha mai subito cicli di gelo e disgelo (C=0));
* la forma della curva inoltre cambia quando il materiale subisce cicli termici (a partire da C=2 in su):
 - la pendenza iniziale (modulo elastico) della curva diminuisce: allo stesso carico aumenta la deformazione indotta nel medesimo materiale, e la differenza maggiore è tra la curva C=0 e quella C=2, mentre tra le curve corrispondenti a più cicli di gelo/disgelo l’incremento di deformazione corrispondente al medesimo sforzo è molto contenuta;
 - l’area di comportamento plastico presente a bassi livelli di carico nel materiale che non ha mai subito congelamento C=0 (che si realizza in corrispondenza di una sollecitazione di 40kPa) scompare (il provino subisce infatti un riarrangement dovuto ai cicli che elimina la plasticità);
 - attorno al valore di massima resistenza il comportamento diventa più plastico;
* all’aumentare del numero di cicli gelo/disgelo:
 - il modulo iniziale decresce, cioè alla stessa sollecitazione corrisponde una maggiore deformazione;
 - la massima resistenza diminuisce e diminuisce anche la deformazione corrispondente.

![Figura 41: Curva sollecitazione-deformazione del loess salato dopo cicli di gelo/disgelo, con (W = 15%) e concentrazione di sale NaSO₄ pari a 2%. Il valore riportato di ‘C’ rappresenta il numero di cicli di gelo/disgelo a cui il terreno è stato sottoposto. Lungo la linea azzurra si confronti il valore di deformazione indotta da un medesimo sforzo su materiale che ha subito un numero crescente di cicli di gelo/disgelo (da Bing e He, 2011).](image)

Per quanto riguarda il valore di massima resistenza a compressione al variare del contenuto d’acqua e della concentrazione di sale (senza subire cicli di gelo/disgelo), Bing e He osservano che (Figura 42):
a tutti i diversi contenuti d’acqua considerati (W=7%, W=10% e W=15%), quando il contenuto di sale è <1%, la massima resistenza a compressione aumenta all’aumentare della concentrazione di sale: questo effetto viene attribuito al fatto che, quando la concentrazione di sale è bassa, il sale dissolve in soluzione per qualsiasi quantità d’acqua, ma a bassi contenuti d’acqua la concentrazione di saturazione è più bassa e al crescere della quantità di sali disciolti il livello di saturazione viene raggiunto più facilmente. I sali cristallizzati diventano parte della struttura solida (entrano negli spazi inter-cristallini presenti) e ne aumentano la resistenza. A bassi contenuti d’acqua si registra quindi la resistenza massima a parità di contenuto di sale (nel range S<1%) e la resistenza a compressione risulta massima con W = 7% e S=1%.

al crescere della concentrazione di sale (S>1%) la resistenza diminuisce, per qualsiasi contenuto d’acqua (tra quelli testati: W=7%, W=10% e W=15%): tale effetto è spiegabile considerando che l’elevato contenuto di sale comporta nel processo di cristallizzazione una di deposizione dei cristalli maggiore, che invece di rendere la struttura solida più resistente, la disorganizza facendo diminuire la resistenza meccanica del materiale, anche con contenuti d’acqua più elevati. Confrontando però i grafici riportati si nota che la diminuzione di resistenza dopo il calo che segue il picco corrispondente alla concentrazione dell’1%, risulta più accentuata a bassi contenuti d’acqua (W=7%), mentre a contenuti d’acqua pari al 15% (e probabilmente maggiori) anche se la concentrazione di sale cresce, la resistenza si mantiene costante;

quando la concentrazione di sale nel fluido interstiziale è >1%, si verifica un incremento della resistenza maggiore nei suoli con più alto contenuto d’acqua, con effetto maggiore al crescere del grado di saturazione (S): questo effetto è attribuito al fatto che la solubilità dei sali nell’acqua interstiziale è maggiore quando il contenuto d’acqua è elevato, e all’effetto di aumento della coesione dei minerali argillosi favorito dalla presenza dei sali in soluzione.

Figura 42: Resistenza alla compressione uniassiale di un loess salato al variare del contenuto d’acqua e della concentrazione di sale NaSO₄ (a) W=7%, (b) W=10% e (c) W=15%). Nel riquadro è rappresentata la crescita di resistenza al crescere della concentrazione di sale fino al valore di 1%. La freccia verde indica la pendenza della curva successiva (da Bing e He, 2011).
Per quanto riguarda la **deformazione indotta su provini di loess limoso salato** (IP = 9,6 e WP=16,1), **libero di deformarsi e senza carico verticale applicato**, dai processi di congelamento e scongelamento, i due autori osservano che al procedere dei cicli:

- la deformazione verticale del campione aumenta, in misura maggiore al crescere della presenza di sali, perché durante il congelamento lo spazio occupato dal solido aumenta non solo a causa della formazione del ghiaccio, che espande, ma anche in parte per la comparsa dei sali cristallizzati; viceversa, durante lo scongelamento, il provino diminuisce di volume sia poiché lo spazio occupato dai solidi diminuisce poiché il ghiaccio scongela sia perché i sali tornano in soluzione, dato che la solubilità aumenta all’aumentare della temperatura;

- il contenuto d’acqua diminuisce, in misura maggiore al crescere della presenza di sali;

- al crescere del numero di cicli le variazioni indotte diminuiscono (come già riscontrato in precedenza, il primo ciclo è il più efficace e i successivi a diminuire);

- in tutti i casi considerati, si raggiunge l’equilibrio circa al 6° ciclo, quando la struttura ha raggiunto un nuovo equilibrio.

![Figura 43: a) Variazione dell’altezza del provino (Y= ΔY/Y%) e b) del contenuto d’acqua (Z= ΔW/W%) al procedere del numero di cicli di gelo/disgelo, in campioni liberi di deformarsi, senza l’applicazione di carichi verticali. In giallo S=1%, in arancione S=1.5% e in rosso S=2% (da Bing e He, 2011).](attachment:figura43.png)

Per quanto riguarda l’**influenza del numero di cicli termici sulla resistenza a compressione assiale**, considerando diverse concentrazioni di sale nell’acqua interstiziale, risulta che:

- a condizioni di contenuto di sale costante, la resistenza massima a compressione decresce con il procedere del numero di cicli di gelo/disgelo, poiché il processo cambia la texture del sedimento riorganizzandola in una nuova struttura, influenzandone la resistenza a compressione;

- per tutti i casi considerati il tasso di variazione è maggiore all’inizio del processo termico e poi decresce, per poi assumere un valore costante;

- all’aumentare della concentrazione di sale:
 - la resistenza massima a compressione decresce;
 - il numero di cicli necessari per raggiungere l’equilibrio aumenta.
Concludendo, Bing e He (2011) affermano che:

1. La presenza di sale in un sedimento che non sperimenta cicli di gelo/disgelo è associabile ad un comportamento meccanico di tipo fragile, mentre dopo aver sperimentato fenomeni di gelo/disgelo, la rottura diventa di tipo prevalentemente plastico e il carico massimo di rottura risulta inferiore.
2. All’aumentare del numero dei cicli di gelo/disgelo subiti, sia il carico massimo di rottura sia la deformazione massima acquisita diminuiscono;
3. Per tutti i contenuti d’acqua considerati, la resistenza a compressione assiale del sedimento cresce all’aumentare della concentrazione di sale presente, fino a raggiungere un picco corrispondente a $S=1\%$, dove presenta il valore di massima resistenza, mentre all’ulteriore aumento di salinità corrisponde un calo progressivo della resistenza (per $W=7\%$) o un valore pressoché costante ma inferiore a quello di picco (per W maggiori).

2.9 Fenomeni di migrazione dei fluidi interstiziali in mezzi porosi ghiacciati

In generale, è noto che la presenza di soluti distribuiti in modo non omogeneo all’interno di un mezzo poroso come il terreno, genera una migrazione di acqua verso quella zona e, al contrario, una migrazione degli stessi elementi chimici in allontanamento da quella stessa zona. La disomogeneità della distribuzione di soluti quindi genera gradienti di concentrazione di specie chimiche, provocando flussi di ioni e di molecole d’acqua.
Gli ioni inoltre migrano all’interno del mezzo poroso lungo i film liquidi in risposta non solo a gradienti di concentrazione dei soluti stessi (da aree a maggiore concentrazione verso aree a...

Dal punto di vista dinamico, le varie componenti individuate nel mezzo poroso (calore, acqua in fase solida e liquida, soluti e cariche elettriche) si spostano rispetto alla matrice solida non solo in conseguenza ad un gradiente diretto (cioè relativo al medesimo elemento), ma anche come conseguenza di effetti incrociati. Ogni flusso è una funzione lineare degli effetti di ciascuna forza motrice che compare nell’equazione di dissipazione dell’energia: gradiente di temperatura, gradiente di pressione, gradiente di concentrazione salina e potenziale elettrico. In generale le molecole d’acqua si muovono da zone a temperature maggiori verso aree a temperature inferiori, da zone a bassa concentrazione salina verso aree ad alta concentrazione. Dall’altra parte, i sali si muovono lungo il gradiente di concentrazione salina da zone ad alta concentrazione verso quelle a bassa concentrazione, lungo il gradiente termico da zone calde a zone fredde, e lungo il gradiente idraulico in dipendenza dalle forze elettrostatiche che si oppongono trattenendoli (Perfect, 1991; Marion, 1995).

A causa del fenomeno di esclusione dei sali dalla formazione del ghiaccio, la concentrazione salina a ridosso del freezing front può essere fino a 80 volte superiore della concentrazione nel resto della soluzione.

Conseguentemente si instaurano (Perfect, 1991):

- un effetto combinato di forti gradienti di pressione, temperatura e concentrazione di sali al freezing front, che creano un forte richiamo d’acqua: nel mezzo poroso che si sta ghiacciando avviene una consistente migrazione di molecole d’acqua verso il freezing front. Il processo di
congelamento del suolo crea quindi un forte richiamo per le molecole d’acqua verso il freezing front;

✓ effetti di diffusione dei sali in risposta al forte gradiente di concentrazione;

✓ la migrazione di sali che vengono richiamati verso il freezing front in risposta al gradiente idraulico per effetto dell’osmosi-inversa (che risulta essere il più importante fenomeno di redistribuzione dei sali in mezzi porosi ghiacciati): il loro trasporto avviene congiunto con quello delle molecole di unfrozen water (in questo caso contro il gradiente di salinità);

✓ l’innalzamento della concentrazione salina in corrispondenza del freezing front può abbassare localmente la temperatura di congelamento in modo non omogeneo, tanto che il freezing front può ‘saltare’ (oltrepassare la zona ad altissima concentrazione salina) formando così delle tasche di aggregati molto salati, caratterizzati da bassa resistenza alla compressione. Il risultato è la formazione all’interno del suolo ghiacciato di un’alternanza di bande di suolo non ghiacciato ad elevata concentrazione salina con proprietà geotecniche molto diverse (Perfect, 1991, Marion, 1995).

Nei terreni a temperature inferiori a 0°C i fenomeni di spostamento delle diverse componenti individuate (acqua, calore, sali e cariche elettriche) sono contrastate da due principali meccanismi selettivi:

✓ il cambiamento di fase acqua-ghiaccio che solidifica parte della fase liquida, contrastando lo spostamento, riducendo la permeabilità del sistema;

✓ il doppio-strato elettrico diffuso: la forza di attrazione elettrica esercitata dalla carica presente sulle superfici delle particelle solide fa diventare il suolo semi-permeabile. Lo spostamento di acqua in un suolo ghiacciato avviene principalmente per effetto di differenza di concentrazione salina: lo spostamento effettivo è contrastato dal reflection coefficient, dipendente dalla clay fraction del sedimento, dal suo indice di attività e dallo spessore dei film di unfrozen water che circondano le particelle argillose. Lo spostamento delle molecole d’acqua è possibile, ma quello del soluto è fortemente condizionato (contrastato) dai legami elettrici. L’effetto di osmosi capillare costituisce la maggiore causa di migrazione dell’acqua in un suolo ghiacciato. Quando inizia la fase di congelamento la concentrazione di sali nella unfrozen water cresce e il risultante gradiente di concentrazione agisce come una pompa, provocando flusso di acqua, in quantità dipendente dal reflection coefficient.

In conclusione, la distribuzione e il movimento di ioni e acqua all’interno di un mezzo poroso come il terreno avviene in risposta ai gradienti termici, idraulici, chimici ed elettrici, che
interagiscono tra loro in modo complesso, portando a condizioni del materiale estremamente variabili nel tempo e nello spazio (Hoekstra, 1969; Henry, 1988; Perfect, 1991; Esch, 2005).

2.9.1 Variazione della permeabilità idraulica nel suolo ghiacciato

La permeabilità idraulica rappresenta la relazione tra il gradiente idrostatico di pressione e la velocità di spostamento delle molecole d’acqua in un mezzo poroso trifasico. Quando il mezzo è satura, la permeabilità idraulica dipende solo dalle proprietà della matrice solida, ed in particolare dalla geometria del mezzo poroso cioè dalla dimensione e forma dei pori e dalla texture. Quando invece il mezzo non è completamente satura, essa dipende anche dal contenuto d’acqua (la permeabilità decresce al decrescere del contenuto d’acqua) e dalla temperatura. Al variare della temperatura in raffreddamento da 0°C a -1°C si verifica una esponenziale riduzione nella permeabilità del suolo ghiacciato anche di 4-6 ordini di grandezza (per le argille da 10^{-8} m/s a 10^{-12} – 10^{-14} m/s) (Perfect, 1991; Marion, 1995).

Se si considerano temperature inferiori a quella di congelamento del sedimento (freezing point), quando inizia il processo di nucleazione delle lenti di ghiaccio nei pori, la permeabilità viene ridotta dalla presenza stessa dei nuclei ghiacciati, che impediscono fisicamente il passaggio dell’acqua (Figura 45). A temperature inferiori a 0°C solo i film liquidi tra loro connessi formati dall’unfrozen water attorno alle particelle solide, garantiscono la mobilità sia dell’acqua che dei soluti nel suolo parzialmente ghiacciato, ma si tratta di una mobilità locale di scala molto limitata (che garantisce principalmente il flusso di molecole verso le ice lenses). Quindi, a temperature intorno al freezing point del sedimento e inferiori, la conducibilità idraulica rimane pressoché costante, finché il sedimento permane in condizioni di parziale congelamento (Perfect, 1991; Marion, 1995). La condizione limite che impedisce l’ulteriore passaggio di acqua, viene raggiunta quando viene interrotta la continuità tra i film interconnessi di unfrozen water.
La presenza di sale nell’acqua interstiziale sembrerebbe poter incrementare la conducibilità idraulica nel sedimento congelato, sia per l’effetto diretto di richiamo delle molecole verso i nuclei di congelamento, sia per l’effetto indiretto legato all’abbassamento della temperatura di congelamento della soluzione che porta all’aumento della quantità di unfrozen water e dello spessore dei film liquidi. Al contrario, invece, l’effetto dominante della presenza di sali risulta essere la riduzione della conducibilità idraulica che predomina sugli altri effetti. Da risultati sperimentali esposti in letteratura, emerge che il flusso verso il freezing front è in generale ridotto dalla presenza di sali (Marion, 1995). Tale effetto è spiegabile sia dalla presenza di sali, che rafforza l’intensità del legame elettrico tra grani solidi e soluzione interstiziale, sia perché variazioni del contenuto salino incidono sulla struttura stessa del sedimento, variandone anche le proprietà idrauliche. Già in precedenza è stato sottolineato come la presenza di soluti, a seconda della loro natura e concentrazione, può modificare la struttura di un sedimento coesivo e le sue proprietà idrauliche, variandone la struttura da flocculata a dispersa o viceversa. In letteratura sono presentati casi diversi in cui, sia provocando la floculazione che la dispersione delle particelle, a seconda del tipo di sedimento e sale utilizzati, si diminuisce la conducibilità idraulica nei materiali coesivi. Ad esempio, inducendo una diminuzione della dispersione delle particelle (floculazione) in un terreno limoso, quindi apportando cationi bivalenti e incrementando la concentrazione di sale presente, si riduce l’estensione della superficie di contatto tra solido e acqua, diminuendo la quantità di unfrozen water e quindi la permeabilità di un suolo ghiacciato parzialmente saturo. Se invece il suolo ha una clay fraction significativamente elevata, la permeabilità viene ridotta aumentando il grado di dispersione della struttura.

2.9.2 Effetti del processo di gelo e disgelo sulla permeabilità idraulica

Per quanto riguarda suoli coesivi naturali che hanno subito un processo di congelamento, seguito da una successiva fase di scongelamento, la permeabilità idraulica verticale risulta incrementata anche di un ordine di grandezza o più, per la formazione di fessure verticali e cracks nel corso del processo di scongelamento (Chamberlain & Gow, 1979). La dimensione dei pori viene infatti aumentata dove le lenti di ghiaccio si sono formate e successivamente accresciute, per la dilatazione congiunta al cambiamento di fase durante la formazione delle zone di accumulo dell’acqua congelata. Inoltre, nel corso della seguente fase di scongelamento, la rapida espulsione di parte del contenuto d’acqua indotto dall’azione del carico litostatico e dall’effetto di richiamo e segregazione dell’acqua nei macropori porta alla formazione di fessure verticali (Qi et al. 2006). Anche in questo caso, il primo ciclo di congelamento risulta il più efficace (Figura 46), poiché cambia la struttura del terreno in modo irreversibile, mentre nei cicli successivi la formazione di lenti di ghiaccio è molto ridotta, e, conseguentemente anche l’aumento della permeabilità idraulica verticale risulta più modesto. Dopo il terzo ciclo termico, l’ulteriore incremento nella permeabilità sembra essere quasi trascurabile (Othman and Benson, 1993).
Figura 46: Variazione di conducibilità idraulica al variare del numero di cicli di gelo/disgelo per tre diversi tipi di argilla consolidata (rispettivamente di bassa, media e alta plasticità, provenienti dal Winsconsin), applicando diverse velocità di congelamento. Si può notare come, nei primi cicli di congelamento, si riscontri un maggiore aumento della conducibilità idraulica (Othman and Benson, 1993).

I fattori che maggiormente influenzano le variazioni di conducibilità idraulica nel corso dei cicli di gelo e disgelo sono il gradiente di temperatura e lo stato tensionale del materiale sottoposto ai test (Figura 47). Con l’instaurarsi di gradienti di temperatura più intensi, che portano a variazioni più repentine dello stato termico del sedimento, si instaura una maggiore forza di suzione, formando un numero più elevato di lenti di ghiaccio, qualora risulti disponibile una sufficiente quantità di acqua, correlata a condizioni di maggiore conducibilità idraulica.

Figura 47: La variazione di conducibilità idraulica all’aumentare della pressione di confinamento (Qi et al., 2006).
Per quanto riguarda gli effetti dell’applicazione di uno stato tensionale dato da un carico verticale applicato, essi cambiano a seconda che il carico venga applicato al materiale in concomitanza con lo stress termico che genera i cicli di gelo-disgelo oppure dopo che lo stress termico si è esaurito. L’applicazione di un carico verticale applicato al materiale durante i cicli di sollecitazione termica, ha un triplice effetto:
- inibisce la formazione e la crescita delle lenti di ghiaccio perché riduce l’effetto di suzione e richiamo delle molecole d’acqua verso i nuclei di congelamento;
- riduce la conducibilità idraulica del materiale inibendo quindi la migrazione delle molecole d’acqua interstiziale verso la frozen fringe, contrastando quindi l’accrescimento delle lenti di ghiaccio;
- i macro-pori e le fessure che si formano durante il ciclo di congelamento e scongelamento vengono successivamente schiacciati nella fase di scongelamento per effetto del carico, riducendo così la possibilità di movimento delle molecole d’acqua al ciclo di congelamento successivo.

I tre effetti descritti si sommano, facendo sì che l’effetto di aumento della conducibilità idraulica indotta dalle modifiche subite al termine dei cicli di congelamento e scongelamento, sia ridotto dall’azione della presenza del carico verticale (quindi l’aumento di conducibilità idraulica è inversamente proporzionale al carico applicato durante lo stress termico).

L’effetto di contrasto all’incremento di conducibilità idraulica verticale generato dai processi di gelo-disgelo, è ancora maggiore nel caso in cui l’applicazione del carico verticale avvenga successivamente allo stress termico. In questo caso, infatti, il carico riduce la dimensione dei pori che precedentemente erano stati allargati e chiude le fessure che si erano formate, portando ad una riduzione più intensa della conducibilità idraulica (figura 48).

Figura 48: Rapporto tra conducibilità idraulica DOPO e PRIMA aver subito i cicli di congelamento e scongelamento: variazione con il carico verticale applicato, dal confronto tra risultati sperimentali disponibili in letteratura. Nel grafico è evidente come al crescere del carico applicato dopo i cicli, l rapporto tra i due valori di conducibilità idraulica tende all’unità (Othman and Benson, 1993).
Nel grafico seguente (figura 49) viene confrontato il valore di conducibilità idraulica misurata in un provino di materiale coesivo di bassa plasticità (Othman and Benson, 1993) che ha subito 5 cicli di gelo/disgelo e un altro del medesimo materiale che non ha mai subito congelamento, al variare del carico applicato a posteriori (vedi anche punti neri in Figura 50). Si osservi come a basse tensioni la conducibilità del materiale che è stato ghiacciato/sghiacciato è di un ordine di grandezza superiore a quella precedente alla sollecitazione termica, mentre aumentando il carico applicato i due valori di permeabilità sono confrontabili. Questo viene attribuito al fatto che probabilmente il carico applicato dopo i cicli di gelo disgelio, interviene sulla struttura tendendo a chiudere le fessure ed i macropori formatisi durante i cicli termici.

Se confrontiamo l’effetto del carico verticale applicato DURANTE e DOPO i cicli termici, ne risulta che nel primo caso il carico applicato è più efficace nel contrastare gli effetti di cambiamento della texture e il conseguente aumento di conducibilità idraulica.

Il rapporto tra conducibilità idraulica misurata sul materiale che ha subbiti cicli di gelo/disgelo e quella del medesimo materiale unfrozen è massima (300 volte maggiore) se non c’è carico esterno applicato, decresce in entrambi i casi al crescere del carico verticale, ma più velocemente quando il carico è applicato DURANTE le fasi di stress termico (nel caso del materiale testato dagli autori è pari all’unità già in corrispondenza dell’applicazione di un carico di 70kPa) (Figura 50).
Per quanto riguarda gli effetti della storia tensionale precedente ai cicli termici subita dal sedimento (grado di sovraconsolidamento) sulla variazione di permeabilità idraulica verticale a seguito dei cicli di gelo-disgelo, da esperimenti condotti da Konrad (1989) si ricava che, a causa dell’effetto di dilatazione generato dai cicli di congelamento/scongelamento sulla struttura precedentemente compattata, l’aumento di permeabilità verticale è maggiore, quanto maggiore è il grado di sovraconsolidamento del sedimento (Figura 51).

Per quanto riguarda l’influenza della direzione del gradiente di temperatura imposto, Othman e altri autori (1994) osservano che i processi di formazione e gli effetti indotti dalle strutture legate al

Figura 50: Andamento del rapporto tra conducibilità idraulica misurata sul materiale congelato/scongelato e unfrozen, nel caso in cui ci sia un carico applicato mentre avvengono i cicli termici (cerchi neri) e nel caso in cui il carico sia applicato a posteriori (cerchi bianchi) (Othman and Benson, 1993).

Figura 51: Aumento proporzionale della conducibilità idraulica verticale al crescere del grado di sovraconsolidazione (Konrad, 1989)
processo di congelamento all’interno del sedimento sono del tutto simili (Figura 52), sia nel caso in cui le variazioni di temperatura siano imposte in modo unidimensionale (come avviene in sito), sia nel caso in cui il congelamento avvenga in modo tridimensionale omogeneo da tutte le direzioni (come avviene in laboratorio durante gli esperimenti condotti).

![Image](image_url)

Figura 52: Variazione di conducibilità idraulica al variare dei cicli di gela/disgelo per tre diversi tipi di argilla consolidata di bassa, media ed elevata plasticità: nel grafico si confrontano i valori ottenuti sottoponendo i provini a cicli termici in condizioni unidimensionali (simbolo vuoto) e in condizioni tridimensionali (simbolo pieno). Gli autori concludono che la dimensionalità del gradiente termico è un fattore poco influente sulla variazione indotta nella conducibilità idraulica (Othman and Benson, 1993).

Infine, è noto che la disponibilità di ulteriori apporti di acqua al sedimento nel corso del fenomeno di congelamento è un elemento che influenza la dimensione e la spaziatura delle lenti di ghiaccio, insieme alla velocità di congelamento, e quindi potrebbe avere influenza sull’entità degli effetti indotti sulla conducibilità idraulica. La sua importanza però dipende dalle condizioni iniziali di saturazione. L’analisi bibliografica condotta in approfondimento di tali aspetti (Othamn, 1994) evidenzia che l’incremento di conducibilità idraulica è del tutto simile se si confrontano i risultati di esperimenti condotti su sedimenti congelati in sistemi chiusi (cioè senza possibilità di ulteriore apporto di acqua) e in sistemi aperti (cioè con possibile ulteriore apporto di acqua), al pari di altre condizioni sperimentali. Questa osservazione è attribuita al fatto che, ad elevati livelli di saturazione (come quelli considerati negli esperimenti svolti, rappresentativi della situazione del sottosuolo veneziano), la quantità di acqua presente nei pori del provino è già comunque sufficiente a formare le lenti di ghiaccio. Quindi, per elevati contenuti d’acqua iniziale, la disponibilità o meno di ulteriori apporti, non è un elemento significativo nel determinarne la variazione di conducibilità del sedimento, anche in considerazione della relativamente ridotta mobilità delle molecole d’acqua che participano ai processi locali di aggregazione emigrazione che avvengono in intorni limitati spazialmente.
2.10 Highlights principali

Si riassumono di seguito le principali conoscenze acquisite dall’analisi della letteratura descritta, concentrando l’attenzione sulle informazioni ricavate riguardanti le tipologie di sedimenti e le condizioni tensionali e termiche simili a quelle dei materiali che si ritrovano nell’area di studio:

1. Quando un sedimento coesivo normal-consolidato (NC) subisce una alterazione della sua temperatura, in esso viene indotta una deformazione volumetrica dovuta alle variazioni subite dalla struttura del sedimento per rispondere alle nuove condizioni tensionali generate dallo stress termico. Se si considerano sollecitazioni termiche in aumento di temperatura, a partire cioè dalla temperatura ambiente di riferimento (T=15-20°C) fino a 50-70°C, la deformazione indotta è di compressione, dell’ordine del 1% del volume iniziale circa, e principalmente provocata dalla deformazione dei minerali e adeguamento della microstruttura della fase solida alle nuove condizioni di equilibrio tensionale interno. Al contrario, se si considerano processi di raffreddamento, fino a temperature inferiori a quella critica di congelamento del sedimento, si osserva che il processo di congelamento e successivo scongelamento causa una deformazione decisamente più significativa (dell’ordine del 8% - 10% del volume iniziale).

2. La risposta del sedimento alla sollecitazione termica in termini di deformazione acquisita dipende dalla storia tensionale precedente: se il materiale è normal-consolidato i cicli di gelo/disgelo inducono compattazione, mentre un aumento della temperatura induce un fenomeno di espansione. Al contrario, se il terreno è sovraconsolidato, la sollecitazione termica ha l’effetto di rompere la struttura più compatta precedentemente acquisita, generando una espansione nel caso di cicli di gelo e disgelo e una compattazione nel caso di sollecitazione termica di riscaldamento. L’effetto si dimostra divenire sempre più importante con l’aumentare del grado di sovraconsolidazione.

3. Se la sollecitazione termica è ciclica, i maggiori effetti di deformazione avvengono nel primo ciclo termico (sia nel caso di riscaldamento che di congelamento), e nei cicli successivi l’effetto risulta decisamente minore e degradante nel tempo.

4. Dopo il quinto-settimo ciclo di variazione termica, il sedimento acquisisce un nuovo stato che è in equilibrio con la sollecitazione subita, composta dalla combinazione del carico verticale e dalla sollecitazione termica imposto. Anche nel caso in cui la sollecitazione termica continui, la struttura del sedimento rimane invariata.

5. Questa nuova situazione di equilibrio è caratterizzata da un minor indice dei vuoti e una maggiore compattazione nel caso in cui il terreno fosse NC, al contrario presenta un minor grado di compattazione (deformazione di dilatazione) nel caso in cui il terreno fosse precedentemente OC. Nel nuovo stato di equilibrio il materiale è anche caratterizzato da una maggiore rigidezza e una maggiore resistenza a sollecitazioni ulteriori (se il terreno prima era NC).

6. Nel corso dei cicli di gelo/disgelo viene alterata in modo irreversibile la texture del terreno, poiché l’espansione del ghiaccio nei macropori provoca lo spostamento dei grani solidi circostanti, portando da una parte alla formazione di pori più larghi e dall’altra ad
aggregati di particelle solide di maggiori dimensioni. Il processo è accompagnato anche da perdita di parte dell’umidità presente tra le particelle, tale che il contenuto d’acqua al termine del processo risulta inferiore. Nella fase di scongelamento sotto l’azione del carico verticale inoltre si formano delle fessure verticali (cracks) all’interno dei quali avviene il drenaggio dell’acqua precedentemente congelata. Queste variazioni nella texture fanno sì che il nuovo stato di equilibrio sia caratterizzato oltre che da un minor contenuto d’acqua, anche da una maggiore permeabilità verticale.

7. Dall’analisi circa gli effetti del carico applicato riguardo all’aumento della conducibilità idraulica si deduce che l’aumento è molto consistente (anche di 1-2 ordini di grandezza) se il carico applicato è nullo, e decresce al crescere del carico. La presenza di un carico applicato ‘durante’ i cicli termici contrasta quindi anche gli effetti di aumento della permeabilità verticale.

MATERIALI E METODI
3 MISURA DELLE VARIAZIONI DELLE PROPRIETÀ MECCANICHE E DI PERMEABILITÀ INDOTTE NEI SEDIMENTI COESIVI DA SOLLECITAZIONI TERMICHE GENERATE DA UNA SONDA GEOTERMICA

Dalla ricerca bibliografica riassunta nel precedente capitolo è emerso che, se la temperatura imposta dall’esercizio della sonda geotermica risulta inferiore al freezing point del sedimento, in esso si instaura il processo di congelamento durante il quale l’acqua interstiziale, cambiando di fase, si espande allargando i pori, generando la formazione di aggregati solidi di maggiori dimensioni e più poveri d’acqua e conferendo così al terreno nella fase successiva allo scongelamento un cambiamento irreversibile della texture, un effetto di deformazione, possibili effetti sulle caratteristiche meccaniche e infine una maggiore permeabilità verticale.

Per valutare la risposta meccanica dei sedimenti all’applicazione di una sollecitazione termica variabile nel tempo e nello spazio quale quella indotta dall’esercizio di una sonda geotermica a circuito chiuso, è stata quindi valutata innanzitutto la deformazione indotta nel materiale dalle diverse possibili combinazioni di carico. Le sollecitazioni applicate agli strati di sedimenti nell’intorno della sonda geotermica verticale in esercizio sono costituite dalla combinazione del carico litostatico (dipendente dalla profondità cui il materiale in esame si trova), incrementato da un eventuale sovraccarico, con le variazioni di temperatura, che alterando le condizioni di pressione interna, modifica l’equilibrio tra tensioni efficaci e totali. Di conseguenza, nei test eseguiti la sollecitazione è rappresentata dalla combinazione del carico verticale applicato combinato con condizioni di temperatura variabile tra due estremi.

Nel corso degli esperimenti sono state considerate diverse combinazioni di carico, variando entità del carico applicato e gli estremi dell’intervallo di temperatura, e diverse situazioni iniziali, sia in termini di tensioni totali che in termini di deformazione, in modo da esplorare gli effetti sulle proprietà meccaniche dei sedimenti indotte da un ampio ventaglio di condizioni al contorno. Particolare attenzione è stata dedicata agli effetti di cicli termici che inducono fenomeni di congelamento e scongelamento nei sedimenti circostanti.

La successione di applicazione dei carichi riprende la situazione che avviene nei livelli deposizionali nei dintorni di una sonda geotermica verticale: le sollecitazioni termiche sono state applicate solo al termine del processo di consolidazione del materiale indotto dall’applicazione
iniziale del solo carico verticale, che rappresenta la ‘situazione iniziale’ a cui si trovano i depositi nell’intorno della sonda, successivamente sollecitati con variazioni dello stato termico all’entrata in esercizio dell’impianto geotermico.

In secondo luogo sono state valutate le proprietà meccaniche ed idrauliche che caratterizzano il materiale al termine dell’applicazione della forzante, misurando nel nuovo stato assunto dal sedimento, sia le proprietà di deformabilità e rigidezza, sia quelle di resistenza al taglio del materiale, valutando la variazione della coesione che dell’angolo di attrito interno. Questo aspetto assume maggiore importanza solo nelle strutture che subiscono sollecitazioni termiche e che hanno allo stesso tempo funzioni strutturali, come ad esempio nei pali energetici: di conseguenza è stato trattato in misura marginale, non essendo lo scopo principale del lavoro.

Infine, data l’esistenza del possibile rischio idraulico di contaminazione tra acquiferi precedentemente separati, legata al possibile aumento di permeabilità verticale indotto e al fatto che le sonde geotermiche verticali in tutta la loro lunghezza (dell’ordine dei 100m) attraversano formazioni stratigrafiche diverse, particolare rilevanza è stata data alla misura delle variazioni indotte dalle sollecitazioni termiche sulla conducibilità idraulica verticale dei sedimenti.

3.1 PROGRAMMA SPERIMENTALE

Come già anticipato la sperimentazione aveva diversi obiettivi e per questo si sono esaminati i seguenti aspetti:

1. **Deformazione indotta dalla combinazione di un carico verticale costante abbinato a sollecitazione termica variabile tra due estremi.** In particolare, si è studiata la dipendenza della deformazione da:
 - estremi di temperatura imposto;
 - durata della fase di congelamento;
 - carico verticale applicato;
 - grado di consolidazione iniziale del materiale;
 - tipologia del sedimento (granulometria, composizione mineralogica e indice plastico);
 - grado di salinità dell’acqua interstiziale.

2. **Variazione di rigidezza indotta nel materiale dalle sollecitazioni termiche cicliche subite.** E’ stata studiata confrontando:
 - il processo di consolidamento indotto da successivi incrementi di carico applicati a temperatura ambiente (prova edometrica tradizionale a gradini di carico verticale) in un materiale ‘naturale’, che non ha in precedenza subito sollecitazione termica, con il comportamento del medesimo materiale precedentemente sottoposto a 10 cicli termici nell’intervallo T: [-5°C, +55°C] sotto una tensione verticale costante di 40, 200, 500 e 800kPa.
3. Variazione di resistenza indotta nel materiale dalle sollecitazioni termiche cicliche subite. E’ stata studiata confrontando:
 ✗ il criterio di rottura di Mohr-Coulomb (caratterizzato da un valore di coesione e di angolo d’attrito) di in un materiale ‘naturale’, che non ha in precedenza subito sollecitazione termica, con quello del medesimo materiale precedentemente sottoposto a 10 cicli termici nell’intervallo T: [-5°C, +55°C] sotto una tensione verticale costante di 80kPa.

4. Variazione di conducibilità idraulica verticale. Sono stati confrontati:
 ✗ i valori di conducibilità idraulica verticale in diverse condizioni di carico, misurati nel materiale ‘naturale’ con quelli del medesimo materiale precedentemente sottoposto a cicli di variazione termica: sono state considerate diverse condizioni di carico applicato (40, 200, 500 e 800kPa) durante i cicli termici, oltre a diversi stati di consolidaazione iniziale.

3.2 DEFORMAZIONE INDOTTA NEI SEDIMENTI DA VARIAZIONI CICLICHE DI TEMPERATURA

Per misurare la deformazione indotta nel materiale dalla combinazione di carico costituita da carico litostatico e variazioni cicliche di temperatura, è stata utilizzata la prova di compressione monosimensionale (anche detta prova edometrica), che permette di riprodurre il fenomeno di consolidaazione del terreno nel tempo, considerando un processo di consolidaazione monodimensionale, in condizioni drenate. La consolidaazione è il processo di variazione del volume di terreno nel tempo quando sottoposto ad una variazione dello stato tensionale efficace. In generale, il fenomeno di consolidaazione avviene quando un sedimento fine e bassa permeabilità, è sottoposto all’azione di un carico verticale: in una prima fase, la variazione di tensione totale si traduce in un aumento della pressione interstiziale (compressione dell’aria e/o acqua all’interno dei vuoti), che successivamente viene dissipata, grazie alla fuoriuscita graduale dell’acqua, permettendo un po’ alla volta il trasferimento della variazione di tensione sullo scheletro solido e la maturazione di una deformazione volumetrica. In genere, ipotizzando trascurabile la deformazione delle particelle solide (nel caso di grani solidi costituiti da frammenti di roccia incompribili), la conformazione dello scheletro solido subisce un riarrangiamento che lo porta ad acquisire un nuovo assetto, combinato nel tempo, in condizioni drenate, con l’espulsione dell’acqua e/o dell’aria. Man mano che l’acqua viene allontanata, le particelle di terreno si assestano in una configurazione più stabile caratterizzata da un minor volume di vuoti, con conseguente diminuzione del volume totale. L’intero processo dipende quindi dalla rigidezza dello scheletro solido e dal processo di espulsione dell’acqua nel tempo, che dipende a sua volta dalla permeabilità del terreno, dalle condizioni di drenaggio e dalla tensione applicata.

La prova edometrica standard riproduce una compressione monodimensionale (assiale) con il materiale contenuto all’interno dell’anello edometrico, anello rigido che impedisce le
Cap. 3 - Misura delle variazioni delle proprietà meccaniche e di permeabilità indotte nei sedimenti coesivi da sollecitazioni termiche generate da una sonda geotermica

deformazioni laterali. L’edometro è costituito da un anello metallico (altezza H= 2,5cm e diametro D=5cm), fissato ad una base anch’essa metallica (Towhata et al., 1993). Sopra il materiale contenuto nell’anello è posto un pistone che esercita la forza di compressione verticale data da un carico applicato tramite un sistema di leve. Le facce superiore ed inferiore del provino sono in contatto con due pietre porose che permettono il drenaggio dell’acqua interstiziale (Figura 53). Tramite un micrometro sono misurate le deformazioni verticali subite dal materiale contenuto all’interno, che viste le condizioni di deformazione monodimensionale, coincidono con le deformazioni volumetriche (riferimento norme UNI EN ISO/TS 17892-5, ASTM D 2435-96, 4546-96, 4186-98).

![Figura 53: L’edometro (sinistra) utilizzato per la misura del processo di consolidazione e il sistema di leve per l’applicazione del carico (destra).](image)

La prova edometrica può produrre in modo efficace il processo di consolidazione che avviene nei materiali circostanti una sonda geotermica, nel contesto geologico tipico dell’area di studio. Esso, infatti, è caratterizzato (come descritto nel par. 1.3) da una continua alternanza di livelli sottili di materiali coesivi alternati a materiali più grossolani (limi e sabbie), che garantiscono quindi le condizioni di drenaggio e tempi di consolidazione relativamente brevi.

E’ stato studiato il comportamento del materiale a carico verticale costante, in modo da riprodurre la situazione che si realizza nella realtà: un livello deposizionale giace nel terreno ad una certa profondità, ha già subito il processo di consolidazione primaria dovuta al carico litostatico,
raggiungendo una situazione di equilibrio ed è quindi in fase di consolidazione secondaria, con carico molto esteso (condizione bidimensionale).

3.2.1 Descrizione dell'apparato sperimentale utilizzato

Per eseguire le prove edometriche con variazione ciclica di temperatura, è stato utilizzato un apparato sperimentale prototipale, appositamente realizzato da Tecnopenta s.r.l. in collaborazione con il CNR – Istituto di Geoscienze e Georisorse di Padova, all’interno del Laboratorio di Geotecnica del Dipartimento DICEA dell’Università di Padova (Figura 54 -56).

L’apparato sperimentale è costituito da un box termico all’interno del quale è possibile inserire l’edometro standard, in modo da realizzare prove edometriche a temperatura controllata. Si tratta di un contenitore chiuso di dimensioni 14x14x13 cm di acciaio, isolato termicamente rispetto all’ambiente esterno tramite applicazione di uno strato di neoprene dello spessore di 1cm: la temperatura è impostata all’interno attraverso l’attivazione di 8 celle di Peltier installate su due facce opposte del box, collegate fra loro in parallelo e alimentate in corrente continua a tensione variabile tra 5 e 12V. Il sistema viene utilizzato sia per riscaldare che per raffreddare l’interno della cella termica, potendo imporre un range di temperature variabile tra -10°C e +60°C. Il vano interno viene riempito con una soluzione di glicole anticongelante in modo da trasmettere in modo omogeneo la temperatura impostata all’edometro inserito all’interno, anche a basse temperature (Figura 55).

L’alimentazione elettronica delle celle Peltier è regolata da un controllore PID (Proporzionale-Integrale-Derivativo), che funziona come un sistema in retroazione negativa. Esso acquisisce in ingresso il valore di temperatura effettivamente misurato in continuo da una termocoppia PT100 inserita all’interno della pietra porosa inferiore dell’edometro, lo confronta con il valore di riferimento che si vuole raggiungere, e imposta di conseguenza l’erogazione di energia necessaria alle celle. Una volta raggiunta la temperatura impostata, l’alimentazione viene interrotta fino a quando la temperatura si scosta da quella desiderata, caso in cui il sistema di controllo viene riattivato.

Dato che nei primi test, il terreno aveva mostrato una maggiore inerzia termica, il sistema è stato migliorato con lo scopo di ottenere una maggiore potenza nel processo di congelamento: si è quindi potenziato il sistema di termostatazione aggiungendo ulteriori 4 celle Peltier ed un secondo alimentatore. Le celle Peltier sono state suddivise in due sottogruppi: una parte (8) viene utilizzata sia in fase di riscaldamento che di congelamento, e viene alimentata dall’alimentatore di base, mentre un secondo gruppo, formato da 4 celle Peltier ed azionato dall’alimentatore ausiliario, interviene unicamente in fase di raffreddamento. In questo modo è stata ottenuta una maggiore potenza di raffreddamento capace di raggiungere più velocemente la temperatura desiderata e mantenerla costante per tempi lunghi.

Il rendimento di una cella di Peltier è tanto migliore quanto maggiore è la capacità di dissipare il calore (nel caso di raffreddamento all’interno del box termico, e viceversa) dalla superficie esterna: per questo motivo il sistema è completato da un circuito di dissipazione del
Cap.3 – Misura delle variazioni delle proprietà meccaniche e di permeabilità indotte nei sedimenti coesivi da sollecitazioni termiche generate da una sonda geotermica

calore a flusso continuo di acqua, costituito da collettori in PVC, che asporta calore dalla faccia esterna delle celle Peltier, aumentandone le prestazioni. Inoltre, per ottenere una maggiore sicurezza dell’intero apparato sperimentale ed evitare il rischio di surriscaldamento delle celle e danneggiamenti dovuti a interruzioni del circuito di condizionamento esterno delle celle Peltier, è stato inserito un piccolo serbatoio collegato alla centralina di controllo degli alimentatori, che ne interrompe il funzionamento in mancanza di flusso d’acqua. Il serbatoio svolge anche la funzione di degassatore, portando a pressione atmosferica l’acqua nel circuito in modo che le possibili bolle d’aria disciolte nell’acqua possano allontanarsi evitando così di essere trasportate vicino alle pareti esterne delle celle Peltier, dove aderendo alle pareti possono diminuire le capacità di dissipazione termica del sistema di condizionamento.

Figura 54: Schema concettuale dell’edometro termostatato.
Figura 55: Lo strumento prototipale vuoto con all’interno il glicole e (a dx) con l’edometro inserito.

Figura 56: La cella edometrica sperimentale nel suo complesso: sulla sinistra si vede il box termico termostatato con le celle Peltier ed il relativo sistema di raffreddamento esterno. A destra la centralina che permette il controllo e la stabilizzazione della temperatura, sormontata dai due alimentatori.

3.2.2 Caratterizzazione dei sedimenti coesivi utilizzati nelle prove sperimentali

Si riportano di seguito le caratteristiche principali dei sedimenti utilizzati nei test sperimentali eseguiti per studiare l’influenza delle diverse variabili sulla consolidazione indotta. I materiali
testati sono tutti materiali fini, ritenuti più sensibili alle sollecitazioni termiche, in virtù delle proprietà elettriche che caratterizzano le particelle solide e, conseguentemente, del ruolo che le molecole d’acqua adsorbite rivestono nella struttura stessa del sedimento. I materiali granulari sono generalmente considerati quasi inerti alle sollecitazione termica ciclica e quindi più stabili. Questa assunzione è stata comunque verificata tramite esperimenti appositamente eseguiti su materiali caratterizzati da diversa granulometria e composizione mineralogica. I risultati ottenuti ed i materiali testati vengono descritti nel paragrafo 3.7 - Influenza di granulometria e composizione mineralogica.

Tutti i campioni sono stati prelevati da sondaggi effettuati nell’area circumlagunare (Figura 57 - Tabella 2), alcuni effettuati in precedenza, altri svolti appositamente.

Tabella 2: profondità di prelievo e localizzazione del sondaggio da cui sono stati prelevati i campioni.

<table>
<thead>
<tr>
<th>nome</th>
<th>profondità prelievo</th>
<th>area prelievo</th>
<th>tipologia di sedimento</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID 1388 B</td>
<td>-1,8 -5,5</td>
<td>quarto d’altino</td>
<td>limo argilloso olocenico</td>
</tr>
<tr>
<td>MS1</td>
<td>29-30m</td>
<td>arsenale venezia</td>
<td>limo argilloso pleistocenico</td>
</tr>
<tr>
<td>SJ2</td>
<td>7 -7,5 m</td>
<td>tessera aeroporto</td>
<td>limo argilloso pleistocenico</td>
</tr>
<tr>
<td>SJ1</td>
<td>18,5-19m</td>
<td>tessera aeroporto</td>
<td>limo argilloso pleistocenico</td>
</tr>
<tr>
<td>BMS3</td>
<td>1,2-2,0m</td>
<td>bosco marghera</td>
<td>caranto</td>
</tr>
</tbody>
</table>

Ciascun materiale è stato caratterizzato dal punto di vista geotecnico e mineralogico, tramite la definizione di:

- curva granulometrica per sedimentazione in acqua (Figura 58 a),
- Limiti di Atterberg,
✓ contenuto di materiale organico,
✓ peso specifico dei grani,
✓ composizione mineralogica semi-quantitativa tramite analisi con diffrattometro a raggi X,
✓ confronto dei risultati con analisi chimica a fluorescenza.

Figura 58: Alcune fasi della caratterizzazione geotecnica dei campioni di materiale: a) determinazione della curva granulometrica per sedimentazione in acqua; b) campioni per la misura del contenuto d’acqua al limite liquido.

Di seguito si riportano i principali elementi di caratterizzazione a confronto. Successivamente ciascun materiale è descritto singolarmente in modo più dettagliato nei paragrafi in cui si riportano gli esperimenti in cui è stato utilizzato e i risultati sperimentali ottenuti.
Cap. 3 - Misura delle variazioni delle proprietà meccaniche e di permeabilità indotte nei sedimenti coesivi da sollecitazioni termiche generate da una sonda geotermica

Come risulta dalle curve granulometriche riportate (Figura 59), tutti i campioni risultano essere dei limi argillosi, con una percentuale di materiale con diametro inferiore ai 0.002 µm e compresa tra il 20% (MS1) e il 35% (BMS3). Dal punto di vista del comportamento plastico, nella carta di plasticità di Casagrande (Figura 60) tutti i campioni rientrano nella categoria definita come ‘argille inorganiche di media plasticità’: il limite liquido varia da 31% (MS1) a 39% (SJ2 e BMS3) e il limite plastico varia tra 20% (MS1) a 23% (SJ2).

<table>
<thead>
<tr>
<th></th>
<th>WI</th>
<th>IP</th>
<th>LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>SJ1</td>
<td>35</td>
<td>14</td>
<td>21</td>
</tr>
<tr>
<td>SJ2</td>
<td>39</td>
<td>16</td>
<td>23</td>
</tr>
<tr>
<td>MS1</td>
<td>31</td>
<td>11</td>
<td>20</td>
</tr>
<tr>
<td>ID 1388 B</td>
<td>32</td>
<td>11</td>
<td>21</td>
</tr>
<tr>
<td>BM S3</td>
<td>39</td>
<td>18</td>
<td>21</td>
</tr>
</tbody>
</table>

Figura 60: Caratterizzazione geotecnica dei campioni di materiale utilizzati: Limiti di Atterberg e Carta di Casagrande.

Dal punto di vista della composizione mineralogica, la percentuale di fillosilicati presente in ciascun campione è compresa tra 23% (ID1388B) e 36% (BMS3). Le indicazioni forniteci dalle analisi diffrattometriche semi-quantitative indicano che mediamente i minerali argillosi sono
principalmente illite (prevalente) e clorite (molto subordinata), mentre i minerali di smectite sono presenti solo in tracce. Feldspati e quarzo sono presenti in tutti i campioni in basse percentuali, mentre più importanti sono la presenza di dolomite e calcite, in quantità variabili (vedi tabella), essendo infatti il contenuto di carbonati variabile tra il 46% (BMS3) e il 57% (SJ2).

<table>
<thead>
<tr>
<th>Composition percentage</th>
<th>Illite</th>
<th>Chlorite</th>
<th>Calcite</th>
<th>Dolomite</th>
<th>Feldspat</th>
<th>Quartz</th>
<th>Landmark argilla (BMS3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SJ1</td>
<td>0.31</td>
<td>0.13</td>
<td>0.22</td>
<td>0.29</td>
<td>0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SJ2</td>
<td>0.3</td>
<td>0.11</td>
<td>0.42</td>
<td>0.15</td>
<td>0.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS1</td>
<td>0.34</td>
<td>0.09</td>
<td>0.19</td>
<td>0.35</td>
<td>0.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID 1388B</td>
<td>0.23</td>
<td>0.17</td>
<td>0.26</td>
<td>0.28</td>
<td>0.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM S3</td>
<td>0.358</td>
<td>0.135</td>
<td>0.225</td>
<td>0.233</td>
<td>0.049</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figura 61: Caratterizzazione geotecnica dei campioni di materiale utilizzati: composizione mineralogica.

Per questa rapida descrizione si desume come le caratteristiche dei campioni rientrino negli intervalli già individuati da altri autori come caratteristici dei materiali presenti nel sottosuolo dell’area veneziana (Cola e Simonini, 2002; Tosi, 2007; Zezza, 2010).

Data l’eterogeneità dei sedimenti della laguna, per ogni campione era disponibile un quantitativo non elevato di materiale (poco meno di una fustella) e non era quindi possibile ripetere su tutti i terreni esaminati le stesse identiche prove. Con lo scopo di analizzare l’effetto di una variabile, sia essa il tempo di congelamento e la tensione verticale alla quale avvengono i cicli termici, utilizzando campioni tra loro omogenei, si è preferito cambiare materiale per ogni gruppo di prove, secondo lo schema riportato:

- ID1388B: utilizzato per la valutazione degli effetti dei diversi intervalli di temperatura imposto;
- MS1: utilizzato per la valutazione della deformazione indotta su materiale pleistocenico e per la valutazione dell’influenza della durata della fase di congelamento sulla deformazione indotta;
- SJ2: utilizzato per valutare l’influenza del carico verticale applicato;
- BMS3 è un campione di argilla sovraconsolidata dell’orizzonte marcatore conosciuto come caranto; utilizzato, rimaneggiato e sottoposto a processi di consolidazione ‘artificiale’, per valutare l’influenza del grado di sovraconsolidazione sulla deformazione termica indotta;
- SJ1: utilizzato per valutare l’influenza della salinità interstiziale; a tal fine il campione è stato addizionato di soluzioni a diversa salinità iniziale e sottoposto a diverse combinazioni di carico.
Sebbene i campioni presentino alcune differenze e siano stati utilizzati in test con scopi diversi, si vuole sottolineare come queste variazioni risultino molto contenute e rientrino nel campo di variabilità naturale (al di là dello stato di sovraconsolidazione che caratterizza lo strato di caranto) tipica dei materiali appartenenti a quest’area geografica. Ciò consente di poter confrontare tra loro i risultati, seppur ottenuti singolarmente da test su materiali diversi.
Inoltre, i materiali studiati hanno un range di variabilità nella granulometria e nella composizione mineralogica tali da essere rappresentativi delle sequenze alluvionali dell’intero settore lagunare e in generale della pianura Veneto-Friulana (Deckers et al., 1998). È possibile anche affermare che i sedimenti limo-argillosi testati hanno caratteristiche tipiche delle zone di pianura alluvionale distale, dove la sequenza stratigrafica presenta una continua alternanza di sedimenti fini e sabbiosi, a seguito della successione alternata di diverse modalità di deposizione, in relazione ai cicli climatici e alla normale evoluzione geologica del sistema. Ciò consente di estendere i risultati ottenuti nell’area di studio anche ad altre aree geografiche di bassa pianura in cui si ritrova il medesimo contesto geologico.

3.2.3 Preparazione del materiale e svolgimento della prova di consolidazione con carico verticale costante e variazione ciclica di temperatura

Per l’esecuzione delle prove sperimentali il materiale è stato preparato secondo la seguente procedura:
1. il sedimento prelevato dal sondaggio è stato rimaneaggiato con acqua deionizzata fino ad ottenere un campione omogeneo con un contenuto d’acqua pari a circa $W = 1\,-\,1.2\, WL$ (Figura 62a), per poter poi da questo costituire provini uguali tra loro da utilizzare nei diversi esperimenti. Il materiale omogeneizzato al limite liquido è stato conservato in un contenitore a tenuta stagna in camera umida fino all’esecuzione delle diverse prove.

Prima dell’inizio di ciascuna prova, per ciascun provino è stato eseguita la seguente procedura:
2. Il materiale già preparato in forma di slurry è stato inserito in un consolidometro (cella edometrica con diametro $\phi = 10\, cm$) e caricato per 72 ore con una tensione verticale carico costante prossima per quanto possibile pari a quella successivamente applicata nel corso della prova edometrica (fase di preconsolidazione).
3. Al termine della fase di preconsolidazione, il materiale è stato estratto dal consolidometro (Figura 62b) e riprofilato, prendendone la parte più interna, per inserirlo nell’anello edometrico standard ($\phi = 7\, cm$, altezza pari a 2cm).
4. L’edometro così preparato è stato posizionato all’interno del box termostato e sottoposto inizialmente al carico verticale stabilito per la prova e ad una temperatura costante pari a $T_0 = 15 ^\circ C$ per circa 24 ore. In questo modo si garantisce il completamento del processo di consolidazione primaria dovuta alla sola azione del carico verticale e alla temperatura ‘di riferimento’. La temperatura di 15$^\circ C$ è stata scelta come rappresentativa dello stato di temperatura del terreno in sito (nel territorio della pianura Padana la temperatura del
terreno è pari a 14°-15°C, costante per tutto l’anno). Lo stato di consolidazione acquisito dal materiale al termine di questa fase è quindi rappresentativo della situazione precedente all’entrata in esercizio della sonda geotermica.

Figura 62: Fasi di preparazione del materiale per le prove edometriche: a) omogenizzazione ad un contenuto d’acqua pari al limite liquido ed inserimento nel consolidometro; b) estrazione del provino dal consolidometro e c) estrazione del provino dall’edometro standard.

5. Successivamente, a carico verticale costante, viene fatta variare la temperatura imposta dalla cella termostatata, con frequenza giornaliera (a meni dei cicli che ricadono nel fine settimana). Il provino è stato sottoposto è circa 10 cicli termici, come suggerito in letteratura. Un esperimento ha quindi una durata totale variabile tra 2 e 3 settimane.

6. Nel corso del test, sono state rilevate con frequenza controllata l’altezza del provino tramite un micrometro centesimale e la temperatura all’interno della pietra porosa posta appena al di sotto del provino.

L’acquisizione dei dati dei cedimenti segue una legge di tempo esponenziale:

\[t(i) = A \cdot B^i \]

essendo A=0,05, B=1,7; \(i\) è un contatore e \(t\) è il tempo di lettura espresso in minuti.

7. Ciascun test di consolidazione termica è stato interrotto quando, al termine del ciclo termico, il cedimento irreversibile misurato risultava inferiore ai 0.02mm.
Tabella 3: Tabella riassuntiva di tutte le prove condotte, per quanto riguarda le proprietà geotecniche dei materiali.

<table>
<thead>
<tr>
<th>Nome</th>
<th>Tipologia di sedimento</th>
<th>Condizioni imposte</th>
<th>Tipologia di prove condotte</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID 1388 B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>limo argilloso eocenico</td>
<td>[5°C; +55°C] 40kPa</td>
<td>deformazione indotta</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[5°C; +15°C]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[+15°C costante]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS1</td>
<td>limo argilloso pleistocenico</td>
<td>[5°C; +55°C] 40kPa</td>
<td>deformazione indotta</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[5°C; +55°C]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[+15°C costante]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SJ2</td>
<td>limo argilloso pleistocenico</td>
<td>[5°C; +55°C] 40kPa</td>
<td>diverse condizioni di carico verticale + deformabilità sotto incrementi di carico successivi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[5°C; +15°C]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>misura di permeabilità al termine in diverse condizioni di carico</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SJ1</td>
<td>limo argilloso pleistocenico</td>
<td>[5°C; +55°C] 40kPa</td>
<td>deformazione indotta, sotto diverse condizioni di salinità del fluido interstiziale</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[5°C; +30°C]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMS3</td>
<td>caranto</td>
<td>[5°C; +55°C] 40kPa</td>
<td>resistenza al taglio</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[5°C; +30°C]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAS1</td>
<td>argilla (13% smect)</td>
<td>[5°C; +55°C] 40kPa</td>
<td>deformazione indotta, in diversi gradi di sovraconsolidazione</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[5°C; +30°C] 200kPa</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>misura di permeabilità al termine in diverse condizioni di carico</td>
</tr>
<tr>
<td>SAB1</td>
<td>sabbia media</td>
<td>[5°C; +55°C] 40kPa</td>
<td>deformazione indotta</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SJ sabbia</td>
<td>sabbia limosa</td>
<td>[5°C; +55°C] 40kPa</td>
<td>deformazione indotta</td>
</tr>
</tbody>
</table>

3.3 **Influenza dell’intervallo di temperatura sulla deformazione indotta**

Innanzi tutto sono stati effettuati due serie di test con il proposito di verificare gli effetti deformativi generati dalla variazione ciclica di temperatura combinata con l’applicazione di un carico costante. Il processo di consolidazione dovuto all’effetto del carico verticale è, infatti, conosciuto, mentre la sua combinazione con uno stress termico ciclico è meno noto.

3.3.1 **Risultati sperimentali**

In Figura 63 sono confrontati i processi di consolidazione indotti nel terreno (ID1388B) dall’applicazione del medesimo carico verticale costante (pari a 40kPa) ed una variazione ciclica di temperatura tra due estremi, considerando diversi intervalli. Ciascuna prova è stata mantenuta per circa due settimane.
Tabella 4: Caratteristiche del campione ID1388B

<table>
<thead>
<tr>
<th>ID1388B</th>
</tr>
</thead>
<tbody>
<tr>
<td>profondità di prelievo (m.s.m.)</td>
</tr>
<tr>
<td>località di prelievo</td>
</tr>
<tr>
<td>contenuto organico [%]</td>
</tr>
<tr>
<td>Gs</td>
</tr>
<tr>
<td>frazione argillosa [%]</td>
</tr>
<tr>
<td>LIMITI DI ATTERBERG</td>
</tr>
<tr>
<td>limite liquido [%]</td>
</tr>
<tr>
<td>limite plastico [%]</td>
</tr>
<tr>
<td>indice di plasticità</td>
</tr>
<tr>
<td>COMPOSIZIONE MINERALOGICA</td>
</tr>
<tr>
<td>feldspat [%]</td>
</tr>
<tr>
<td>quarzo [%]</td>
</tr>
<tr>
<td>calcite [%]</td>
</tr>
<tr>
<td>dolomite [%]</td>
</tr>
</tbody>
</table>

Nel primo test (Figura 63 - a) la temperatura, rappresentata con la linea sottile, è stata impostata costante per tutto il tempo della prova, pari alla temperatura considerata rappresentativa delle condizioni ‘indisturbate’ cioè 15°C. Si osservi che la deformazione che avviene nel materiale è quindi unicamente dovuta all’azione del carico verticale. La maggior parte della deformazione si esaurisce, come atteso, nelle prime 24 ore, e per il proseguo della prova il materiale matura piccole variazioni di altezza dovute alla deformazione di natura viscosa del terreno, che nel caso dei limi argillosi Veneziani è abbastanza modesto.

Nella seconda prova (Figura 63b), al termine della consolidazione primaria la temperatura è variata tra +5°C e +30°C. Questi due valori sono rappresentativi delle temperature estreme acquisite dal fluido termovettore nel caso di un impianto geotermico a circuito chiuso, che non utilizzi brine con additivi anti-congelanti. Si osserva come la variazione di temperatura induca delle piccole variazioni (dei piccoli gradini nel diagramma di Figura 64b) nell’andamento dei cedimenti viscosi che però danno luogo ad deformazione volumetrica indotta dalle variazioni termiche limitata (0,7%), quasi trascurabile.

L’andamento dell’altezza del provino cambia in modo radicale nella terza prova (Figura 63c), dove le temperature variano tra -5°C e +30°C, a rappresentare gli estremi di temperatura del fluido termovettore tipici di un impianto geotermico a circuito chiuso che utilizza additivi anticongelanti al 15-20% della composizione. Dal grafico si osserva che:

- La prima fase di consolidazione, dovuta unicamente all’azione meccanica del carico verticale applicato, si esaurisce, come atteso, nelle prime 24 ore, alla temperatura indisturbata (15°C). Al termine della consolidazione primaria e secondaria inizia l’applicazione dello stress termico ciclico (variazione di temperatura), rappresentato nel grafico dalla linea sottile;
- Quando inizia lo stress termico e viene impostata una temperatura pari a -5°C, si osserva un’espansione consistente del materiale in corrispondenza del raggiungimento del freezing point del sedimento. Dal grafico si riconosce una fase di espansione veloce, corrispondente al passaggio di fase dell’acqua libera ed alla formazione delle ice lenses. A seguire, sebbene la temperatura venga mantenuta costante al di sotto del freezing point del sedimento, il
materiale non subisce ulteriori deformazioni, indicando che non avviene congelamento di ulteriori molecole d’acqua;

![Diagram](image.png)

Figura 63: Variazione dell’altezza (linea spessa con pallini) dei campioni di terreno ID1388B sottoposti al medesimo carico verticale (40kPa) combinato con diverse forzanti termiche (linea sottile):

a) T=15°C costante; b) T: [+5°C; +30°C]; c) T: [-5°C; +30°C]; d) T: [-5°C, +55°C].

✓ Non appena viene imposto il successivo rialzo della temperatura, il materiale mostra una rapida compressione che si conclude in meno di un’ora, proseguendo fino a che la temperatura non raggiunge i 40°C circa. Come esposto in letteratura (par. 2.2), la contrazione osservata è il risultato dell’interazione di tre fenomeni che avvengono nel corso
del ciclo di congelamento e successivo riscaldamento: (1) lo scioglimento del ghiaccio formatosi nei macropori con corrispondente diminuzione di volume: il cambiamento di fase produce nei pori di maggiori dimensioni la concentrazione di molecole d’acqua, che essendosi staccate dalle particelle solide alle quali erano precedentemente legate, non sono più in grado di reinstaurare i precedenti legami elettrici e sono quindi ‘libere’; (2) il riarrangiamento delle particelle solide possibile grazie all’improvvisa presenza di acqua che permette loro di scivolare l’una sull’altra; (3) l’espulsione di parte delle molecole d’acqua che erano migrate andando ad accrescere le ice lenses ed ora, essendo meno legate elettricamente alle particelle solide, possono essere espulse facilmente sotto l’azione del carico verticale applicato, con conseguente progressiva diminuzione del contenuto d’acqua. Il fenomeno di scongelamento avviene molto velocemente al passaggio della temperatura di cambio fase (variabile, ciclo dopo ciclo e a seconda delle condizioni, intorno circa a -2.5°C). Si noti che la contrazione volumetrica ha un’entità maggiore in modulo dell’espansione di volume misurata nella fase di congelamento, producendo quindi alla fine del ciclo termico una deformazione di contrazione irreversibile generata dal processo di congelamento/scongelamento. L’altezza del provino precedente all’alterazione di temperatura non viene più recuperata.

Simili comportamenti si ripetono nei successivi cicli termici, ma con valori della variazione di volume irreversibile via via più contenuti. La contrazione irreversibile misurabile a fine ciclo è di entità decrescente: il 1° ciclo di congelamento/scongelamento risulta molto efficace e la variazione di altezza registrata è dell’ordine del 3-4% dell’altezza iniziale del provino, mentre nei cicli successivi la deformazione irreversibile indotta diminuisce via via. Dopo il settimo - ottavo ciclo il sedimento acquisisce una nuova struttura, in equilibrio con la combinazione di sollecitazioni termiche e meccaniche subite. Questo nuovo stato di equilibrio risulta indifferente a ulteriori variazioni di temperatura e il materiale, anche se subisce ulteriori cicli di congelamento e scongelamento mostrando espansione e deformazione, non accumula ulteriori deformazioni di contrazione irreversibile;

La compressione totale irreversibile per cicli termici è data dalla differenza tra la deformazione conseguente a sola consolidazione primaria/secondaria e quella dovuta al carico e ai cicli, naturalmente valutata a parità di tempo decorso dall’applicazione del carico meccanico.

Nell’ultima prova (Figura 63 - d), il medesimo materiale viene sottoposto a cicli termici con estremi di temperatura pari a -5°C e +55°C: sono questi gli estremi di temperatura ‘di picco’ raggiunti in condizioni di esercizio estreme. L’andamento dell’altezza del provino nel tempo mostra i fenomeni di espansione e contrazione in tutto simili a quelli che erano stati misurati nel test precedente.
Cap.3 - Misura delle variazioni delle proprietà meccaniche e di permeabilità indotte nei sedimenti coesivi da sollecitazioni termiche generate da una sonda geotermica

La deformazione totale misurata al termine di ciascuna prova è rappresentata nel grafico in Figura 63, suddivisa nella componente dovuta al processo di consolidazione generato dall’azione del solo carico verticale, maturato nella prima fase a temperatura di riferimento (15°C), e in quella dovuta all’applicazione combinata di carico verticale e variazione termica ciclica. Si osservi come la contrazione presenti una certa variabilità, dovuta alla non perfetta ripetibilità dei provini, ma è evidente che:

1. i fenomeni di congelamento/scongelamento del sedimento sono i maggior responsabili degli effetti di compattazione;
2. nel caso in cui siano indotti nel terreno fenomeni di gelo/disgelo, la compattazione finale acquisita totale è circa intorno al 14% dell’altezza iniziale del provino, mentre quella legata alle variazioni termiche è superiore al 9%.

Dato che in altre ricerche (Campanella and Mitchell, 1968; Abuel-Naga, 2007) è evidenziato che un processo di riscaldamento da temperatura ambiente a circa 60°C induce delle deformazioni nei materiali coesivi, anche se di modesta entità (par.2.5), con lo scopo di verificare quale sia la deformazione indotta separatamente dai due fenomeni di gelo/disgelo e riscaldamento, è stato effettuato un ulteriore test. Sono state eseguite due prove ‘gemelle’ su un altro materiale (SJ1), applicando il medesimo carico verticale pari a 40kPa combinato con due sollecitazioni termiche diverse: una variabile intorno allo zero T:[-5°C;+15°C], per valutare gli effetti generati dal solo fenomeno di gelo e disgelo, e una variabile nell’intervallo T:[-5°C a +55°C], considerando la deformazione indotta frutto sia dal fenomeno di gelo/disgelo, che dal riscaldamento. Come per il terreno ID1388B, i risultati di queste due prove sono confrontati con una prova lunga di creep (carico costante per 280 ore).

Le misure effettuate sono riportate in Figura 65.
Dalla Santa Giorgia - Effetti sulle proprietà meccaniche, idrauliche e termiche prodotti da scambiatori geotermici nei terreni argillosi: il caso studio della città di Venezia

Figura 65: Confronto tra deformazione indotta sul medesimo materiale (SJ1) sottoposto ad una tensione verticale di 40kPa ed una sollecitazione termica costante pari a $T=15^\circ C$ (caso a) o variabile in un intervallo pari a $T: [-5^\circ C, +15^\circ C]$ (b) e $T: [-5^\circ C, +55^\circ C]$ (c).

In Tabella 5 sono riportate le aliquote di deformazione attribuibili ai diversi processi di carico meccanico e termico. Esse dimostrano che, in accordo con i precedenti risultati e con la letteratura, la deformazione indotta risulta maggiore a seguito dell’applicazione dello stress termico nell’intervallo maggiore, ma la maggior parte della compressione (l’82% del totale) si registra già nel caso b), quindi a seguito del solo processo di gelo/disgelo.

Tabella 5: Compressione dovuta all’azione del carico verticale e alla variazione termica per il campione SJ1, confrontando gli effetti di due diversi intervalli di temperatura.

<table>
<thead>
<tr>
<th></th>
<th>$T: [-5^\circ C, +55^\circ C]$</th>
<th>$T: [-5^\circ C, +15^\circ C]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>compressione dovuta all’azione del carico verticale</td>
<td>3,6%</td>
<td>3,7%</td>
</tr>
<tr>
<td>compressione dovuta all’azione delle variazioni termiche</td>
<td>9,0%</td>
<td>7,4%</td>
</tr>
</tbody>
</table>

A partire da questi risultati, utilizzando quindi un approccio cautelativo, nelle successive prove sono stati imposti cicli di temperatura tra -5°C e 55°C, cioè quelli considerati corrispondenti a condizioni estreme di esercizio delle sonde geotermiche.
3.4 INFLUENZA DELLA DURATA DELLA FASE DI CONGELAMENTO SULLA DEFORMAZIONE

Per verificare l’influenza della durata della fase di congelamento sull’entità della compattazione irreversibile indotta nel materiale, è stata effettuata un’altra coppia di test gemelli sul materiale MS1. In entrambe le prove il carico verticale applicato era di 40kPa, e l’intervallo di temperatura era T:[-5°C, +55°C], ma nella prima la temperatura di -5°C è stata mantenuta per 3 giorni (73 ore), mentre nel secondo caso per un tempo più che doppio (168 ore, 7 giorni).

3.4.1 Risultati sperimentali

Figura 66: Andamento della consolidazione indotta nel materiale MS1 da un carico di 40kPa e fasi di congelamento di durata variabile.

In questi test sono stati imposti solo due cicli di stress termico, dato che nei risultati precedentemente ottenuti era emerso che più del 90% della deformazione indotta nel materiale avviene nei primi due cicli termici (Dalla Santa et al., 2014). Le misure effettuate in laboratorio (Tabella 6) evidenziano che percentualmente il cedimento indotto non mostra una dipendenza dal tempo di congelamento, essendo all’incirca uguale in entrambi i casi.

<table>
<thead>
<tr>
<th>MS1, carico verticale 40kPa, intervallo temperatura [-5°C, +55°C]</th>
</tr>
</thead>
<tbody>
<tr>
<td>cedimento irreversibile indotto</td>
</tr>
<tr>
<td>(percentuale calcolata sull’altezza del provino a fine consolidazione)</td>
</tr>
<tr>
<td>primo ciclo</td>
</tr>
<tr>
<td>fase di congelamento per 73 ore</td>
</tr>
<tr>
<td>fase di congelamento per 168 ore</td>
</tr>
</tbody>
</table>
Nelle esperienze di laboratorio quindi, la compattazione indotta è sostanzialmente indipendente dalla durata della fase di congelamento: le condizioni realizzate nella struttura sperimentale rappresentano i processi di congelamento/scongelamento che avvengono nei sedimenti coesivi nell’intorno di una sonda geotermica nella situazione geologica esistente nel caso studio considerato, per la relazione tra scala temporale delle variazioni di temperatura imposte e dimensioni del provino, condizioni di drenaggio e la mancata possibilità di apporto al provino di nuovi fluidi interstiziali dall’esterno. I volumi di terreno interessati dai fenomeni di congelamento nell’intorno di una sonda geotermica sono, infatti, estremamente ridotti dal punto di vista areale (raggio di circa 10cm intorno al materiale di riempimento del foro) e la sequenza stratigrafica caratterizzata da una continua alternanza di livelli di materiale fine alternati a materiali sabbiosi tipica delle aree di bassa pianura alluvionale assicura sia lo spessore molto contenuto dei depositi coesivi che le condizioni drenate. In questo contesto geologico, il processo di congelamento di un provino di materiale come quello utilizzato in laboratorio delle dimensioni di 2cm di altezza e di 7cm di diametro, completamente immerso in una miscela di liquido ad alta trasmissività termica, in condizioni drenate e che non può godere di ulteriori apporti di acqua interstiziale, con un tempo di congelamento considerato dell’ordine di grandezza del giorno è considerabile rappresentativo dei fenomeni che si verificano in sito. Questo ci permette di assumere i risultati ottenuti come significativi per lo studio degli effetti delle variazioni termiche prodotte da una sonda geotermica nel terreno circostante, variabili sia nell’arco della stagione che del giorno.

Si sottolinea però che questo non è verificato in altre condizioni, come ad esempio se si considera il processo naturale di congelamento stagionale che avviene su vasta scala nelle regioni sub-polari del pianeta (permafrost), dove l’entità della deformazione che i sedimenti subiscono è dipendente dalla durata nel tempo dello stato di congelamento. In questo caso, più a lungo persiste la condizione di congelamento dovuta alla temperatura dell’aria, più in profondità nel terreno si sviluppa il processo di congelamento poiché la frozen fringe continua ad approfondirsi (come descritto nel par. 2.2.4) man mano che la formazione e l’accrescimento delle lenti di ghiaccio viene alimentata dall’apporto di fluido interstiziale disponibile proveniente dagli strati sottostanti.

Dai risultati ottenuti quindi, in tutti i test sperimentali successivi sono state imposte variazioni cicliche di temperatura con una frequenza di 24 ore, e di 48 ore nei momenti di chiusura settimanale delle strutture in cui è ospitato il laboratorio.

3.5 INFLUENZA DEL CARICO VERTICALE APPLICATO SULLA DEFORMAZIONE

3.5.1 Descrizione del materiale usato

Come materiale di riferimento per analizzare l’influenza dell’entità del carico verticale applicato sulla deformazione indotta dai cicli termici, è stato utilizzato il campione denominato...
SJI, prelevato a Tessera nella zona dell’aeroporto Marco Polo da un sondaggio effettuato all’interno dell’area di proprietà di Superjet s.r.l.. Il campione è stato prelevato alla profondità di 18.5–19.0m ed è quindi rappresentativo degli strati di origine pleistocenica.

Tabella 7: Descrizione del campione utilizzato per la valutazione dell’influenza del carico verticale applicato.

<table>
<thead>
<tr>
<th>SJ1</th>
</tr>
</thead>
<tbody>
<tr>
<td>profondità di prelievo (m.s.l.)</td>
</tr>
<tr>
<td>località di prelievo</td>
</tr>
<tr>
<td>contenuto organico (%)</td>
</tr>
<tr>
<td>Gs</td>
</tr>
<tr>
<td>frizione argillosa (%)</td>
</tr>
</tbody>
</table>

LIMITI DI ATTERBORG

limite liquido [%]	35
limite plastico [%]	21
indice di plasticità	14

COMPOSIZIONE MINERALE

filosilicati [%]	31
quartzo [%]	13
calcite [%]	22
dolomie (%)	29
feldspati [%]	5

3.5.2 Risultati sperimentali

Dal medesimo campione di materiale sono stati ricavati quattro provini equivalenti, con il medesimo contenuto d’acqua iniziale. Ciascuno di questi quattro provini è stato poi sottoposto ad una consolidazione rispettivamente a 40, 200, 500 e 800kPa, valore che è poi mantenuto costante per tutta la durata dell’esperimento. Terminata la consolidazione si è proceduto all’applicazione dei cicli termici, secondo la procedura già utilizzata.

Nei grafici seguenti (Figura 67) si riporta l’andamento della deformazione verticale indotta dalle variazioni cicliche di temperatura, a carico verticale costante.
Figura 67: Andamento nel tempo della consolidazione generata dalle variazioni termiche cicliche nel materiale SJ1, sottoposto a tensioni verticali pari rispettivamente: a) 40kPa; b) 200kPa; c) 500kPa e d) 800kPa.

In Tabella 8 – figura 68 si confrontano direttamente le deformazioni verticali misurate. Si osservi che la consolidazione primaria è ovviamente molto più accentuata nel test con carico verticale maggiore, mentre la deformazione generata dallo stress termico risulta maggiore nel provino con carico verticale inferiore. Probabilmente questo è imputabile al fatto che, al crescere del carico verticale, lo stato di compattazione raggiunto al termine della consolidazione primaria (e secondaria) è molto più marcato: i vuoti sono più piccoli e più difficile sarà la formazione di nuclei di ghiaccio al loro interno. Gli effetti dei cicli di gelo-disgelo saranno quindi molto più contenuti.

Ipotizzando valori medi del peso proprio del terreno sovrastante che forma il carico litostatico (20kN/m³), e condizioni di falda all’altezza del piano campagna, le condizioni di carico si possono ricondurre alla profondità di giacitura del sedimento considerato. Il carico di 40kPa è quindi rappresentativo della tensione verticale efficace ad una profondità di 4m, e analogamente le
tensioni di 200, 500 e 800kPa sono rappresentativi di strati collocati rispettivamente a 20, 50 e 80m. Dai risultati sperimentali si ricava quindi che le deformazioni avvengono lungo tutta la lunghezza della sonda, anche alle maggiori profondità, se vengono indotti cicli di congelamento e scongelamento nel terreno circostante. Queste misure sono state pubblicate in Dalla Santa et al., 2016 Modified compressibility of cohesive sediments induced by thermal anomalies due to a borehole heat exchanger. Engineering Geology. DOI: 10.1016/j.enggeo.2016.01.011), riportato in appendice.

Tabella 8: Deformazioni indotte nei campioni SJ1 testati a tensione verticale di 40kPa, 200kPa, 500kPa e 800kPa.

<table>
<thead>
<tr>
<th></th>
<th>40 kPa</th>
<th>200 kPa</th>
<th>500 kPa</th>
<th>800 kPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>compressione dovuta all’azione del carico verticale</td>
<td>3,6%</td>
<td>7,3%</td>
<td>14,3%</td>
<td>18,0%</td>
</tr>
<tr>
<td>compressione dovuta all’azione delle variazioni termiche</td>
<td>9,0%</td>
<td>5,5%</td>
<td>4,0%</td>
<td>3,5%</td>
</tr>
</tbody>
</table>

Figura 68: Deformazioni misurate nei test di Fig.67. Le percentuali sono valutate sull’altezza iniziale del provino (2cm).

3.6 INFLUENZA DELLO STATO DI CONSOLIDAZIONE SULLA DEFORMAZIONE

Particolare attenzione è stata posta all’analisi del comportamento di materiale coesivo caratterizzato da diversi stati di consolidazione, vista la presenza nella sequenza litostratigrafica dell’area di Venezia del livello di limo argilloso detto caranto, caratterizzato da un elevato grado di consolidazione (vedi par. 1.3.1). Dall’analisi della letteratura è emerso che la precedente storia tensionale del sedimento, e quindi il suo stato di consolidazione, determina fortemente il comportamento deformativo, quando sottoposto a variazioni termiche cicliche (vedi par. 2.2.6 - Effetti del carico verticale e dello stato di consolidazione). Essendo la sequenza litostratigrafica della zona di studio formata generalmente da livelli alternati di materiale sciolto e coesivo normal-
consolidato, lo strato di caranto si distingue dal resto e merita quindi una serie di esperimenti dedicati a determinare il suo particolare comportamento.

Le attività di ricerca rispetto al livello di caranto sono state sviluppate secondo tre direzioni:

1. è stata analizzata la variabilità ‘verticale’ tra campioni di materiale appartenenti al livello di caranto, prelevati a diverse profondità e contigui tra loro, in modo da evidenziarne le differenze principali, confrontando i risultati ottenuti con le informazioni disponibili in letteratura;
2. è stata svolta una serie di misure di deformabilità indotta da variazioni cicliche di temperatura, utilizzando 4 provini prelevati da un unico campione di terreno omogeneo e successivamente sottoposti ad una speciale procedura di sovraconsolidazione artificiale, in modo da caratterizzarli con diversi gradi di sovraconsolidazione.
3. vista l’elevata variabilità spaziale del caranto e le sue particolari caratteristiche, è stata svolta una specifica attività di identificazione di questo livello nei dati stratigrafici nell’ambito della banca dati del Servizio Geologico della Provincia di Venezia (ora Città Metropolitana), proponendo una mappatura della sua estensione areale nel centro storico veneziano. Questa attività e i risultati ottenuti sono descritte nel par. 6.4

Per valutare la variabilità delle caratteristiche all’interno dello strato, sono stati utilizzati i campioni provenienti dal sondaggio BM-S6 (dove BM sta per Bosco Marghera) mentre per effettuare i test di deformazione generata dai cicli di gelo/disgelo, è stato selezionato il materiale proveniente dal sondaggio BM_S3, da una profondità di 1.6 – 2m. I campioni di materiale sovraconsolidato (caranto) sono stati prelevati da sondaggi effettuati nella zona di Bosco Marghera, come riportato nella mappa di figura 69.

3.6.1 Caratterizzazione dell’orizzonte stratigrafico sovraconsolidato detto ‘caranto’

Il livello di caranto (vedi par 1.3.1 e cap. 6), è facilmente individuabile nella sequenza deposizionale formata da una continua alternanza di sottili livelli di materiali sciolti e limoso-argilloso normal-consolidati, grazie alle sue caratteristiche particolari di sovraconsolidazione, alla presenza di noduli carbonatici e alla presenza di caratteristiche striature ocracee, delineandosi così come orizzonte marcatore tra i sedimenti di origine pleistocenica ed olocenica. Il livello di caranto ha uno spessore variabile, in media di 1-2m, e presenta una giacitura inclinata verso il mare, essendo quasi affiorante nell’area di Mestre, a circa 6-10m di profondità nella zona del centro storico veneziano, e a circa 12m di profondità lungo il litorale. Oltre al fatto che non è un orizzonte continuo ma presenta numerose interruzioni, esso è anche caratterizzato da una elevata variabilità spaziale e verticale, sia di tipo composizionale che per il grado di sovraconsolidamento, derivata dal processo di formazione pedogenetica (Gatto e Previatello, 1974; Mozzi et al., 2004; Donnici et al., 2011).
Al momento del prelievo del materiale individuato nel corso del sondaggio come appartenente al livello di *caranto*, sono state effettuate misure di resistenza sui campioni ancora all’interno della cassetta catalogatrice, per indentificarne il grado di sovraconsolidazione. E’ stato utilizzato il *pocket penetrometer*, che fornisce una indicazione puntuale della resistenza al taglio non drenata del materiale. I campioni prelevati presentano resistenze che vanno da 3kg/cm² a 12kg/cm², identificando quindi diversi gradi di sovraconsolidazione. Le misure effettuate sono in linea con quanto riportato in letteratura, dove il livello viene indicato avere un grado di sovraconsolidazione variabile, fino a circa 30 (Gatto e Previatello, 1974).

Tabella 9: Valori di pocket penetrometer (resistenza alla compressione semplice) dei campioni di caranto disponibili.

<table>
<thead>
<tr>
<th>Valore pocket penetrometer (kg/cm²)</th>
<th>Sondaggio di provenienza</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 o 4</td>
<td>S5, S6</td>
</tr>
<tr>
<td>7 - 7,5</td>
<td>S0, S6</td>
</tr>
<tr>
<td>10</td>
<td>S3, S6, S7</td>
</tr>
<tr>
<td>11 - 12</td>
<td>S2, S9</td>
</tr>
</tbody>
</table>

Figura 69: Localizzazione dei sondaggi ove è stato reperito il materiale sovraconsolidato, con in evidenza quelli di cui è estratto utilizzato il materiale per la sperimentazione (BM_S3 e BM_S6).

Nel sondaggio S6 sono disponibili 3 campioni tutti appartenenti al livello riconosciuto come *caranto*, posizionati a breve distanza e caratterizzati da diversi valori di resistenza al *pocket penetrometer*. Questo materiale permette di evidenziare la caratterizzazione della variabilità verticale delle caratteristiche del *caranto*.
Effetti sulle proprietà meccaniche, idrauliche e termiche prodotti da scambiatori geotermici nei terreni argillosi: il caso studio della città di Venezia

Figura 70: Cassetta catalogatrice del sondaggio BM_S6.

Tabella 10: Caratteristiche riportate nella stratigrafia dei tre campioni recuperati nel sondaggio BM_S6

<table>
<thead>
<tr>
<th>Campione</th>
<th>Profondità tetto (m da p.c.)</th>
<th>Profondità letto (m da p.c.)</th>
<th>Descrizione stratigrafica</th>
<th>Pocket penetrometer (kg/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S6A</td>
<td>2.00</td>
<td>2.20</td>
<td>Passaggio da argilla debolmente limosa nocciola a argilla debolmente limosa nocciola fiamme grigie (caranto) passante a argilla grigia</td>
<td>10</td>
</tr>
<tr>
<td>S6B</td>
<td>2.80</td>
<td>3.00</td>
<td>Argilla debolmente limosa nocciola fiamme grigie (caranto) passante a argilla grigia fiamme ocra a 2.85</td>
<td>7.5</td>
</tr>
<tr>
<td>S6C</td>
<td>3.00</td>
<td>3.20</td>
<td>“</td>
<td>4</td>
</tr>
</tbody>
</table>

Per quanto riguarda i valori grado di sovraconsolidazione OCR, Gatto e Previatello (1974), mediante l’analisi di 120 campioni prelevati nell’area lagunare, hanno riscontrato come il grado di sovraconsolidazione assume valori da 2,2 ad un massimo di 64. Più recentemente (Mozzi, 2004; Zezza, 20) riportano dati sulla resistenza misurata tramite pocket penetrometer, evidenziando come nell’area veneziana questa possa raggiungere valori anche pari a 4 – 4,5kg/cm². Confrontati con questi dati di letteratura, i valori di resistenza non drenata misurati nel sondaggio in esame risultano particolarmente alti, probabilmente perché i campioni sono stati prelevati a ridotte profondità, tanto da essere parte del suolo attuale, acquisendo così una maggiore resistenza.

Nelle figure seguenti sono riportate le immagini dei tre campioni, il confronto tra le curve granulometriche e i parametri di caratterizzazione.
Cap. 3 - Misura delle variazioni delle proprietà meccaniche e di permeabilità indotte nei sedimenti coesivi da sollecitazioni termiche generate da una sonda geotermica

I tre campioni presentano curve granulometriche molto simili, con una maggiore componente fine nel campione più superficiale (la percentuale di materiale con diametro inferiore a 0,01 mm è del 95% in questo campione contro l’80% degli altri due campioni). Anche i Limiti di Atterberg risultano maggiori nel campione più superficiale e decrescono con la profondità: il limite di liquidità varia da WL = 43% a 33% nel BM_S3B e al 35% del BM_S6C) mentre l’indice plastico scende da IP = 20%, a 14% per il BM_S3B e il 12% del BM_S6C). Considerando la composizione granulometrica, i materiali argillosi superano il 40% nel campione più superficiale, mentre nel campione intermedio arrivano al 30% e in quello più profondo al 28%.
Viceversa, i carbonati risultano avere comportamento opposto, quindi in aumento dal campione più profondo (BM_S63 presenta il 38% di calcite e il 19% di dolomite) a quello più superficiale (BM_S1 presenta il 31% e il 14% rispettivamente).

![Diagrama](image-url)

Figura 72: Grafici di confronto dei tre campioni BM_S6A, BM_S6B e BM_S6C.

I risultati ottenuti sono in buono accordo con le indicazioni di letteratura (Gatto e Previatello, 1974; Bonardi et al, 2006). E’ probabile che il processo di pedogenesi abbia avuto un ruolo importante nella differenziazione verticale del caranto, rimasto esposto per circa 10.000 anni (la deposizione del pacchetto sedimentario di origine continentale pleistocenica è avvenuta tra 17.500 e 22.000 anni fa, mentre la deposizione degli strati successivi di origine marina in periodo olocenico si è verificata a partire da 7.000 anni fa (Mozzi et al., 2004). Il processo pedogenetico avvenuto sul livello di caranto, grazie all’azione dei diversi agenti atmosferici sui sedimenti esposti, ai processi di alterazione chimica dei minerali (silice, ferro, alluminio, cationi), e alle trasformazioni della componente organica, ha differenziato le caratteristiche del materiale presente alle diverse profondità portando ad un aumento di materiale fine e di minerali argillosi nello strato superiore e a un accumulo di carbonati, con formazione anche di caratteristiche concrezioni carbonatiche.
Cap. 3 - Misura delle variazioni delle proprietà meccaniche e di permeabilità indotte nei sedimenti coesivi da sollecitazioni termiche generate da una sonda geotermica

(granuli) negli strati sottostanti. Anche la maggiore resistenza dello strato può essere una conseguenza di questo processo (Bonardi et al, 2006).

3.6.2 Descrizione dei campioni di materiale utilizzato

Le principali caratteristiche del materiale BM_S3 sono riportate nei grafici seguenti.

Tabella 11: Descrizione del campione utilizzato.

<table>
<thead>
<tr>
<th>BM_S3</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>profondità di prelievo (m.s.m.)</td>
<td>1,60 - 2</td>
</tr>
<tr>
<td>località</td>
<td>Bosco Marghera</td>
</tr>
<tr>
<td>contenuto organico (%)</td>
<td>26</td>
</tr>
<tr>
<td>Gs</td>
<td>2,775</td>
</tr>
<tr>
<td>frazione angolosa</td>
<td>33%</td>
</tr>
<tr>
<td>LIMITI DI ATTERBERG</td>
<td></td>
</tr>
<tr>
<td>limite liquido [%]</td>
<td>38</td>
</tr>
<tr>
<td>limite plastico [%]</td>
<td>21</td>
</tr>
<tr>
<td>indice di plasticità</td>
<td>18</td>
</tr>
<tr>
<td>COMPOSIZIONE MINERALOGICA</td>
<td></td>
</tr>
<tr>
<td>fillosilicati [%]</td>
<td>35,8</td>
</tr>
<tr>
<td>quarzo [%]</td>
<td>13,5</td>
</tr>
<tr>
<td>calcite [%]</td>
<td>22,5</td>
</tr>
<tr>
<td>dolomita [%]</td>
<td>23,3</td>
</tr>
<tr>
<td>pelospatite [%]</td>
<td>4,9</td>
</tr>
</tbody>
</table>

Per quanto riguarda la composizione mineralogica del caranto, in Figura 73 sono confrontati i diagrammi diffrattometrici di alcuni campioni utilizzati in questa ricerca e appartenenti a diverse unità geologiche: il campione BM_S3 è il campione di caranto appena descritto, SJ1 è un campione prelevato negli strati pleistocenici più profondi e ID1388B ha origine olocenica. E’ interessante notare come, anche dal punto di vista della composizione mineralogica, i tre campioni si rivelino estremamente simili tra loro e quindi è possibile ritenere che le differenze di comportamento che possono verificarsi siano dovute solo alla diversa storia tensionale subita nelle epoche geologiche.
3.6.3 **Procedura di preparazione del materiale**

Il materiale utilizzato in questa fase sperimentale è stato preparato con la procedura standard descritta nel paragrafo 3.2.3. Oltre a ciò, al fine di avere un materiale sovraconsolidato, prima di applicare i cicli termici, il terreno è stato consolidato ad elevate tensioni (con diversi valori a seconda del campione) e poi scaricato.

La metodologia seguita è la seguente:

1. il materiale selezionato (BM_S3) è portato allo stato di ‘slurry’ mediante miscelazione con acqua deionizzata;
2. è poi sottoposto ad un carico di preconsolidazione di 100kPa mantenendolo per 3 giorni all’interno del consolidometro;
3. un provino per l’edometro standard è tagliato dalla parte più interna del campione preconsolidato e inserito nel castello edometrico;
4. il provino edometrico è consolidato per gradini successivi di carico crescente variati ogni 24 ore, fino ad arrivare alla massima tensione verticale di pre-consolidazione desiderata (rispettivamente 600, 1200 e 2400kPa);
5. il provino viene quindi scaricato, trasferito nel box termostatato, e qui sottoposto a un carico verticale di 40kPa, uguale per tutte le prove, applicato alla temperatura di riferimento ($T_{in} = 15{\degree}C$). Dopo 24 ore si procede all’applicazione dei cicli termici come descritto nel par. xx. Il rapporto tra la tensione massima verticale raggiunta prima della prova termica e la tensione mantenuta durante i cicli termici rappresenta il grado di sovraconsolidazione OCR del materiale: esso è rispettivamente pari a 1 (provino...
normal consolidato o NC), 15, 30 e 60. I tre valori di sovraconsolidazione qui raggiunti sono stati scelti per riprodurre l’intervallo indicato da Gatto e Previatello (1974).

6. il test sperimentale viene sospendo quando la deformazione irreversibile indotta ad ogni ciclo termico è trascurabile.

Figura 74: Grafico di compattazione dovuta al processo di sovraconsolidamento ad incremento di carico, con carico iniziale pari a 500kPa.

Per verificare la resistenza raggiunta attraverso le operazioni di sovraconsolidazione in laboratorio, sono state svolte alcune misure tramite il pocket penetrometer al termine della procedura di sovraconsolidazione su un provino gemello: il campione con OCR = 15 risulta avere una resistenza a termine della prova pari a 1.5 – 1.8kg/cm², in linea con i valori di letteratura.

Figura 75: (a) Misura della resistenza al pocket penetrometer sul provino gemello; (b) sistema di carico con il carico applicato di 2400kPa durante la fase di sovraconsolidazione del provino, prima di inserirlo nella cella termostata.

Il processo di sovraconsolidazione riprodotto artificialmente in laboratorio non è concettualmente uguale a quello naturale effettivamente avvenuto nel corso della formazione pedologica del livello
di caranto. Questo, infatti, è dovuto all’essicazione per esposizione subaerea del materiale. In natura il processo avviene per carico isotropo perché la perdita d’acqua genera una progressiva riduzione della pressione all’interno dei menischi intergranulari, tale da compattare tra loro le particelle solide (Mozzi, 2004). Al contrario, il processo di consolidazione artificiale condotto per applicazione di carico verticale è anisotropo.

In effetti l’obiettivo di questa fase sperimentale era quello di evidenziare l’effetto della sovraconsolidazione e non quello di riprodurre in modo fedele lo stato naturale del terreno di Venezia, che sicuramente è influenzato anche da altri processi (cedimenti viscosi, invecchiamento, fenomeni elettrochimici e processi diagenetici) non tutti riproducibili in laboratorio.

3.6.4 Risultati sperimentali

Sono stati eseguiti sono 4: uno su materiale normal-consolidato (NC), e tre terreno con diverso grado di sovraconsolidazione (OCR = 15, 30 e 60). I risultati sono riportati in fig. 76.

I risultati evidenziano come la consolidazione primaria e secondaria dovuta all’applicazione iniziale della tensione di 40kPa in edeometro è quasi trascurabile per i tre campioni sovraconsolidati. A differenza della consistente compressione irreversibile registrata durante i cicli termici sul materiale NC (dell’ordine del 9% dell’altezza iniziale), nei campioni sovraconsolidati si registra (Tabella 12) una deformazione molto piccola (per OCR=15) o addirittura di espansione (per OCR=30 e 60), in accordo con quanto riportato in letteratura. Nei sedimenti che precedentemente hanno subito forte compattazione, poi scaricati a carichi verticali inferiori, l’effetto di cicli termici di gelo/disgelo provoca una rottura della struttura, tale che la sollecitazione termica invece che comprimere il materiale, porta ad una deformazione di espansione.

Da questo si ricava che lo strato di caranto presente nel sottosuolo veneziano, se coinvolto in cicli di gelo/disgelo indotti da sonde geotermiche in esercizio, non subirà un processo di compattazione come gli altri strati coesivi tendenzialmente NC, ma al contrario una leggera espansione (intorno all’1% dello spessore).
Cap. 3 - Misura delle variazioni delle proprietà meccaniche e di permeabilità indotte nei sedimenti coesivi da sollecitazioni termiche generate da una sonda geotermica

Figura 76: Deformazione verticale indotta dalla combinazione di carico (40 kPa) e variazione ciclica di temperatura (T_1=-5°C, T_2= +5°C) sul materiale BM_S3, preparato a diversi gradi di sovracconsolidazione: a) NC; b) OCR = 15; c) OCR = 30; d) OCR = 60.
Tabella 12: Deformazioni indotte dalla preconsolidazione e dai cicli termici nei vari casi considerati (valori negativi sono in espansione e positivi in contrazione).

<table>
<thead>
<tr>
<th>carico applicato in fase di preconsolidazione[kPa]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>percentuali calcolate sull’altezza iniziale del provino (=20mm) (NC)</td>
</tr>
<tr>
<td>compressione dovuta al preconsolidamento</td>
</tr>
<tr>
<td>deformazione dovuta alle variazioni cicliche di temperatura</td>
</tr>
</tbody>
</table>

Figura 77: Confronto tra le deformazioni misurate nei test con diverso OCR. Le percentuali sono valutate sull’altezza iniziale del provino (2cm).

3.7 Influenza di granulometria e composizione mineralogica sulla deformazione

Per valutare l’influenza di granulometria e composizione mineralogica sulla deformazione indotta dalle variazioni termiche, sono stati svolti ulteriori test sperimentali su materiali di natura differenziate rispetto ai precedenti: in particolare, sono quindi stati considerati due materiali granulari (una sabbia media e una fine) e un materiale molto fine e di elevata plasticità.

3.7.1 Descrizione dei materiali utilizzati

Entrambi i materiali granulari sono stati prelevati nel sondaggio SJ effettuato in località Tessera. Il materiale denominato SAB1 proviene dal livello sabbioso presente alla profondità 10-
12.6m e si configura come una sabbia media di origine pleistocenica abbastanza omogenea dal punto di vista granulometrico (probabile origine marina). Il campione SAB2 proviene dal livello alla profondità 23.5m – 24.5m e risulta invece essere una sabbia fine limosa con presenza di sabbia media.

![Figura 78: a) Curve granulometriche dei due materiali granulari a confronto (SAB1, linea continua, SAB2 linea tratteggiata) e b) confronto tra le composizioni mineralogiche.](image)

Il confronto tra le composizioni mineralogiche evidenzia una percentuale di fillosilicati piuttosto elevato nella sabbia media, a confronto con il 4% presente nella sabbia fine: questo è in parte attribuibile al metodo di calcolo, che per questo campione è basato sull'analisi chimica per la semi-quantificazione e sulla diffrattometria per il riconoscimento qualitativo, in parte è attribuibile ai carbonati, che nel campione di sabbia fine sono molto abbondanti, mentre sono estremamente contenuti nell’altro.

Il terreno fine, prelevato in una cava del comune di Sassuolo (Bo) e denominato SAS1, risulta essere dal punto di vista granulometrico una argilla con tracce di sabbia fine.

![Figura 79: Curva granulometrica del campione di argilla con tracce di sabbia fine SAS1.](image)
Il campione SAS1, a differenza dei materiali coesivi testati in precedenza, presenta un contenuto di minerali argillosi del 45%. L’analisi quantitativa in questo caso è stata svolta con il metodo Rietveld, in modo da quantificare con maggiore precisione anche la tipologia di minerali fillosilicati presenti: il risultato ottenuto evidenzia una percentuale di smectite del 13% del totale del campione.

Il materiale presenta un Limite Liquido pari a 59 e un Indice Plastico di 36, come rappresentato nella Carta di Casagrande di Figura 80.

La necessità di utilizzare un materiale proveniente da un altro sito è dovuta al fatto che, come riportato in Zezza (2009) i terreni coesivi presenti nel sottosuolo veneziano possono raggiungere occasionalmente valori di Indice Plastico intorno a 40 (confronta par.1.3.1) e quindi per completare lo studio si è ritenuto necessario studiare anche un terreno con tali caratteristiche. Purtroppo, però, nei sondaggi disponibili per questa ricerca ed effettuati nei dintorni di Venezia non era stato reperito alcun campione caratterizzato da un IP maggiore di 20.

3.7.2 Risultati sperimentali – sedimenti più grossolani

I materiali sabbiosi sono stati sottoposti a prove edometriche del tutto simili a quelle condotte sui campioni di materiale coesivo. Solo la fase di preparazione del provino è stata ovviamente diversa: la sabbia è stata depositata all’interno dell’anello edometrico in condizioni secche, poi addensata tramite compattazione meccanica. Una volta caricato l’edometro, è stata aggiunta acqua deionizzata in modo da rendere il materiale satto.
Cap.3 - Misura delle variazioni delle proprietà meccaniche e di permeabilità indotte nei sedimenti coesivi da sollecitazioni termiche generate da una sonda geotermica

I risultati ottenuti (Fig.81) confermano l’assunzione iniziale che considera i materiali sciolti granulari non sensibili a deformazione indotta da sollecitazioni termiche: nel caso del campione di sabbia media, la deformazione indotta termicamente è praticamente assente, mentre nel caso del secondo campione, si misura una compattazione finale irreversibile di circa il 2% dell’altezza iniziale del campione. Questo valore di deformazione, non del tutto trascurabile, è attribuibile alla presenza di una piccola frazione fine limosa, rappresentata anche dal 4% (calcolata sul totale o sulla frazione fine?) di fillosilicati e di un’elevata differenziazione di dimensioni e forme delle particelle solide, che permette di raggiungere un’ulteriore compattazione, indotta dai cambiamenti ciclici di fase dell’acqua nei vuoti intergranulari.

3.7.3 Risultati sperimentali – sedimenti limoso-argillosi

Il materiale argilloso ad elevata plasticità è stato sottoposto a due test edometrici a temperatura variabile, considerando in entrambi una variazione giornaliera di temperatura con $T: [-5^°C;+55^°C]$ e il carico verticale applicato rispettivamente di 40kPa e di 200kPa. I diagrammi sono riportati in figura 82.

Si osservi come, a causa della maggiore plasticità e minor permeabilità del materiale testato, i processi di consolidazione primaria e secondaria richiedano più tempo per esaurirsi. Anche nei cicli termici successivi, l’andamento della deformazione a seguito dello scongelamento del sedimento, avviene più gradualmente, suggerendo in questo caso una consolidazione più graduale. La compressione totale raggiunta è più elevata (attorno al 19% per il campione testato a tensione verticale di 40kPa, 28% nell’altro), come riportato tabella 13.
Tabella 13: Valori di compressione dovuta all’azione del carico verticale (40kPa e 200kPa) e alla variazione termica ciclica [T: -5°C; +55°C] per il campione SAS1.

<table>
<thead>
<tr>
<th></th>
<th>40 kPa</th>
<th>200 kPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>compressione dovuta al carico verticale (T= 15°C)</td>
<td>3,1%</td>
<td>14,3%</td>
</tr>
<tr>
<td>compressione dovuta alle variazioni termiche</td>
<td>16,3%</td>
<td>13,6%</td>
</tr>
</tbody>
</table>

Dai risultati ottenuti, appare evidente come la plasticità del materiale influenzi l’intensità della compattazione indotta. Si ricorda infatti che nelle medesime condizioni di carico, il valore di compattazione medio indotto su campioni limoso-argillosi con IP compreso tra 11 e 18 è uguale a 7,6% dell’altezza iniziale del provino, se sottoposto al carico di 40kPa. Inoltre, sembra che l’influenza del carico applicato sia inferiore: mentre per il campione SJ1, la compressione dovuta alle variazioni termiche scendeva da 9% a 40kPa a 5,5% a 200kPa (riduzione del 39%), in questo caso la compressione si riduce da 16,3% a 13,6%, cioè solo di un’aliquota pari al 17%.

![Figura 82: Risultato dei test di deformazione termica sui campioni di materiale SAS1, caratterizzato da un Indice Plastico pari a 36.](image)
3.8 **CONFRONTO TRA LA DEFORMAZIONE INDOTTA DA CICLI DI GELO/DISGELO IN SEDIMENTI DI DIVERSA NATURA**

Al fine di capire se esiste una relazione tra la deformazione indotta e le caratteristiche del materiale si sono messi a confronto i valori della deformazione indotta ricavati dalle prove svolte su materiali diversi e sottoposti alle medesime condizioni di sollecitazione, rappresentate da carico verticale costante pari a 40kPa combinato ad una variazione termica giornaliera ciclica con temperatura variabile tra -5°C e +55°C (tabella 14).

Tabella 14: Compressione dovuta all’azione del carico verticale (40kPa) e alla variazione termica ciclica [T: -5°C; +55°C] per i campioni sabbiosi (SAB1 e SAB2), limo-argillosi di medio-bassa plasticità (ID1388B, MS1, SJ1 e BMS3) e argilloso di elevata plasticità (SAS1).

<table>
<thead>
<tr>
<th>condizioni di sollecitazione:</th>
<th>compressione dovuta all'azione del carico verticale [T: -5°C; +55°C]</th>
<th>compressione dovuta all'azione delle variazioni termiche</th>
</tr>
</thead>
<tbody>
<tr>
<td>carico verticale applicato: 40 kPa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>variazione termica ciclica: [-5°C; +55°C]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAB1</td>
<td>sabbia media</td>
<td>0,3%</td>
</tr>
<tr>
<td>SAB2</td>
<td>sabbia fine</td>
<td>1,0%</td>
</tr>
<tr>
<td>ID 1388B</td>
<td>limo argilloso</td>
<td>3,0%</td>
</tr>
<tr>
<td>MS1</td>
<td>limo argilloso</td>
<td>3,2%</td>
</tr>
<tr>
<td>SJ1</td>
<td>limo argilloso</td>
<td>3,6%</td>
</tr>
<tr>
<td>BM_S3</td>
<td>limo argilloso</td>
<td>4,8%</td>
</tr>
<tr>
<td>media</td>
<td></td>
<td>3,7%</td>
</tr>
<tr>
<td>min</td>
<td></td>
<td>3,0%</td>
</tr>
<tr>
<td>max</td>
<td></td>
<td>4,8%</td>
</tr>
<tr>
<td>SAS1</td>
<td>argilla</td>
<td>3,1%</td>
</tr>
</tbody>
</table>

La deformazione osservata è nulla per il campione di sabbia media, mentre è diversa da zero ma molto contenuta per il campione di sabbia fine con tracce di limo.

Nei materiali a medio-bassa plasticità, il valore medio di compattazione indotta è pari a 7,6% dell’altezza iniziale del provino, mentre il valore massimo e minimo sono rispettivamente pari a 9,1% e 5,6%. Queste variazioni sono in parte attribuibili allo stato di compattazione del provino all’inizio della prova sperimentale: sebbene le modalità di preparazione utilizzate siano state per quanto possibile standardizzate, l’indice dei vuoti e il contenuto d’acqua iniziali, presentano una certa variabilità. In parte, sono legate alla differenza nella composizione mineralogica e nella granulometria di ciascun materiale.

La deformazione misurata con il materiale più fine (SAS1) è molto maggiore, pari a 16,3% dell’altezza iniziale del provino.
Sebbene il numero di prove disponibili sia limitato dal punto di vista statistico, al fine di individuare un element che possa spiegare la diversa entità della deformazione misurata nei vari materiali, la deformazione è stata analizzata in funzione della percentuale di fine (frazione di particelle con diametro inferiore ai 2\(\mu m \)), del contenuto di fillosilicati, dell’Indice di Attività Colloidale IA (definito come rapporto tra l’indice di plasticità e la percentuale di fine) (tabella 15 e Figura 83). Le regressioni ottenute con il metodo dei minimi quadrati non sono molto soddisfacenti, ma è chiaro che il coefficiente di regressione non è alto anche a causa del numero limitato di dati.

Tabella 15: Valore della percentuale di frazione fine, fillosilicati, Indice di Attività colloidale, Indice Plastico dei campioni a confronto con la compressione totale misurata.

<table>
<thead>
<tr>
<th>ID 1388B</th>
<th>MS1</th>
<th>SJ1</th>
<th>BMS3</th>
<th>valore medio</th>
<th>min</th>
<th>max</th>
<th>SAS1</th>
</tr>
</thead>
<tbody>
<tr>
<td>fillosilicati [%]</td>
<td>23</td>
<td>34</td>
<td>31</td>
<td>36</td>
<td>31</td>
<td>23</td>
<td>36</td>
</tr>
<tr>
<td>IP</td>
<td>11</td>
<td>12</td>
<td>14</td>
<td>18</td>
<td>14</td>
<td>11</td>
<td>18</td>
</tr>
<tr>
<td>caly fraction [%]</td>
<td>28</td>
<td>20</td>
<td>20</td>
<td>33</td>
<td>25</td>
<td>20</td>
<td>33</td>
</tr>
<tr>
<td>IA</td>
<td>0,393</td>
<td>0,600</td>
<td>0,700</td>
<td>0,545</td>
<td>0,560</td>
<td>0,393</td>
<td>0,700</td>
</tr>
<tr>
<td>compressione termica irreversibile</td>
<td>5,6</td>
<td>6,8</td>
<td>9,0</td>
<td>9,1</td>
<td>7,6</td>
<td>5,6</td>
<td>9,1</td>
</tr>
</tbody>
</table>

Figura 83: Correlazione tra valori di deformazione termica misurata e possibili indicatori (clay fraction, percentuale di fillosilicati, IA).
Cap.3 - Misura delle variazioni delle proprietà meccaniche e di permeabilità indotte nei sedimenti coesivi da sollecitazioni termiche generate da una sonda geotermica

Tra i parametri che meglio sembra spiegare la variazione della deformazione è il coefficiente di attività che si correla alla deformazione con un coefficiente di regressione pari a 0,89.

3.8.1 Effetto della progressiva perdita del contenuto d’acqua

Dal punto di vista fisico, come già precedentemente descritto (vedi par. 2.2 - Evoluzione del processo di congelamento in un), il processo ciclico di congelamento e scongelamento di un sedimento coinvolge inizialmente le molecole l’acqua ‘libere’ presenti nella parte centrale dei pori, e poi ciclo dopo ciclo quelle sempre più legate, che vengono attratte verso i nuclei di congelamento, strappate ai legami elettrici preesistenti e infine, nel corso della successiva fase di scongelamento, in parte espulse dal sedimento sotto l’azione del carico verticale. La parziale espulsione delle molecole d’acqua che sono state attratte verso le zone di congelamento e i cui legami elettrici sono quindi stati indeboliti, fa sì che i cicli di gelo/disgelo portino ad una progressiva e parziale disidratazione del sedimento. Questo risultato emerge da tutte le prove sperimentali dove il contenuto d’acqua del sedimento, portato ad essere pari a circa 1.2 WL in fase di preparazione del materiale, alla fine dei cicli termici è risultato di poco superiore al WP (tabella 16). Il processo di gelo e disgelo fa diminuire il contenuto d’acqua del sedimento ciclo dopo ciclo, espellendo un po’ alla volta l’acqua adsorbita ma non quella più prossima alla superficie delle particelle, dove le molecole sono più fortemente legate.

Tabella 16: Valore dei Limiti di Atterberg e perdita di contenuto d’acqua misurati tra l’inizio e la fine della prova sperimentale. Il contenuto d’acqua iniziale è leggermente inferiore a quello di preparazione del materiale perché parte del contenuto d’acqua si perde anche nel corso della fase di preconsolidazione nel consolidometro.

<table>
<thead>
<tr>
<th>condizioni di sollecitazione:</th>
<th>carico verticale applicato: 40 kPa</th>
<th>variazione termica ciclica: [-5°C; +55°C]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>limite liquido</td>
<td>contenuto d’acqua iniziale</td>
</tr>
<tr>
<td>ID 1388B</td>
<td>32,0</td>
<td>29,5</td>
</tr>
<tr>
<td>MS1</td>
<td>31,0</td>
<td>28,2</td>
</tr>
<tr>
<td>SJ1</td>
<td>35,0</td>
<td>33,6</td>
</tr>
<tr>
<td>BM_S3</td>
<td>39,0</td>
<td>39,1</td>
</tr>
<tr>
<td>SAS1</td>
<td>59,0</td>
<td>55,3</td>
</tr>
</tbody>
</table>

Le modifiche subite dalla texture del sedimento a causa dei cicli termici ripetuti (di congelamento e scongelamento) riguardano anche la diminuzione di contenuto d’acqua, che si combina con la formazione di aggregati solidi di maggiori dimensioni e la formazione delle fessure verticali (vedi par. 2.2). Il nuovo stato di equilibrio finale a cui si adatta la struttura del sedimento, sollecitata dal carico verticale combinato con la variazione termica ciclica, è caratterizzato quindi
anche da un contenuto d’acqua prossimo al Limite Plastico, che non diminuisce ulteriormente anche se il provino viene sottoposto ad ulteriori cicli di congelamento e scongelamento.

![Figura 84: Correlazione tra valori di deformazione termica misurata e perdita di contenuto d’acqua.]

Il fenomeno ciclico di congelamento e scongelamento non fa mai scendere il contenuto d’acqua al di sotto di questo valore (effetto raggiunto per esempio se il sedimento viene sottoposto ad una temperatura elevata), poiché la quantità d’acqua che costituisce il valore di indice plastico è parte integrante della struttura stessa, garantendone il comportamento plastico. L’Indice Plastico, che rappresenta l’ampiezza del range di contenuto d’acqua che mantiene il sedimento in comportamento plastico, nel caso di congelamento e scongelamento ciclico, indica quindi anche la quantità d’acqua che può effettivamente essere coinvolta ciclo dopo ciclo nel processo, lasciando i precedenti legami elettrici per migrare verso i nuclei di congelamento e poi essere in parte espulsi dalla matrice solida.

Data l’ottima correlazione tra la perdita di contenuto d’acqua misurata tra lo stato iniziale e finale del sedimento e l’IP, evidenziata nel grafico di fig. 84, l’Indice Plastico sembra essere il miglior indicatore per stimare l’entità della deformazione totale irreversibile che il sedimento può subire se sottoposto a cicli termici che inducono fenomeni ciclici di congelamento e scongelamento.

3.8.2 Misura della deformazione indotta: relazione con l’indice di plasticità e la perdita di contenuto d’acqua

In figura 85 i valori di deformazione elencati in tabella 15 sono analizzati in dipendenza del valore di Indice Plastico. Come si può osservare dai grafici, è l’Indice Plastico l’elemento che meglio spiega i valori misurati di compattazione indotta. Parimenti, si osserva la buona correlazione dimostrata anche con i valori di perdita di contenuto d’acqua durante la prova.
Il risultato è confortato dalla ricerca bibliografica (Jefferson and Foss Rogers, 1998; Liu et al., 2011) nella quale si evidenzia che l’Indice Plastico può essere considerato anche un veloce e semplice indicatore preliminare della sensibilità del materiale coesivo alle variazioni termiche. L’Indice Plastico riassume in se informazioni riguardanti la granulometria, la presenza percentuale di minerali delle argille e anche la mineralogia dei fillosilicati presenti. I fillosilicati con limitata superficie specifica e quindi ridotte proprietà elettriche e capacità di rigonfiamento, dimostrano una sensibilità alle variazioni termiche molto più limitata di quella di materiali con percentuali di smectiti più significative. Argille con maggiore sviluppo areale di superficie specifica, e quindi contatti tra le particelle dominati dall’acqua adsorbita, sono molto più sensibili a cambiamenti di temperatura (Jefferson and Foss Rogers, 1998; Meunier, 2005; Liu et al., 2011).

Si può dedurre quindi che sedimenti con elevato indice plastico siano soggetti a deformazioni di maggiore entità, a parità di sollecitazione subita.

3.9 Influenza della salinità del fluido interstiziale sulla deformazione

Allo scopo di analizzare l’influenza della presenza e concentrazione di sali nei fluidi interstiziali, è stato utilizzato il campione denominato SJ2, prelevato in località Tessera, all’interno dell’area dell’aeroporto Marco Polo, nei pressi dell’Hangar D (Superjet International).

Il campione, prelevato alla profondità 7,0 – 7,5m, fa parte di uno strato che va dai 4.7m ai 9,8m di profondità, definito al momento del prelievo come argilla grigio chiara con livelli millimetrici di torba e intercalazioni centimetriche sabbiose.
Dalle analisi di caratterizzazione geotecnica e mineralogica (tabella 17) il campione si configura come una argilla debolmente limosa inorganica di media plasticità. Anche dal punto di vista della composizione mineralogica, presenta una composizione in linea con gli altri materiali presenti nel sottosuolo lagunare (vedi il paragrafo 3.2.2 - Caratterizzazione dei sedimenti coesivi utilizzati nelle prove sperimentali).

Tabella 17: Descrizione del campione utilizzato.

<table>
<thead>
<tr>
<th>SJ2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>profondità di prelievo (m s.m.)</td>
<td>7.0 - 7.5</td>
</tr>
<tr>
<td>luogo di prelievo</td>
<td>Tessera</td>
</tr>
<tr>
<td>contenuto organico (%)</td>
<td>2.0</td>
</tr>
<tr>
<td>Ge</td>
<td>2.76</td>
</tr>
<tr>
<td>frazione argillosa</td>
<td>33%</td>
</tr>
</tbody>
</table>

LIMITI DI ATTERBERG
- limite liquido [%] | 39 |
- limite plastico [%] | 23 |
- indice di plasticità | 16 |

COMPOSIZIONE MINERALOGICA
- felsicità [%] | 30 |
- quarzo [%] | 11 |
- calcite [%] | 42 |
- dolomita [%] | 15 |
- feldspati [%] | 2 |

3.9.1 Metodologie di preparazione del campione

In questa serie di test la preparazione del materiale ha richiesto una metodologia particolare. Si è proceduto inanzitutto a preparare un quantitativo di materiale rimaneggiato e lavato (la procedura di lavaggio è descritta in seguito) sufficiente per formare tutti i provini di questa serie. I provini sono stati realizzati miscelando il materiale così preparato con soluzioni saline di diversa concentrazione in modo da poter studiare l’influenza del contenuto salino nel fluido interstiziale, a parità degli altri parametri. Le soluzioni saline sono state ottenute aggiungendo all’acqua deionizzata una quantità nota di NaCl. Questo sale è stato scelto perché, secondo le indicazioni riportate in letteratura, esso risulta avere i maggiori effetti sul comportamento del sedimento nei processi di congelamento (par. 2.7.2 - Effetti della presenza di sale nei fluidi interstiziali) ed inoltre rappresenta la tipologia di sale più abbondante nell’acqua marina.

Innanzi tutto si è quindi proceduto a ‘lavare’ il campione, in modo che perdesse tutti i sali in esso depositati e l’acqua interstiziale propria, per partire da un materiale inizialmente quanto più possibile privo di contenuto salino. La procedura di lavaggio è stata effettuata ripetendo in successione 3 volte le seguenti operazioni:
- il campione è stato portato allo stato liquido mescolandolo con 5l di acqua di acquedotto in un mixer per 10 minuti, in modo da assicurarsi che tutte le particelle fossero ben separate e i sali presenti portati in soluzione;
- il campione è stato lasciato sedimentare per 7 giorni in un recipiente, misurando ogni giorno la discesa del livello di materiale in sospensione (Figura 86);
- una volta terminata la fase di deposizione (cioè quando il livello di materiale sedimentato rimane costante per 24 ore e l’acqua appare trasparente), il materiale deposto è stato separato dall’acqua di lavaggio prelevando quest’ultima dalla superficie con molta attenzione. Terminata questa sequenza, il materiale è stato centrifugato alla velocità di 4000g/min per la durata di 20 minuti, in modo da eliminare tutta l’acqua di lavaggio.

Infine, il materiale è stata di nuovo mescolato con una quantità nota di acqua, questa volta deionizzata, e poi nuovamente centrifugato, in modo da eliminare i possibili sali depositati dall’acqua di acque dotto precedentemente utilizzata per il lavaggio.

E’ stato scelto di utilizzare l’acqua di acquedotto per le prime operazioni di lavaggio e non l’acqua deionizzata fin dalle prime fasi, in modo da evitare lo scioglimento dei calcari presenti nel materiale, a scapito della presenza di sali nella soluzione. Invece, l’ultimo lavaggio eseguito in centrifuga è stato effettuato utilizzando acqua deionizzata, allo scopo di sciogliere appunto gli eventuali sali depositati dall’acqua. Al termine di quest’ultima operazione di centrifugazione il materiale è stato considerato privo di sali.

Figura 86: Sedimentazione del materiale all’interno del recipiente, nel corso del secondo lavaggio. Il livello del materiale depositato è 4,5cm, 6cm e 8cm, rispettivamente al termine del 1°, 2° e 4° giorno.

Per verificare che questo tipo di procedura non abbia alterato la composizione mineralogica del campione (per esempio facendo entrare in soluzione parte del calcare, o depositando dei sali), si è ripetuta l’analisi della composizione mineralogica con il metodo della diffrattometria a polveri a raggi X anche sul campione a fine lavaggio, ottenendo i medesimi risultati ottenuta sul campione indisturbato (figura 87).
Dal campione così preparato, con bassissimo contenuto d’acqua residuo, sono stati successivamente ricavati 4 provini, aggiungendo al materiale solido una soluzione di acqua deionizzata precedentemente miscelata con una quantità di NaCl nota tale da raggiungere un contenuto d’acqua pari a circa il limite liquido. I 4 provini così ottenuti hanno quindi una concentrazione iniziale di NaCl rispettivamente pari a 0, 0,35, 70 e 140 g/l.

3.9.2 I risultati ottenuti

Ciascun campione è stato poi sottoposto alla procedura utilizzata negli esperimenti precedenti e descritta al paragrafo 3.2.3. Si riportano nella Figura 88 i valori dell’altezza dei diversi campioni registrati nel tempo.

Osservando i grafici, si può osservare che:
- per quanto riguarda gli effetti della diversa salinità iniziale sulla deformazione indotta dai cicli termici, in accordo con la letteratura (Bing and He, 2011), i provini caratterizzati da maggiore salinità subiscono una maggiore compattazione; dovuta allo schiacciamento del doppio strato diffuso dato dalla crescente presenza di Salì (Figura 89 - 90);
- il campione con salinità pari a 140g/l sembra far eccezione a questo comportamento: la minor compattazione totale registrata da questo provino è attribuibile al fatto che, a causa della salinità iniziale molto elevata e all’effetto di esclusione dei sali dal fenomeno di congelamento (come descritto in seguito), dopo solo 3 cicli di stress termico il suo freezing point è inferiore alla temperatura minima imposta.
Cap.3 - Misura delle variazioni delle proprietà meccaniche e di permeabilità indotte nei sedimenti coesivi da sollecitazioni termiche generate da una sonda geotermica

Figura 88: Variazione nel tempo dell’altezza nei provini (S|2) preparati con diverso contenuto di NaCl, sotto la combinazione di carico di riferimento costituita da carico verticale di 40kPa e variazione termica ciclica giornaliera con T:[-6°C; +5°C]: Le concentrazioni saline iniziali sono: a) 0g/l; b) 35g/l; c) 70g/l; d) 140g/l.
Inoltre, come in precedenza, si osserva un’espansione immediata del sedimento al momento del congelamento delle molecole d’acqua ‘libere’, in corrispondenza dell’abbassamento della temperatura imposta sotto il freezing point del sedimento. Dopo di ciò, l’altezza del provino rimane costante, suggerendo la mancanza di congelamento di ulteriori molecole d’acqua. Questo avviene per i primi 5 cicli termici nel test a salinità iniziale nulla (Figura 88 a), e solo per i primi 2 cicli per quello a bassa salinità (b). Nelle fasi successive dei grafici a) e b) e anche nel corso dei primi cicli termici nei grafici c) e d), la fase di ‘espansione rapida’ è invece seguita da una fase di espansione più lenta (lineare o con forma più arrotondata), che viene attribuita al fenomeno di congelamento di ulteriori molecole d’acqua, questa volta appartenenti ai livelli più esterni della struttura del double electrical layer, mostrando quindi una velocità di congelamento più lenta a causa dell’azione di contrasto espressa dalla forza di legame elettrico.
In generale, la forma della curva di espansione (congelamento) cambia ciclo dopo ciclo: dato che la pendenza esprime la velocità con cui avviene il congelamento, essa dipende dall’intensità di legame elettrico che caratterizza le molecole d’acqua coinvolte nel cambiamento di fase. Un analogo fenomeno di ‘variazione della velocità di congelamento’ con il procedere dei cicli è osservabile anche nei grafici riportati nei paragrafi precedenti, ma in misura minore. L’intensità del legame elettrico tra matrice solida e molecole d’acqua presenti dipende, infatti, da diversi fattori quali il contenuto d’acqua, la granulometria e la tipologia di minerali presenti nel sedimento, il carico applicato, la densità della struttura e dalla concentrazione e tipologia di sali presenti nel fluido interstiziale, come già descritto nel par. 2.2. In questi test, essendo costanti le caratteristiche del materiale e le condizioni di carico, la variazione della curva di congelamento viene attribuita all’effetto combinato di variazione della concentrazione salina nell’acqua interstiziale e della diminuzione del contenuto d’acqua (e in piccola parte allo stato di compattazione variabile ciclo dopo ciclo), causati entrambi dai fenomeni ciclici di congelamento e scongelamento del sedimento.

3.9.3 Effetto della concentrazione di sale nell’acqua interstiziale sulla temperatura di congelamento

Grazie alla misura in continuo della temperatura interna all’edometro, eseguita tramite la sonda PT100 inserita nella pietra porosa inferiore, è stato possibile osservare la variazione del \textit{freezing point} del sedimento in funzione della concentrazione salina. La temperatura di \textit{freezing point} è individuata in corrispondenza dell’inizio della fase di espansione rapida del provinio misurato dal micrometro. Innanzi tutto, è chiaro che all’aumentare della concentrazione di sale nella miscela di preparazione, il processo di congelamento avviene, fin dal primo ciclo, a temperature decrescenti. Nella Figura 91 sono rappresentate le temperature di innesco del processo di congelamento registrate nei quattro test effettuati con il campione SJ2. Il sedimento miscelato con acqua deionizzata indica un freezing point pari a -2,1°C, in accordo con quanto riportato in letteratura (Bing and Ma, 2011): un valore così basso è dovuto principalmente alla dispersione dell’acqua in pori di piccole dimensioni, allo stato di compattazione e alle forze di attrazione elettrica generate dalle particelle solide. Nei provini preparati con concentrazione di sale crescente la temperatura di congelamento registrata nel primo ciclo è pari rispettivamente a -2,8°C, 3,5°C e 4,6°C, dato che indica l’importanza della salinità dell’acqua interstiziale sul punto di congelamento.

Nel grafico è evidente anche l’abbassamento del \textit{freezing point} con il passare dei cicli, dovuto all’aumento della concentrazione di sale nell’acqua interstiziale del campione. E’ noto da letteratura (Bing e Ma, 2011 e par.2.7.1) che il processo di congelamento di una soluzione con presenza di sali disciolti coinvolge unicamente l’acqua escludendo i sali, provocando quindi l’aumento della concentrazione di sale nella soluzione residua. Il fenomeno è simile anche quando il congelamento riguarda l’acqua interstiziale di un sedimento: al raggiungimento del \textit{freezing point} del materiale il cambiamento di fase coinvolge unicamente le molecole d’acqua, mentre i sali rimangono dischiolti nella frazione di acqua interstiziale ancora allo stato liquido, incrementandone
la concentrazione. Questo aumento di concentrazione viene incrementato anche dalla parziale perdita d’acqua che avviene nel corso della successiva fase di scongelamento (l’acqua che si allonta per drenaggio è per lo più acqua priva di sali). Il risultato è un incremento consistente della concentrazione di sali presenti nell’acqua interstiziale ciclo dopo ciclo e, di conseguenza, una diminuzione della temperatura alla quale inizia la formazione delle lenti di ghiaccio. Ne risulta che il processo di congelamento evolve con diversa velocità perché coinvolge molecule d’acqua che risentono di una accresciuta forza di legame elettrico.

Il fenomeno si ripete a causa del processo di distillazione operato per azioni di congelamento successive combinato con la progressiva diminuzione di contenuto d’acqua, determinando una decrescita del freezing point e quindi una crescente resistenza all’innescio del cambiamento di fase.

Come si evidenzia in figura 91, l’abbassamento del freezing point presenta una regressione lineare con il numero di cicli termici imposti: la diminuzione media è di 0.26°C per ciascun ciclo, tendenzialmente omogenea in tutte le prove.

![Diagrama della temperatura di congelamento e concentrazione di sale](image)

Figura 91: Valori iniziali della temperatura di congelamento dei provini a diverso contenuto di sale iniziale e abbassamento della temperatura iniziale di cambiamento di fase al passare dei cicli termici in ciascuna prova considerata. Questo abbassamento testimonia l’aumentare della concentrazione di sale nell’unfrozen water nel corso di ciascuna prova.

L’effetto dell’aumento progressivo della concentrazione di sale nel corso della prova emerge anche dall’osservazione delle curve riportate in Figura 88 c) e d). Si osservano, infatti, perdite di volume che avvengono non al termine di un ciclo termico ma nel corso della fase di congelamento, testimoniando un cedimento generato da un parziale scongelamento del terreno che si verifica mentre la temperatura è mantenuta attorno a -6°C. Ciò avviene poiché la temperatura minima imposta (-6°C) non è più sufficiente, da un certo ciclo termico in poi, a indurre e mantenere lo stato di congelamento nell’intero provino di materiale, a causa dell’accresciuta salinità del fluido interstiziale. La situazione descritta si verifica all’ottavo ciclo termico nella prova con salinità iniziale di 70 g/l (Figura 88c) e al quarto ciclo nel corso della prova a salinità maggiore (Figura 88 d). Queste misure sono state raccolte e pubblicate in un articolo...
accettato per la stampa (Dalla Santa et al., 2016, *Induced thermal compaction in cohesive sediments around a borehole heat exchanger: laboratory tests on the effect of pore water salinity*. Environmental Heart Science, DOI: 10.1007/s12665-015-4952-z), riportato in appendice.

Per misurare le variazioni di concentrazione della salinità nell’acqua interstiziale tra l’inizio e la fine delle prove termiche, sono state effettuate misure di conducibilità elettrica del fluido estratto mediante centrifugazione da ciascun provino prima (utilizzando il materiale di risulta nella preparazione del provino alla fine della fase di preconsolidamento) e al termine delle prove cicli termici.

È noto che la conducibilità elettrica fornisce una misura della concentrazione salina della soluzione. Questa relazione cambia a seconda del tipo di sale. Keller e Frischknecht nel 1996 hanno proposto delle relazioni pressoché lineari tra conducibilità elettrica misurata in una soluzione e concentrazione di sali (figura 92). Nel caso allo studio, nella soluzione iniziale preparata disciogliendo NaCl in acqua deionizzata, prima della miscelazione con il sedimento, sono presenti unicamente sali di NaCl. Nei fluidi estratti dai provini tramite centrifuga, sia prima che dopo la prova, non è certo che sia presente solo questa tipologia di sali: potrebbero infatti essere entrati in soluzione altri tipi di cationi rilasciati dal reticolo cristallino del sedimento. Solo nell’analisi della soluzione iniziale è quindi possibile utilizzare direttamente la relazione di Keller e Frischknecht.

![Figure 92: Relazione tra conducibilità elettrica misurata in una soluzione e concentrazione di sale presente, al variare della tipologia di sale (da Keller e Frischknecht, 1966)](image)

Ritenendo che lo scambio ionico con il reticolo cristallino sia limitato, la conducibilità elettrica del fluido può essere convertita in una concentrazione salina equivalente, cioè calcolata pensando che il solo sale contenuto sia NaCl. Procedendo in questo modo la conducibilità elettrica nei fluidi estratti dai provini è riportata in funzione della corrispondente concentrazione salina (Tabella 18) alla fine della prova termica.
Dalle misure di conducibilità iniziale è possibile ricavare anche l’effettiva condizione di salinità iniziale dei vari provini: infatti, la miscela di preparazione era costituita da acqua deionizzata addizionata con una quantità nota di NaCl, ma il sedimento aveva già un contenuto d’acqua minimo: di conseguenza, i provini formati utilizzando soluzioni a concentrazione pari a 35g/l, 70g/l e 140 g/l, hanno concentrazioni effettive iniziali equivalenti a circa 10 g/l, 15g/l e 27g/l, rispettivamente.

Tabella 18: Misure di conducibilità elettrica ricavate dai fluidi estratti dal materiale prima e dopo la prova a ciclo termico, e i valori di concentrazione, come se tutto il sale presente fosse NaCl, utilizzando il diagramma di Keller and Frischknecht (1966).

<table>
<thead>
<tr>
<th></th>
<th>PRIMA DELLA PROVA TERMICA</th>
<th>DOPO LA PROVA TERMICA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>conduibiltà elettrica [µS]</td>
<td>concentrazione NaCl corrispondente [g/l]</td>
</tr>
<tr>
<td>SJ0</td>
<td>0,083</td>
<td>0,38</td>
</tr>
<tr>
<td>SJ35</td>
<td>2,33</td>
<td>10</td>
</tr>
<tr>
<td>SJ70</td>
<td>3,35</td>
<td>15</td>
</tr>
<tr>
<td>SJ140</td>
<td>5,4</td>
<td>27</td>
</tr>
</tbody>
</table>

Le misure di conducibilità elettrica dimostrano un aumento di concentrazione durante la prova per tutti i campioni considerati, che risulta maggiore in corrispondenza dei campioni con salinità iniziale più elevata.

Figura 93: Confronto tra le conducibilità elettriche misurate prima e dopo la prova di consolidazione dovuta a sollecitazione termica ciclica.
Cap.3 - Misura delle variazioni delle proprietà meccaniche e di permeabilità indotte nei sedimenti coesivi da sollecitazioni termiche generate da una sonda geotermica

Tabella 19: Contenuto d'acqua e valori di conducibilità elettrica misurati nei campioni analizzati prima e dopo l'esecuzione delle prove termomeccaniche. La diminuzione del contenuto d'acqua si combina con l'aumento della conducibilità elettrica. Entrambi sono effetti secondari del processo di consolidamento indotto dalla variazione termica ciclica sotto carico verticale costante. Nell'ultima colonna è riportato il cedimento totale misurato. I valori evidenziati sono quelli rappresentati in figura 94. * I contenuti di NaCl corrispondenti al misurato CE sono riportati soltanto per riferimento.

<table>
<thead>
<tr>
<th>test</th>
<th>Contenuto d'acqua iniziale [%]</th>
<th>Conduc. elettrica iniziale [µS]</th>
<th>Contenuto di NaCl iniziale corrispondente [%]</th>
<th>Contenuto d'acqua finale [%]</th>
<th>Cond. elettrica finale [µS]</th>
<th>Δ contenuto d'acqua [%]</th>
<th>Δ cond. elettrica [%]</th>
<th>Cedimento totale indotto [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>SJ 0</td>
<td>34.4</td>
<td>830</td>
<td>0.04</td>
<td>26.9</td>
<td>1960</td>
<td>-21.8</td>
<td>136.1</td>
<td>7.3</td>
</tr>
<tr>
<td>SJ 35</td>
<td>35.3</td>
<td>23300</td>
<td>1.00</td>
<td>27.2</td>
<td>30100</td>
<td>-22.9</td>
<td>29.2</td>
<td>8.4</td>
</tr>
<tr>
<td>SJ 70</td>
<td>35.4</td>
<td>33500</td>
<td>1.50</td>
<td>27.2</td>
<td>42100</td>
<td>-23.1</td>
<td>25.7</td>
<td>8.9</td>
</tr>
<tr>
<td>SJ 140</td>
<td>36.1</td>
<td>54000</td>
<td>2.70</td>
<td>27.4</td>
<td>70200</td>
<td>-24.0</td>
<td>30.0</td>
<td>7.0</td>
</tr>
</tbody>
</table>

Nel grafico seguente (Figura 94) sono riportati i risultati (in termini di variazione di contenuto d’acqua e di sale) ottenuti nelle condizioni iniziali e finali degli esperimenti sui campioni SJ35 e SJ140, sovrapposti ai grafici pubblicati da Bing e Ma (2011), i cui valori sono riportati in tabella 19. Il contenuto salino è stato ricavato dalle misure di conducibilità elettrica in termini di concentrazione equivalente di NaCl, al fine di poter confrontare i risultati. Nel caso del provino più salato (Figura 94b), si osservi come la temperatura di congelamento corrispondente alla salinità a fine prova scenda fino a valori inferiore a -6°C e quindi non più raggiunta nel corso dell’esperimento, a conferma di quanto osservato sperimentalmente nell’andamento delle variazioni di altezza del provino (Figura 91).
Figura 94: Relazione tra contenuto d’acqua, salinità equivalente di NaCl e temperatura di congelamento del sedimento: sovrapposizione dei risultati sperimentali per i campioni SJ35 (a) e SJ140 (b), con i grafici pubblicati in letteratura da Bing e Ma (2011).

-W_{in} = 35\%; \ S_{in}=1\%
-S_{in}=1\%
-W_{fin} = 27\%; \ S_{fin}=1,3\%
-W_{fin} = 36,1\%; \ S_{fin}=2,7\%
-W_{fin} = 27,4\%, \ S_{fin}=3,6\%
3.9.4 Effetti della salinità interstiziale sui processi di deformazione indotta

La serie di quattro esperimenti condotti sul medesimo materiale miscelato con fluido a diversa salinità, può fornire solo alcune indicazioni sull’influenza della presenza di sali sulla deformazione indotta da cicli termici, poiché in natura è presente un’estrema variabilità di situazioni. Nell’ambiente naturale il terreno contiene sempre dei sali dischiolti, o dischiolti nelle acque che permeano il deposito o formatisi con il terreno stesso nel corso della formazione del deposito: la loro natura chimica è certamente molto varia come diversi saranno i relativi comportamenti, anche in funzione della composizione del sedimento.

Si possono comunque trarre alcune prime osservazioni:
- dal punto di vista della deformazione indotta nei livelli coesivi per cicli di gelo/disgelo), la presenza di sale nell’acqua interstiziale aumenta il valore del cedimento irreversibile totale indotto: nel caso studiato il cedimento aumenta dal 7% (salinità minima) a circa il 9% dell’altezza iniziale del provino;
- la presenza di sali nel fluido interstiziale abbassa la temperatura di congelamento, fornendo quindi una protezione del sedimento contro l’instaurarsi del congelamento. Questo effetto aumenta al procedere dei cicli termici, poiché la salinità nell’acqua interstiziale si concentra e il freezing point diminuisce (nel caso studiato, di un valore medio di 0,26°C ad ogni ciclo di gelo/disgelo).
- Nei livelli di matrice prevalentemente limosa-argillosa (coesivi) normal-consolidati, in cui la condizione di congelamento viene raggiunta, in condizioni drenate, l’alterazione dello stato termico induce una deformazione che produce una riduzione di spessore tra il 5% e il 9% dell’altezza iniziale (nei materiali limoso-argillosi testati). L’effetto prevalente di contrazione (circa l’80%) avviene in corrispondenza del primo ciclo di congelamento-scongelamento e, dopo una sequenza di 7-8 cicli, il sedimento raggiunge un nuovo stato di equilibrio che si mantiene stabile, anche se il materiale viene sottoposto ad ulteriori cicli termici.

3.10 CONCLUSIONI RIGUARDO LA DEFORMAZIONE INDOTTA NEI LIVELLI COESIVI DA VARIAZIONI CICLICHE DI TEMPERATURA

Riassumendo, dai risultati sperimentali si possono quindi trarre le seguenti osservazioni.
- Nei terreni a matrice prevalentemente coesiva sottoposti a variazioni cicliche di temperatura, i risultati sperimentali dimostrano che processi deformativi significativi vengono innescati unicamente quando l’alterazione termica induce cicli di congelamento e successivo scongelamento nel terreno, quindi quando le temperature del terreno scendono al di sotto del freezing point dei sedimenti.
- Si osserva che la deformazione appare proporzionale all’Indice Plastico, che emerge anche in letteratura come indicatore della sensibilità del materiale coesivo alle alterazioni termiche, essendo proporzionale alla quantità di acqua interstiziale appartenente al shell water structure ‘disponibile’ a partecipare al congelamento. La compattazione è maggiore in caso di sedimenti a granulometria più fine e/o in presenza di minerali argillosi con elevata superficie specifica (smectite). Inoltre sembra che la diminuzione della deformazione indotta dovuta all’effetto del carico verticale applicato (e quindi all’aumentare della profondità del livello considerato) sia più contenuta nel caso di sedimenti con IP maggiore. Questo fa supporre che strati con IP più elevato possano subire deformazioni più accentuate anche a profondità maggiori.

- Dall’altra parte, sedimenti con granulometria più grossolana (sabbia fine) si dimostrano non sensibili all’alterazione termica e non sviluppano processi di compattazione. Sedimenti intermedi, come sabbie con presenze di limo, mostrano di subire una contrazione contenuta (2%): l’effetto è attribuibile alla parte più fine del campione e alla compresenza di una estrema eterogeneità di forme e dimensioni delle particelle.

- L’entità della deformazione indotta decresce al crescere del carico verticale applicato, risulta comunque non trascurabile anche se il materiale è sottoposto a carichi verticali applicati elevati (con un carico di 800kPa la deformazione misurata è stata pari a circa il 3,5% dell’altezza iniziale del provino) (par.3.5). La diminuzione dell’entità della compattazione all’aumentare del carico è più che lineare: in corrispondenza di carichi contenuti (40kPa) la deformazione termica è superiore a quella dovuta all’azione di consolidazione del carico stesso (circa tre volte tanto), mentre a valori elevati del carico la compattazione termica è molto più contenuta di quella dovuta al carico (circa 1/6 a 800kPa). Questo effetto è attribuibile alla maggiore consolidazione acquisita dal sedimento per effetto del carico verticale, che contrasta la formazione dei cristalli di ghiaccio e le variazioni prodotte dai cicli di gelo/disgelo nella tessitura del sedimento.

- Nel caso il sedimento coesivo si presenti in uno stato di sovraconsolidazione, come avviene nella tipica sequenza litostratigráfica dell’area di studio per il livello coesivo sovraconsolidato conosciuto come caranto, i cicli di congelamento e decongelamento del sottosuolo inducono una deformazione di segno contrario, cioè una deformazione di dilatazione, che dai risultati sperimentali risulta di debole intensità. Il materiale è stato testato a diversi gradi di sovraconsolidazione (OCR = 1, 15, 30 e 60). E’ possibile quindi concludere che i livelli limo-argillosi con carattere di forte consolidazione mantengano pressoché inalterato il loro spessore.

- Inoltre, il processo deformativo indotto dall’alterazione termica si combina anche con una diminuzione dell’umidità presente nel sedimento. In accordo con la letteratura, infatti, nel corso delle prove sperimentali si è osservato che il contenuto d’acqua del sedimento diminuisce dalla condizione iniziale a quella finale, raggiungendo valori di poco superiori al Limite Plastico. I fenomeni ciclici di gelo e disgelo subiti inducono una migrazione delle molecole d’acqua quando la forza di attrazione generata dai gradienti termico e idraulico vince la forza di legame elettrico con le particelle solide, generando variazioni irrevocabili nella texture del sedimento, portando da una parte alla formazione di aggregati di maggiori
dimensioni e più poveri d’acqua e dall’altro all’allargamento dei macropori e alla formazione di fissure verticali.

- Per quanto riguarda l’influenza della salinità interstiziale sulla deformazione indotta nei materiali coesivi dai cicli di gelo e disgelamento, dall’analisi dei risultati sperimentali e della letteratura disponibile si può concludere che la presenza di sali disciolti nel fluido interstiziale (come quasi sempre avviene in natura) aumenta il valore del cedimento irripetibile totale indotto, portandolo, nel caso del materiale testato, dal 7% a circa il 9% dell’altezza iniziale del provino.

- D’altro canto, la presenza di sali abbassa la temperatura di congelamento del sedimento, fornendo a quest’ultimo quindi una sorta di protezione contro l’instaurarsi del congelamento. Questo effetto di protezione, inoltre, si rafforza al procedere dei cicli termici poiché la salinità nell’acqua interstiziale aumenta la sua concentrazione ad ogni ciclo termico a causa del fenomeno di esclusione dei sali dalla formazione del ghiaccio, abbassando nel caso studiato il freezing point di un valore medio di 0.26°C ad ogni ciclo di gelo/disgelamento.

3.11 Variazione di Rigidezza Indotta da Cicli di Gelodisgelamento

E’ stato detto che, a causa della sollecitazione indotta dalla combinazione di carico verticale (carico litostatico) e cicli termici con congelamento e scongelamento in condizioni drenate, il sedimento coesivo subisce un fenomeno di consolidazione. Nei sedimenti normal-consolidati, ciclo dopo ciclo, la struttura si modifica in modo irreversibile, compattandosi e diminuendo l’indice dei vuoti fino ad arrivare ad una configurazione più compatta, caratterizzata da un contenuto d’acqua di poco superiore al Limite Plastico, in equilibrio con le sollecitazioni subite. Si vuole quindi sapere se questa nuova situazione di equilibrio è caratterizzata anche da diverse caratteristiche di deformabilità e resistenza, per sapere qual è il comportamento del terreno nel caso in cui esse venga successivamente sottoposto ad ulteriori carichi.

Con questo scopo, sono state svolte alcune prove edometriche standard (con procedura ad incremento di carico) su alcuni provini precedentemente sottoposti a prove termiche in diverse condizioni di carico verticale (40, 200, 500 e 800kPa). Il provini utilizzati sono quelli descritti nel paragrafo 3.5.

La prova edometrica è eseguita misurando i cedimenti verticali conseguenti all’applicazione di carichi assiali crescenti applicati in progressione geometrica. Ogni carico è mantenuto costante per un tempo sufficiente a terminare la consolidazione (standardizzato a 24 ore). La variazione di deformazione incrementale o di indice dei vuoti corrispondente ad ogni gradino di carico costituisce la cosiddetta curva di compressibilità edometrica. In un grafico della deformazione ε in funzione del logaritmo della tensione verticale $\log \sigma$ (Figura 95), un materiale normal consolidato presenta una curva di compressibilità edometrica rappresentata da una retta, detta ‘retta di
Dalla Santa Giorgia - Effetti sulle proprietà meccaniche, idrauliche e termiche prodotti da scambiatori geotermici nei terreni argillosi: il caso studio della città di Venezia

compressione vergine’, a pendenza costante (tratto A→D). Nel caso di scarico (tratto della curva B→C) il materiale recupera solo una parte della deformazione acquisita (la componente elastica), mantenendo invece la deformazione plastica o irreversibile. Nel tratto di ricarico invece, il percorso deformativo ricalca quello di scarico, fino a raggiungere il massimo carico verticale precedentemente subito e il suo corrispondente stato deformativo. Se il carico viene cresciuto ulteriormente, la deformazione torna a crescere seguendo la retta vergine. La pendenza della retta vergine si chiama rapporto di compressione, che è caratteristico di un certo materiale. Se un materiale viene sottoposto ad un carico inferiore a quello che ha già precedentemente subito (si comporta quindi come sovra-consolidato), il rapporto tra deformazione ed incremento di carico sarà come nel tratto C→B, fino a quando il carico non raggiunge il valore massimo subito. L’andamento della curva quindi distingue il materiale normal-consolidato (NC), che si muove lungo la retta vergine da quello sovra-consolidato (OC), che presenta una pendenza contenuta a basso carico e poi una curva a gomito per allinearsi alla retta vergine.

La prova edometrica a progressivo incremento di carico è stata innanzitutto tutto eseguita sul materiale SJ1 allo stato naturale (detto ‘unfrozen’), cioè su un provino che ha subito soltanto un preconsolidamento a 40kPa e non è mai stato sottoposto a cicli termici. I risultati di questa prova sono riportati in Figura 95 e rappresentano il riferimento per tutti gli altri provini. Si osservi come la retta vergine sia abbastanza bene definita nel diagramma semilogaritmico.

![Diagramma semilogaritmico e logaritmico con rette vergine e di indice dei vuoti](image)

Figura 95: Curve di compressibilità edometrica del materiale SJ1 ‘unfrozen’ in termini di deformazione (sinistra) o di indice dei vuoti (destra) con scala orizzontale logaritmica o naturale.

In Figura 96, si descrive l’andamento della variazione di altezza nel tempo, indotta dall’aumento progressivo del carico verticale applicato.
Cap.3 - Misura delle variazioni delle proprietà meccaniche e di permeabilità indotte nei sedimenti coesivi da sollecitazioni termiche generate da una sonda geotermica

Successivamente, i quattro provini formati con il medesimo materiale SJ1 e precedentemente soggetti alle condizioni di sollecitazione composte da cicli termici con T:[-5°C; +55°C] e carico verticale costante pari rispettivamente a 40, 200, 500 e 800kPa (vedi par. 3.5), sono stati sottoposti a prova edometrica ad incremento di carico, secondo la progressione: 40kPa, 80kPa, 160kPa, 320kPa, 640kPa, 1280kPa, 2560kPa. Una volta raggiunta la tensione massima si è proceduto allo scarico graduale fino a 10kPa e alla rimozione del provino.

In Figura 97 sono riportate le variazioni di spessore del provino nel tempo, con il crescere del carico applicato: appare evidente come lo stesso carico generi nei diversi provini una deformazione via via minore al crescere del carico esistente durante l’applicazione dei termici. Il processo di congelamento-scongelamento subito in precedenza genera quindi una sorta di sovraconsolidazione del materiale, che quindi, se sottoposto a carichi successivi, presenta una maggiore rigidezza (rapporto tra incremento di sforzo e incremento di deformazione), direttamente proporzionale al carico che era imposto durante i cicli termici.

Figura 96: Andamento dell’altezza del provino sottoposto alla progressione del carico, nel caso in cui il materiale non abbia mai subito cicli termici. La freccia indica l’istante di applicazione del carico pari a 1280kPa, per fornire un termine di confronto con i grafici in Figura 97.
Dalla Santa Giorgia - Effetti sulle proprietà meccaniche, idrauliche e termiche prodotti da scambiatori geotermici nei terreni argillosi: il caso studio della città di Venezia

Figura 97: Andamento dell’altezza del provino sottoposto alla progressione di carico, confrontando le misure ottenute dai vari provini, che precedentemente erano stati sottoposti a cicli di gelo/disgelo con applicato un carico verticale rispettivamente di: a) 40kPa; b) 200kPa; c) 500kPa e d) 800kPa. Si osservi la differenza di deformazione indotta nei provini, anche rispetto a quella misurata nel materiale ‘unfrozen’ (figura precedente). La freccia indica il momento di applicazione del carico di 1280kPa.

In Figura 98 si riportano le curve di compressibilità edometrica ottenute, in termini di indice dei vuoti. Si nota che il materiale ‘unfrozen’ presenta il comportamento tipico del materiale NC, seguendo la retta vergine, detta in inglese ‘at rest Normal Consolidation Line’ (K_0-NCL), che viene assunta come riferimento in molti modelli elasto-plastici (Muir Wood, 1991). L’equazione della retta K_0-NCL risulta:

$$\varepsilon = 1.355 - 0.24 \cdot \log \sigma'_v$$

caratterizzata da un indice di compressione $C_c = \Delta e / \Delta \log \sigma'_v = 0.24$, in linea con i risultati già presenti in letteratura per i materiali coesivi presenti in quest’area (Biscontin et al., 2007).

Al contrario, provini che in precedenza hanno subito cicli termici con congelamento e scongelamento, seguono alle basse tensioni una curva a pendenza inferiore, tipica di una fase di ricompessione: si comportano quindi come un materiale sovraconsolidato (OC) in quanto il materiale sottoposto a cicli termici risulta più rigido. Al crescere dello stato tensionale, le curve
raggiungono la retta vergine e il materiale torna ad avere un rapporto di compressione caratteristico del materiale normal-consolidato ‘unfrozen’.

Le curve relative ai campioni sollecitati termicamente mostrano un andamento non lineare con una pendenza che aumenta gradualmente con l’aumento della pressione, tipico delle argille sovraconsolidate. La pendenza, espressa dal rapporto $\Delta e / \Delta \log \sigma$ variava da un valore minimo di 0,027 (circa dieci volte più piccola del Cc di Ko-NCL) ad un valore massimo di 0,23 calcolato nell’ultima fase di carico nel corso della prova ‘cicli gelo/disgelo a 200kPa’, quando la curva di compressione è quasi corrispondente con il Ko-NCL (Tabella 20).

Tabella 20: La tabella riassume i valori di deformazione percentuale misurata nei vari test. Nell’ultima colonna si riportano i valori della distanza orizzontale normalizzata dalla retta vergine. *Le deformazioni si riferiscono all’altezza del provino all’inizio dei cicli termici.

<table>
<thead>
<tr>
<th>codice</th>
<th>Carico verticale applicato nel corso dei cicli termici σ'_v [kPa]</th>
<th>Cedimento dovuto al carico verticale [%]</th>
<th>Deformazione dovuta alla sollecitazione termica [%] *</th>
<th>Carico verticale corrispondente σ'_v,ref [kPa]</th>
<th>Distanza orizzontale normalizzata da K_0 - NCL [-]</th>
</tr>
</thead>
<tbody>
<tr>
<td>unfrozen</td>
<td>40</td>
<td>3,7</td>
<td>7,6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>frozen40</td>
<td>40</td>
<td>3,6</td>
<td>9,3</td>
<td>220</td>
<td>5,51</td>
</tr>
<tr>
<td>frozen200</td>
<td>200</td>
<td>7,3</td>
<td>6,1</td>
<td>695</td>
<td>3,47</td>
</tr>
<tr>
<td>frozen500</td>
<td>500</td>
<td>14,3</td>
<td>4,4</td>
<td>1320</td>
<td>2,64</td>
</tr>
<tr>
<td>frozen800</td>
<td>800</td>
<td>18,0</td>
<td>4,0</td>
<td>1793</td>
<td>2,24</td>
</tr>
</tbody>
</table>
I coefficienti di scarico o di compressione ad alta pressione non sembrano risentire di alcun effetto dovuti ai cicli imposti di congelamento-scongelamento-riscaldamento. Ciò suggerisce che i processi termici non modifichino la mineralogia degli elementi argillosi ma solo la densità e la struttura del terreno. Quindi, l'accumulo di deformazione irreversibile durante i cicli termici induce solo un effetto di sovraconsolidazione.

Inoltre, maggiore è il carico verticale a cui il materiale è sottoposto durante i cicli termici, minore è il rapporto di sovraconsolidazione raggiunto. Per quantificare questa differenza, è stata misurata la distanza orizzontale normalizzata dal Ko-NCL (Tabella 20). Questo è un parametro che viene utilizzato in molti modelli elasto-plastici costitutivi per descrivere la distanza dalla linea limite in cui la deformazione plastica si sviluppa (Biscontin et al., 2007). In generale, se lo stato corrente del sedimento è descritto da un punto (e, σ'_v), la distanza orizzontale dalla linea limite Ko-NCL può essere quantificato dal rapporto σ'_v \text{ref}/σ'_v, essendo σ'_v \text{ref} il valore della tensione verticale corrispondente al valore dell’indice dei vuoti e sulla linea Ko-NCL.

I valori assunti da tale rapporto, riportati in Tabella 20, unitamente al valore di riferimento σ'_v \text{ref}, indicano che l’importanza degli effetti dovuti ai cicli termici (comprendenti gelo e disgelo) si riducono progressivamente ma in modo graduale.

Si può concludere quindi che i cicli termici generano un effetto di sovraconsolidazione nel materiale, aumentandone la rigidezza.

Inoltre, osservando il fatto che la tensione massima di riferimento (σ'_v \text{ref}), che indica il passaggio tra comportamento OC e NC, cresce al crescere della profondità, si ritiene che ’effetto di sovraconsolidazione prodotto dai cicli termici è, indirettamente proporzionale alla tensione litostatica: gli strati superficiali si comporteranno come materiale sovraconsolidato fino ad un certo valore di incremento di carico, rispondendo invece in modo NC ad aumenti dello stato tensionale più importanti. A profondità maggiori, invece, i livelli manterranno un comportamento sovraconsolidato anche per incrementi di carico più ridotti.

3.12 Variazione di resistenza indotta da cicli di gelo e disgelo

A completamento dell’analisi sperimentale, sono state eseguite una serie di prove triassiali, per valutare se i cicli termici di congelamento e scongelamento potessero avere conseguenze dirette anche sulle caratteristiche di resistenza del sedimento. Il materiale utilizzato è SJ1, già descritto nel par. 3.5. Sono state scelte prove triassiali CU (prove di compressione assialsimmetrica del tipo consolidato e non drenato) perché permettono di ottenere i parametri di resistenza (c' e ϕ') per i terreni coesivi in minor tempo rispetto alle prove CD (prove di compressione assialsimmetrica del tipo consolidato e drenato).

Al fine di determinare i parametri di resistenza è necessario ripetere la prova su 3 provini tra loro omogenei (o prelevati nello stesso punto in sito o stessa densità e preparati con la stessa
procedura se ricostituiti in laboratorio): i 3 provini, prima di essere soggetti ad una fase di compressione a velocità costante (fase di taglio), sono consolidati all’interno della cella triassiale a tre diverse tensioni isotrope (fase di consolidazione). Nel caso in esame le tensioni assunte nella fase di consolidazione erano pari a 40, 80 e 320 kPa, allo scopo di simulare la condizione del terreno presente in sito a medio-basse profondità (come visto nel par. 3.5, assumendo un peso di volume saturo di 20 kN/m3 e falda al piano campagna queste tensione rappresentano la condizione tensionale che si può avere a circa 4, 8 e 32 m).

Per preparare i provini, si è come sempre proceduto all’omogenizzazione del materiale allo stato liquido (slurry con w=1.2WL) e alla consolidazione in consolidometro. Questa volta si è preferito utilizzare una tensione verticale di 80 kPa, che permette di ottenere un materiale più consistente, che resiste alle operazioni di formazione del provino triassiale senza danneggiarsi. Sono state eseguite due serie complete di prove triassiali, per confrontarne i risultati: la procedura è stata quindi svolta una prima volta con il materiale naturale, procedendo dopo la fase di preconsolidazione direttamente alla preparazione dei provini per l’esecuzione delle prove triassiali. La seconda volta invece, il materiale all’interno del consolidometro è stato sottoposto a 10 cicli di congelamento e scongelamento con T: [-10°C, +50°C], sotto un carico costante di 80 kPa. La consolidazione avvenuta a causa dei cicli termici è stata misurata direttamente nel consolidometro tramite un comparatore micrometrico (Figura 100).

Figura 99: Taglio del terreno nelle quattro parti per formare i provini per la prova triassiale, dopo la consolidazione per il materiale ‘unfrozen’ (a), e preparazione del provino per la prova triassiale (b).

Una volta terminata la preconsolidazione il materiale è estruso e tagliato in 4 parti uguali, lavorate poi al tornio per sagomare provini cilindrici del diametro di 3,8 cm e altezza 7 cm da inserire nella cella triassiale (Figura 100).
I provini sono stati inseriti in cella con una membrana in lattice di rivestimento e senza interposizione di carta di drenaggio, essendo la permeabilità del terreno sufficientemente alta e le dimensioni del provino sufficientemente ridotte da garantire il drenaggio in tempi contenuti. Sono stati quindi saturati con una Back Pressure pari a 400kPa e una pressione di cella pari a 403kPa e successivamente consolidati alle pressioni prestabilite, misurandone le variazioni di volume per stabilire quando fosse terminata la fase di consolidazione.

Infine, si sono chiusi i drenaggi dell’acqua e si è avviata la fase di compressione non drenata. La velocità di deformazione è stata scelta in base alla seguente formula:

\[v = \frac{L_c \cdot \varepsilon_f}{100 \cdot F \cdot t_{100}} \]

essendo \(L_c \) = altezza del provino a fine consolidazione isotropa, \(\varepsilon_f \) = deformazione assiale del provino prevista a rottura in \% (per argille normalconsolidate si assume 15-20\%), ed \(F \) = fattore adimensionale funzione delle condizioni di drenaggio che, nel caso di drenaggio verticale dalle due basi con un rapporto \(h/r = 4 \), per prove CU, \(F \) risulta pari a 0,681. Per determinare la velocità di deformazione da applicare nella fase di compressione, il valore di \(t_{100} \) da utilizzare è stato determinato con il metodo di Casagrande sulla base dei dati di consolidazione misurati per il materiale unfrozen (Tabella 21). Per i provini soggetti a cicli di gelo-disgelo è stata utilizzata la medesima velocità utilizzata nella prova sul provino non ghiacciato, visto che il valore della permeabilità aumenta per provini soggetti a cicli di gelo-disgelo e quindi sicuramente il \(t_{100} \) per il terreno ghiacciato è minore e la velocità di taglio utilizzata risulta conservativa. Sulla base dei dati riportati la velocità media adottata per tutte le prove è risultata pari a 0,12 mm/min.

Tabella 21: La tabella riassume i valori del tempo e velocità di rottura, per il materiale unfrozen, poi utilizzati anche per quello che precedentemente era stato sottoposto a cicli di congelamento e scongelamento.

<table>
<thead>
<tr>
<th>(\sigma_{cres}) (kPa)</th>
<th>(t_{100}) (s)</th>
<th>(v) (mm/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>10315</td>
<td>0,13</td>
</tr>
<tr>
<td>80</td>
<td>8368</td>
<td>0,12</td>
</tr>
<tr>
<td>320</td>
<td>4551</td>
<td>0,13</td>
</tr>
</tbody>
</table>

Nelle figure 103 e 104 sono riportati i dati desunti dalle misure effettuate durante la compressione assiale dei diversi provini: in particolare sono riportati i diagrammi della tensione deviatorica \(q \) e della pressione neutrale \(u \) in funzione della deformazione assiale \(\varepsilon_{qa} \) graficati separatamente per campioni non ghiacciati (Figura 102a) e ghiacciati (Figura 102b), mentre in Figura 103 sono messi a confronto diretto i percorsi tensionali (tensione deviatorica in funzione della tensione media efficace) nelle prove portate a termine per i due materiali.
Cap. 3 - Misura delle variazioni delle proprietà meccaniche e di permeabilità indotte nei sedimenti coesivi da sollecitazioni termiche generate da una sonda geotermica

Figura 100: Consolidometro in fase di scongelamento sotto carico (a), e taglio del terreno per preparare i provini per le prove triassiali nel materiale che ha subito la consolidazione dovuta ai cicli di gelo e disgelo, a cui si possono attribuire le striature orizzontali che si possono osservare nell’immagine (b), assenti nel materiale naturale.

Figura 101: Il materiale nel corso della prova triassiale
Figura 102: Tensione deviatorica e pressione neutrale in funzione delle deformazioni assiali nelle prove con materiale unfrozen (a) e frozen (b).

Figura 103: Tensione deviatorica in funzione della tensione media efficace nei provini unfrozen e frozen.
3.12.1 Risultati ottenuti

Le curve $q - \varepsilon_a$ e $u - \varepsilon_a$, per entrambi i terreni, sono curve tipiche dei materiali argillo-limosi della laguna di Venezia (Cola e Simonini, 2002). Infatti, nelle prove eseguite a 320kPa di tensione di confinamento, si riconosce una fase iniziale di crescita molto rapida dello sforzo deviatorico seguita da una fase di crescita più graduale, accompagnata da una diminuzione della pressione interstiziale. Il percorso tensionale presenta di conseguenza una tipica forma a S, intermedia tra la forma dei percorsi tensionali dei terreni coesivi normalconsolidati e quelli delle sabbie dilatanti.

Confrontando la risposta dei due materiale si può osservare che:

- il materiale ghiacciato presenta sempre una rigidezza iniziale maggiore di quella dimostrata dal terreno non ghiacciato;
- per le prove eseguite in stato sovraconsolidato (tensioni di confinamento in cella pari a 40 e 80kPa) lo sforzo deviatorico massimo è molto maggiore per il terreno ghiacciato rispetto quello non ghiacciato (più che doppio in entrambe le prove);
- la differenza di resistenza nella prova con consolidazione a 320kPa risulta meno marcata ma pur sempre importante (circa del 10%) a testimoniare che gli effetti della sovraconsolidazione generata dai cicli di gelo e disgelo non sono stati completamente annullati dall’aver consolidato il provino a 320kPa.

Dai dati forniti dalle due serie di prove sono state definite le tensioni principali efficaci σ_1' e σ_3' a rottura, da cui si sono ricavati i cerchi di Mohr a rottura in tensioni ammissibili (Figura 104), calcolati i centri e i raggi dei cerchi e successivamente calcolate le tre rette tangenti, ottenendo quindi i valori dell’angolo di attrito interno e della coesione, riportati in tabella 22.

Tabella 22: Valori dell’angolo di attrito interno e della coesione ottenuti per le tre rette tangenti (indicati nella prima colonna), per i materiale ‘UNFROZEN’ (sopra) e ‘FROZEN’. In rosso i valori medi pesati.

<table>
<thead>
<tr>
<th>ϕ [']</th>
<th>c' [kPa]</th>
<th>peso</th>
<th>σ_1'</th>
<th>σ_3'</th>
<th>peso</th>
</tr>
</thead>
<tbody>
<tr>
<td>40-80</td>
<td>21,8</td>
<td>5,1</td>
<td>0,2</td>
<td>13,7</td>
<td>17,4</td>
</tr>
<tr>
<td>80-320</td>
<td>25,4</td>
<td>1,8</td>
<td>0,5</td>
<td>5,9</td>
<td>13,1</td>
</tr>
<tr>
<td>40-320</td>
<td>24,9</td>
<td>0,8</td>
<td>1,2</td>
<td>8,9</td>
<td>0,3</td>
</tr>
<tr>
<td></td>
<td>24,8</td>
<td></td>
<td></td>
<td></td>
<td>8,9</td>
</tr>
</tbody>
</table>

In figura 104 sono raffigurati i cerchi di Mohr dei tre provini testati nei due casi, e la retta di rottura di Mohr Coulomb corrispondente ai valori medi pesati di c' e ϕ precedentemente riportati.
Figura 104: Cerchi di Mohr di rottura dei tre provini “unfrozen” (a), a confronto con quelli del materiale “frozen” (b).

Questi risultati mostrano un rilevante aumento del valore della coesione mentre il valore dell’angolo di attrito diminuisce leggermente, come riportato nella Tabella 22, in linea con quanto osservato circa i percorsi tensionali e le singole curve $q-\varepsilon_a$ al paragrafo precedente. Anche questo risultato evidenzia un comportamento del materiale “frozen” tipico dello stato sovraconsolidato con un effetto di sovraconsolidazione che si riduce alle tensioni maggiori (320kPa), superiori cioè alla tensione alla quale si sono eseguiti i cicli di congelamento e scongelamento-riscaldamento.
3.13 **CONCLUSIONI RIGUARDO ALLA VARIAZIONE DI RIGIDEZZA E RESISTENZA**

Considerando quindi il comportamento dei terreni a matrice prevalentemente coesiva, che subiscono cicli termici di congelamento e scongelamento-riscaldamento, i risultati sperimentali dimostrano che la variazione generata nella tessitura del sedimento induce, oltre alla già descritta deformazioni irreversibile, anche un aumento della rigidezza.

L’effetto di sovraconsolidazione prodotto dai cicli termici è, come già visto, indirettamente proporzionale al carico verticale applicato: a carichi verticali contenuti, esiste un valore limite di incremento di carico sotto il quale il materiale si comporterà come sovraconsolidato, rispondendo invece in modo NC ad aumenti dello stato tensionale più importanti. In condizioni di stato tensionale iniziale maggiore invece, il materiale mantiene un comportamento sovraconsolidato anche per incrementi di carico più ridotti.

Per quanto riguarda le caratteristiche di resistenza, la sperimentazione è stata effettuata per un solo valore di carico applicato (80kPa). I risultati ottenuti hanno evidenziato che i cicli di congelamento e scongelamento-riscaldamento inducono nei sedimenti coesivi un aumento significativo della resistenza al taglio dovuto ad un aumento importante della coesione, mentre l’angolo di attrito interno rimane pressoché invariato.

Questo aspetto, tuttavia, non è stato sufficientemente analizzato e rimane un risultato preliminare.

3.14 **VARIAZIONI DI PERMEABILITÀ VERTICALE DOVUTE A VARIAZIONI CICLICHE DI TEMPERATURA**

L’analisi bibliografica ha evidenziato i possibili effetti che cicli di gelo e disgelo/riscaldamento possono avere sulla permeabilità verticale dei sedimenti (come descritto nel par. 0), legati alle modifiche subite dalla struttura stessa del sedimento. La letteratura aveva evidenziato un importante aumento di conducibilità idraulica verticale dovuta al riarrangiamento indotto nella struttura del sedimento. L’applicazione di un carico verticale successivamente ai cicli termici limita le conseguenze sulla permeabilità, riducendo nuovamente la dimensione dei pori che avevano subito allargamenti e chiudendo le fessure verticali formatesi. L’effetto di contrasto è maggiore nel caso in cui il carico verticale sia applicato durante i cicli termici, poiché abbassa la temperatura di congelamento, contrasta l’espansione di volume delle lenti di ghiaccio e la mobilità delle molecole d’acqua verso i nuclei di congelamento, riducendo così gli effetti nella variazione indotti nella tessitura del sedimento.
Per verificare questi effetti, nel corso delle prove edometriche si sono condotte numerose misure di permeabilità idraulica verticale, in diversi stati di carico assiale. Il materiale utilizzato è il campione SJ1, le cui caratteristiche di granulometria e composizione sono riportate in Tabella 7.

Si è innanzitutto analizzato un provino di materiale non sottoposto a cicli di congelamento (detto ‘unfrozen’): le misure di permeabilità sono state eseguite con il metodo a carico idraulico variabile, al termine della consolidazione sotto le tensioni verticali di 40, 160, 640, 1280 e 2560kPa. Queste misure sono state confrontate con i dati di permeabilità ricavati per il medesimo materiale ma su provini precedentemente sottoposti a 10 cicli di temperatura nell’intervallo T:[-5°C; +55°C] a diversi valori di carico imposto (rispettivamente pari a 40, 200, 500 e 800kPa). Per i quattro campioni “frozen” le misure di permeabilità sono state ripetute a diversi valori di tensione verticale (Tabella 23). Data l’estrema variabilità del dato di permeabilità ottenuto con la singola misura, per ciascuna condizione di prova sono state effettuate due serie di misure, ciascuna con almeno 4 determinazioni della permeabilità in tempi successivi e i dati ottenuti sono stati mediati per ottenere un valore finale di riferimento.

In tabella 23 sono riportati i valori di riferimento ricavati dalle diverse prove: con ‘frozen40kPa’ ci si riferisce al materiale che ha subito cicli di gelo/disgelo mentre era sottoposto al carico di 40kPa, e così via.
Tabella 23: La tabella riporta i valori di permeabilità misurata a carico variabile, nei diversi provini di materiale SJ1, nelle condizioni indicate.

<table>
<thead>
<tr>
<th>UNFROZEN</th>
<th>carico</th>
<th>k (cm/s)</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>40</td>
<td>8,71698E-08</td>
<td>0,890</td>
</tr>
<tr>
<td></td>
<td>160</td>
<td>4,47905E-08</td>
<td>0,812</td>
</tr>
<tr>
<td></td>
<td>640</td>
<td>2,02783E-08</td>
<td>0,678</td>
</tr>
<tr>
<td></td>
<td>1280</td>
<td>1,51622E-08</td>
<td>0,604</td>
</tr>
<tr>
<td></td>
<td>2560</td>
<td>9,75138E-09</td>
<td>0,523</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FROZEN 40 kPa</th>
<th>carico</th>
<th>k (cm/s)</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>40</td>
<td>6,66508E-07</td>
<td>0,794</td>
</tr>
<tr>
<td></td>
<td>160</td>
<td>2,73908E-07</td>
<td>0,753</td>
</tr>
<tr>
<td></td>
<td>1280</td>
<td>2,91571E-08</td>
<td>0,606</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FROZEN 200kPa</th>
<th>carico</th>
<th>k (cm/s)</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>200</td>
<td>7,63931E-08</td>
<td>0,674</td>
</tr>
<tr>
<td></td>
<td>640</td>
<td>5,47954E-08</td>
<td>0,644</td>
</tr>
<tr>
<td></td>
<td>1280</td>
<td>3,22096E-08</td>
<td>0,599</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FROZEN 500kPa</th>
<th>carico</th>
<th>k (cm/s)</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>640</td>
<td>3,67266E-08</td>
<td>0,602</td>
</tr>
<tr>
<td></td>
<td>1280</td>
<td>3,0846E-08</td>
<td>0,576</td>
</tr>
<tr>
<td></td>
<td>2560</td>
<td>1,69866E-08</td>
<td>0,533</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FROZEN 800kPa</th>
<th>carico</th>
<th>k (cm/s)</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>800</td>
<td>3,55354E-08</td>
<td>0,575</td>
</tr>
<tr>
<td></td>
<td>1280</td>
<td>3,17099E-08</td>
<td>0,569</td>
</tr>
<tr>
<td></td>
<td>2560</td>
<td>1,72853E-08</td>
<td>0,533</td>
</tr>
</tbody>
</table>

3.14.1I risultati ottenuti

Dai risultati ottenuti si ricava innanzitutto che il materiale che non ha mai subito cicli di congelamento/scongelamento-riscaldamento ha sempre un valore di permeabilità inferiore a quello relativo al medesimo materiale che ha subito il trattamento termico ciclico. Si conferma quindi l’effetto di aumento della permeabilità verticale indotto dai cicli di congelamento/scongelamento – riscaldamento.
In Figura 106 sono messi a confronto i valori di permeabilità determinati per il materiale *unfrozen*, in diverse condizioni di carico, con quelli ricavati dal materiale *frozen*40kPa (campione che aveva la minor sollecitazione verticale durante i cicli termici). Si noti come, in linea con i risultati emersi dalla letteratura, l’aumento di permeabilità è inversamente proporzionale al valore del carico applicato durante le misure: infatti, nelle condizioni di minimo carico (40kPa) la permeabilità risulta aumentata di un ordine di grandezza, mentre nelle condizioni di massimo carico (800kPa) la permeabilità risulta solo raddoppiata.

![Diagram](image)

Figura 106: Permeabilità misurata al variare del carico applicato durante le misure su materiale *unfrozen* o *frozen* sotto una tensione verticale di 40kPa.

Se si analizzano anche gli altri valori di permeabilità misurati (Figura 107), si osserva che all’aumentare del carico imposto durante i cicli termici, la variazione di permeabilità indotta dai cicli è minore, seppur la permeabilità sia sempre più che doppia di quella del terreno non congelato.
Cap.3 - Misura delle variazioni delle proprietà meccaniche e di permeabilità indotte nei sedimenti coesivi da sollecitazioni termiche generate da una sonda geotermica

Figura 107: Permeabilità misurata sotto diverse tensioni verticali sul campione di materiale unfrozen e sui campioni in precedenza sottoposti a cicli termici di congelamento/scongelamento-riscaldamento in diverse condizioni di carico (frozen40kPa, frozen200kPa, frozen500kPa e frozen800kPa).

Figura 108: Permeabilità misurata in funzione del carico applicato DURANTE i cicli termici, parametrizzate sul valore del carico applicate durante le misure di permeabilità. In corrispondenza del valore 1, i punti che si riferiscono al materiale unfrozen.

Si osservi che con il processo di gelo/disgelo l’aumento di permeabilità verticale avviene in combinazione con una diminuzione dell’indice dei vuoti (compattazione del materiale), contrariamente a quanto avviene di solito nei terreni naturali. A questo proposito in Figura 109 si riporta la relazione tra permeabilità misurata nei diversi provini e l’indice dei vuoti caratterizzante
il materiale durante la misura stessa, ricavato al par. 3.5. Si può osservare che a medesimo carico verticale imposto l’indice dei vuoti è maggiore nel materiale unfrozen mentre, al contrario, la permeabilità verticale è più elevata nel materiale che ha subito congelamento.

Figura 109: Variazione di permeabilità in relazione con il valore di indice dei vuoti, misurato in condizioni di carico crescente.

Si osserva che lo stesso valore di permeabilità verticale di circa $3,5 \times 10^{-8}$ cm/s si ottiene in corrispondenza di un valore di ε pari a 0,6 nel materiale che ha subito i cicli termici e a 0,82 nel provino che non ha mai subito cicli termici. La differenza tra permeabilità, come descritto anche in letteratura, decresce al crescere del carico applicato.

Da queste osservazioni risulta che il fattore che maggiormente influenza la permeabilità verticale non è la percentuale di volume dei vuoti presente nel campione, quanto l’interconnessione tra i vuoti, che viene incrementata in modo significativo nel corso dei processi di congelamento e scongelamento.

3.14.2 Risultati sperimentali nel caso di depositi sovraconsolidati

Analoghe misure e determinazione delle permeabilità sono state effettuate sul materiale sovraconsolidato, utilizzando il campione di materiale prelevato dallo strato di caranto già descritto (Tabella 11).

In figura 110 seguente sono confrontate le misure di permeabilità (2 misure per ciascun campione) ottenute da:
✓ due provini in condizioni NC, sottoposti a carico verticale pari a 40kPa, uno sottoposto anche a 10 cicli di congelamento/scongelamento (detto ‘frozen 40kPa’) e l’altro no (detto ‘unfrozen’);
✓ due provini di materiale sovraconsolidato con OCR=15 (sottoposto ad un carico litostatico di 600kPa e poi scaricato a 40kPa), uno sottoposto a cicli termici con congelamento e scongelamento (detto ‘sovraconsolidato frozen’), e l’altro no.

![Image](image.jpg)

Figura 110: Permeabilità del medesimo materiale, con OCR pari a 1 o 15, sottoposto o meno a cicli termici di congelamento e scongelamento.

Si osservi come, in entrambe le situazioni, i provini che hanno subito i cicli di congelamento/scongelamento ciclico hanno una permeabilità maggiore: nel materiale sovraconsolidato, l’incremento di permeabilità è intorno al 230%, mentre per il materiale NC l’aumento è del 130%, meno importante quindi rispetto all’incremento che si era registrato a parità di condizioni per il materiale SJ1 (vedi par. precedente). La misura di permeabilità più bassa è ovviamente registrata nel materiale sovraconsolidato non sottoposto a cicli termici, mentre quella più elevata si registra nel materiale NC sottoposto a cicli termici.

Sono anche stati calcolati i valori di indice dei vuoti: nel provino sovraconsolidato (OCR=15) che ha subito i cicli di congelamento e scongelamento, il valore di indice dei vuoti finale è pari a 0,8, mentre in quello che non ha subito cicli termici, il valore di e è maggiore, pari a 0,928.

3.15 Micro-tomografia computerizzata a raggi X

Per verificare l’aumento del grado di interconnessione tra i pori presenti nella struttura del sedimento, provocato dai cicli di gelo/disgelo e testimoniato dall’aumento di permeabilità verticale, la microstruttura interna del materiale è stata analizzata tramite tecniche di analisi di immagine applicate alla ricostruzione tridimensionale di alcuni provini di materiale, analizzati utilizzando la micro-tomografia computerizzata a raggi X. Questa è una tecnica sperimentale non
invasiva che permette l’indagine dettagliata della struttura interna di un materiale in base a come i diversi componenti attenuano i raggi X.

La micro-tomografia (X-μCT) rappresenta l’evoluzione ad alta risoluzione della tecnica di tomografia computerizzata a raggi X originariamente sviluppata per uso medico (TC o TAC, tomografia assiale computerizzata) alla fine del 1960 e primi anni 1970, al fine di superare i limiti dei convenzionale radiografia bidimensionale. Negli ultimi vent’anni, le innovazioni tecnologiche nella realizzazione sia delle sorgenti di raggi X sia dei rivelatori, hanno spinto il limite di risoluzione inferiore a 50μm, portando allo sviluppo di una innovativa versione ad alta risoluzione, estendendo così il suo utilizzo nel campo della ricerca sui materiali.

La micro-tomografia computerizzata a raggi X (X-μCT) consente di ricostruire una rappresentazione tridimensionale della microstruttura interna di campioni totalmente indisturbati, restituendone una visualizzazione tridimensionale (3D) a scala sub-micrometrica. Questo tipo di analisi è estremamente interessante per studiare le proprietà interne di un materiale come, appunto, le caratteristiche composizionali, la connettività o le relazioni spaziali tra i pori all’interno della struttura. La ricostruzione avviene a partire da un insieme di immagini di attenuazione dei raggi X: le immagini sono basate sull’irradiazione del campione con raggi X e sulla rilevazione dei fotoni trasmessi attraverso di esso, visto che l’attenuazione, espressa dal coefficiente μ, è variabile a seconda delle caratteristiche di ciascun materiale (Figura 111). L’acquisizione viene effettuata da un elevatissimo numero di posizioni angolari (fino a diverse migliaia) complanari attorno ad un asse di rotazione, ruotando l’oggetto (o la coppia sorgente-detector) a piccoli intervalli angolari intorno al suo asse verticale e ripetendo ogni volta l’acquisizione. Viene così ricavata l’immagine di una ‘fetta’ del campione: la risoluzione aumenta con il numero di immagini acquisite, e quindi in modo indirettamente proporzionale all’intervallo di rotazione. In seguito, le immagini vengono combinate, applicando un algoritmo di ricostruzione matematica. I dati risultanti vanno a costituire sezioni trasversali dell’oggetto, poi sovrapposte in modo da ottenere una rappresentazione digitale 3D dell’oggetto indagato, che può così essere elaborato utilizzando tecniche di elaborazione grafica, tagliando virtualmente il campione in un numero infinito di sezioni, con qualsiasi orientamento desiderato e consentendo l’estrazione dei parametri di interesse. La risoluzione delle immagini ottenute dipende in gran parte dalla dimensione del campione: minore è la dimensione del campione esaminato, maggiore è la risoluzione spaziale ottenibile.
Cap.3 - Misura delle variazioni delle proprietà meccaniche e di permeabilità indotte nei sedimenti coesivi da sollecitazioni termiche generate da una sonda geotermica

Figura 111: a) Rappresentazione schematica di un tipico setup sperimentale per laboratorio X-μCT: la sorgente di raggi X, il portacampioni rotante e un rivelatore, la cui sincronizzazione viene controllata da un computer (non mostrato in figura). b) Rappresentazione schematica della ricostruzione delle immagini 2D attraverso la sovrapposizione dei profili, aumentando la definizione dell’oggetto indagato. L’operazione viene quindi ripetuta per tutte le ‘fette’ ottenendo il dataset finale per la ricostruzione 3D.

Figura 112: Lo strumento utilizzato per la micro-tomografia computerizzata: a) la camera aperta in cui inserire il campione, e b) uno dei campioni analizzati all’interno della camera posizionato sul portacampioni rotante.

3.15.1 Risultati ottenuti

L’analisi micro-tomografica è stata applicata, in collaborazione con altri ricercatori, a due coppie di campioni, per confrontare la microstruttura interna, evidenziandone i cambiamenti generati dai fenomeni di congelamento indotti:

- i campioni di materiale SJ1, caricato con 40kPa, uno sottoposto ai cicli di congelamento e scongelamento (SJ1_40_FT), e l’altro no (SJ1_40);
- due campioni di materiale BM_S3, sovraconsolidato con grado OCR=15, uno sottoposto ai cicli di congelamento e scongelamento (BM_S3_600/40_FT) e l’altro no (BM_S3_600/40_FT).
Figura 113: Rappresentazione di una sezione virtuale dei due campioni SJ1: a) SJ1_40 e b) SJ1_40_FT

I campioni sono stati analizzati con uno scanner per la tomografia micro-computerizzata ad alta risoluzione (*Bruker micro CT-Skyscan 1172 – Figura 112*) con sorgente dei raggi X che opera a 100kV e 100μA. La risoluzione spaziale nominale delle immagini utilizzata (dimensione del pixel) è di 3,76 micron, per tutti i campioni indagati. Sono state acquisite un totale di 1800 radiografie per scansione su una rotazione di 360° (passo angolare 0,3°, tempo di esposizione 1450ms).
Cap.3 - Misura delle variazioni delle proprietà meccaniche e di permeabilità indotte nei sedimenti coesivi da sollecitazioni termiche generate da una sonda geotermica

Figura 114: Rappresentazione di una sezione virtuale dei due campioni SJ1: a) BM_S3_600/40 e b) BM_S3_600/40_FT

Le immagini sono state ricavate dalla ricostruzione tridimensionale dell’intero volume del campione, poi sezionato trasversalmente (Figura 113 - 114): a sinistra sono riportate le immagini ricavate applicando un filtro di mediana di 2 pixel (M2), e a destra una successiva elaborazione ricavata dalla prima, poi segmentata con soglia a 42 in scala di grigi e rifiltrata con filtro di mediana di 2 pixel ((M2)T42M2). E’ questa la tipologia di immagini, resa binaria, poi utilizzata nel software per ricavare i valori dei parametri rappresentativi riportati in tabella.

Il confronto tra le immagini evidenzia i cambiamenti che avvengono a livello microstrutturale a causa dei cicli di congelamento e scongelamento: i vuoti presenti, inizialmente separati, subiscono un accrescimento assumendo forme dendritiche e progressivamente vanno incontro a fenomeni di coalescenza, fondendosi tra di loro e formando pori di maggiori dimensioni, continui ed interconnessi.
La ricostruzione 3D dei campioni è stata elaborata tramite un software specifico (Bruker Skyscan CTAn) estraendone i valori dei parametri considerati significativi:

1. Porosità percentuale: calcolata come il volume dei pori all’interno di ciascun campione 3D, come percentuale del volume totale, dove un poro è individuato come un insieme di ‘pixel’ di spazio (in nero) tra loro collegati e completamente chiusi cioè circondati da tutti i lati (in 3D) da ‘pixel’ solidi (bianco). La porosità viene misurata nell’analisi 2D slice-by-slice come percentuale della superficie totale del campione;

2. Indice di frammentazione: è un indice di connettività inversa, valutato in 3D. Ha significato come indice relativo di confronto: più basso è, più i pori sono connessi.

Nella tabella seguente sono riportati i valori dei parametri ricavati dall’elaborazione delle immagini rappresentative dell’intero volume dei campioni: il confronto tra i campioni conferma che i cicli di congelamento e scongelamento portano ad un aumento molto importante della porosità percentuale, una diminuzione dell’indice di frammentazione del 40% che testimonia l’aumento di connessione tra i pori, ed, infine, un aumento del grado di anisotropia, confermando quindi una maggiore orientazione della porosità interna.

<table>
<thead>
<tr>
<th>campione</th>
<th>condizioni</th>
<th>porosità [%]</th>
<th>indice di frammentazione [1/µm]</th>
<th>grado di anisotropia</th>
</tr>
</thead>
<tbody>
<tr>
<td>SJ1_40</td>
<td>SJ1: 40kPa e T=15°C</td>
<td>0,03</td>
<td>0,35</td>
<td>0,22</td>
</tr>
<tr>
<td>SJ1_40_FT</td>
<td>SJ1: 40kPa e T:[-5°C, +55°C]</td>
<td>0,22</td>
<td>0,21</td>
<td>0,42</td>
</tr>
<tr>
<td></td>
<td></td>
<td>627%</td>
<td>-40%</td>
<td>89%</td>
</tr>
<tr>
<td>BM_S3_600/40</td>
<td>BM_S3: OCR = 15 e T=15°C</td>
<td>0,03</td>
<td>0,24</td>
<td>0,44</td>
</tr>
<tr>
<td>BM_S3_600/40_FT</td>
<td>BM_S3: OCR = 15 e T:[-5°C, +55°C]</td>
<td>0,78</td>
<td>0,15</td>
<td>0,62</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2499%</td>
<td>-39%</td>
<td>41%</td>
</tr>
</tbody>
</table>

3.16 CONCLUSIONI RIGUARDO ALLA VARIAZIONE DI PERMEABILITÀ INDOTTA

Dai risultati ottenuti nel corso degli esperimenti si ricavano le seguenti osservazioni, valide per sedimenti a matrice fine prevalente di natura limoso-argillosa soggetti nell’intorno di una sonda geotermica in condizioni estreme di esercizio a processi di congelamento e scongelamento-riscaldamento ciclico:
La permeabilità verticale nei livelli coesivi subisce un incremento a causa delle modifiche indotte dai cicli di congelamento e scongelamento, che può essere anche di un ordine di grandezza, nel caso di un carico verticale limitato (40kPa).

L’aumento di permeabilità avviene in combinazione con un incremento dello stato di compattazione (diminuzione dei vuoti): esso si verifica quindi non per aumento del volume vuoto ma a causa delle modifiche nella tessitura del sedimento, per formazione di fratture verticali e macropori generati nel corso dei cicli di gelo e disgelo-riscaldamento che incrementano il grado di interconnessione tra i pori e orientamento, come confermato anche dai risultati ottenuti tramite la micro-tomografia a raggi X.

In figura 115 si evidenziano i punti rappresentativi della permeabilità misurata in corrispondenza dei carichi pari a quelli di inizio esperimento: l’incremento di permeabilità risulta più importante in corrispondenza dei carichi più contenuti, mentre al crescere del carico l’incremento di permeabilità verticale decresce.

Figura 115: Andamento dell’aumento di permeabilità al variare della profondità.

L’aumento di permeabilità verticale è più significativo in caso di materiale sovraconsolidato.
4 MISURA DELLE VARIAZIONI DI CONDUCIBILITÀ TERMICA DEI MATERIALI RAPPRESENTATIVI DELLA SEQUENZA LITOESOTRATIGRAFICA VENEZIANA DOVUTE A VARIAZIONI DI TEMPERATURA

Lo scambio di calore che avviene tra una sonda geotermica ed il sottosuolo che la circonda è fortemente influenzato dalle proprietà termiche dei sedimenti presenti nell’intorno della sonda, prima fra tutte la conducibilità termica. È noto da letteratura che le proprietà termiche di un sedimento dipendono da numerosi fattori: innanzi tutto la composizione mineralogica del sedimento stesso ed il suo grado di compattazione/densità; in secondo luogo, le condizioni di saturazione e di contenuto d’acqua, ed infine le condizioni ambientali, tra cui la temperatura stessa e la pressione. L’alterazione del campo termico indotta nel sottosuolo nell’intorno della sonda geotermica verticale può quindi alterare le proprietà termiche stesse del materiale, influenzando lo scambio sonda-terreno e di conseguenza da una parte l’estensione dell’anomalia termica e dall’altra la funzionalità e l’efficienza dell’intero sistema.

Per questo la ricerca condotta ha previsto una attività di verifica delle eventuali variazioni dei parametri termici dei sedimenti più caratteristici della sequenza stratigrafica tipica del caso studio considerato, in funzione delle variazioni di temperatura indotte dalle sonde geotermiche in condizioni estreme di esercizio.

Di seguito vengono presentate le principali informazioni ricavate dalla ricerca bibliografica circa le caratteristiche di scambio termico nei sedimenti, con particolare attenzione alle variazioni indotte dalle alterazioni della temperatura stessa del materiale, soprattutto considerando i fenomeni di congelamento del sottosuolo.

Inoltre, vengono esposti i risultati ottenuti dalle serie di misure dirette di conducibilità termica eseguite su campioni di sedimenti limoso-argillosi e sabbiosi, da cui sono stati ricavati indirettamente i valori anche di capacità termica volumetrica. Le misure sono state effettuate in diverse condizioni di temperatura, anche al di sotto del punto di congelamento del sedimento considerato, con lo scopo di individuare le variazioni connesse con i fenomeni di congelamento e scongelamento.
I valori dei parametri termici ricavati da queste misure sono successivamente stati utilizzati per la caratterizzazione dei parametri di scambio termico del terreno nell’implementazione del modello agli elementi finiti, realizzato con lo scopo di analizzare l’estensione dell’anomalia termica indotta nel terreno e della sua evoluzione nel tempo (come riportato nel cap.5).

4.1 CONDUCIBILITÀ TERMICA DI MATERIALI SCIOLTI: LO STATO DELL’ARTE

4.1.1 Trasmissione del calore in un mezzo poroso

Il terreno può essere schematizzato come un mezzo poroso, composto genericamente da tre fasi (solido, gas, liquido), in cui la trasmissione del calore può avvenire secondo le seguenti modalità:

1. **per conduzione**: da un punto di vista macroscopico, la conduzione termica si manifesta come scambio di energia termica all’interno di un corpo o tra corpi diversi, che siano solidi, liquidi o gassosi, in contatto tra loro, senza movimento macroscopico di materia. Lo scambio termico è dovuto alla cessione di energia cinetica molecolare (rotazionale e vibrazionale) da zone ad alta temperatura verso zone adiacenti a più bassa temperatura. Considerando condizioni di saturazione nel terreno, la trasmissione del calore per conduzione nel mezzo poroso saturo, tralasciando quindi la presenza di gas/aria, può avvenire attraverso tre diversi percorsi: solido-sólido, quando i grani solidi sono in diretto contatto tra loro; solido-liquido, quando il flusso di calore tra due o più particelle solide attraversa una parte di liquido interstiziale, o infine liquido-liquido, all’interno dei pori di grandi dimensioni (Abuel-Naga et al., 2008).

![Modello concettuale del flusso di calore attraverso un mezzo poroso saturo. (da Abuel-Naga et al., 2008)](image)

2. **per convezione**: in questo caso la trasmissione del calore avviene con moto macroscopico di materia, attraverso lo spostamento di particelle nell’ambito della fase liquida del materiale multi-fase: per quanto riguarda il terreno, questa componente di trasmissione del calore è importante solo in rocce fratturate o acquiferi ad alta permeabilità, dove le molecole
d’acqua possono effettivamente migrare da zone ad alta temperatura verso zone a temperatura inferiore.

In sedimenti fini a matrice prevalentemente limoso-argillosa, il fenomeno di convezione è considerato trascurabile a causa della bassa permeabilità del mezzo poroso, dovuta alla scarsa porosità. Si sottolinea però che, come per la permeabilità idraulica, anche dal punto di vista della trasmissione del calore, assume particolare rilevanza non solo la porosità del materiale, ma anche il grado di connessione tra i pori, e quindi la porosità cosiddetta effettiva. I risultati ottenuti con l’analisi tomografica (descritti nel par. 3.15 - Micro-tomograf) hanno evidenziato un incremento importante di connessione tra i vuoti nei provini di materiale nel caso in cui fossero stati sottoposti a cicli di congelamento e scongelamento. Il fenomeno, dimostrato anche dal deciso aumento di permeabilità verticale nonostante il contemporaneo incremento di densità (in sedimenti coesivi NC), è attribuibile all’allargamento dei macro-pori e la formazione di cracks e fessurazioni verticali dovuti all’espansione di volume della fase liquida nel corso dei processi di congelamento e alla successiva espulsione forzata del fluido interstiziale in fase di scongelamento, per azione del carico verticale. E’ probabile quindi che, nonostante solitamente la convezione termica sia quasi nulla nei sedimenti fini, essa possa invece assumere un effetto non trascurabile nei sedimenti che sono stati interessati da fenomeni indotti di gelo-disgelo ciclico, a causa di un aumento localizzato della interconnessione tra i pori, come effetto combinato con l’incremento locale di permeabilità verticale che può rendere possibili moti macroscopici locali di fluido interstiziale.

In generale, il fenomeno di conduzione è assolutamente prevalente sulla convezione, e la trasmissione di calore per irraggiamento (tramite radiazioni elettromagnetiche) nel caso di sedimenti, è completamente trascurabile. Per questo motivo, il parametro termico che assume maggiore importanza è la conducibilità termica, del quale sono state effettuate misure dirette nei materiali provenienti dal caso studio considerato.

4.1.2 La conducibilità termica

La conducibilità termica rappresenta l’attitudine di un materiale a trasmettere il calore per conduzione (\(\lambda\), misurata nel SI in \([\text{W/mK}]\)), calcolata come il rapporto tra flusso di calore e il gradiente di temperatura che ne provoca il passaggio. In generale, se si considerano materiali di diversa natura, il valore del coefficiente di conduzione termica o conduttività termica varia entro limiti larghissimi.
Cap. 4 Misura delle variazioni di conducibilità termica dei materiali rappresentativi della sequenza litostatigrafica veneziana dovute a variazioni di temperatura

Tabella 25: Alcuni valori di conducibilità termica di materiali comuni a 20°C.

<table>
<thead>
<tr>
<th>Materiale</th>
<th>Conducibilità termica (W/mK)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Legno</td>
<td>0,15</td>
</tr>
<tr>
<td>Balsa</td>
<td>0,055</td>
</tr>
<tr>
<td>Aria</td>
<td>0,026</td>
</tr>
<tr>
<td>Materiali isolanti</td>
<td></td>
</tr>
<tr>
<td>Polistirolo espanso</td>
<td>0,024</td>
</tr>
<tr>
<td>Sughero espanso</td>
<td>0,036</td>
</tr>
<tr>
<td>Lana di vetro</td>
<td>0,04</td>
</tr>
<tr>
<td>Fibra di vetro</td>
<td>0,035</td>
</tr>
<tr>
<td>Materiali da costruzione</td>
<td></td>
</tr>
<tr>
<td>Calcestruzzo</td>
<td>0,8 - 1,4</td>
</tr>
<tr>
<td>Mattoni di argilla</td>
<td>1,0 - 1,2</td>
</tr>
<tr>
<td>Marmo</td>
<td>2,8</td>
</tr>
<tr>
<td>Sabbia</td>
<td>0,27</td>
</tr>
<tr>
<td>Terreno</td>
<td>0,52</td>
</tr>
<tr>
<td>Alluminio</td>
<td>200</td>
</tr>
<tr>
<td>Vetro</td>
<td>1,4</td>
</tr>
<tr>
<td>Grafite</td>
<td>1950</td>
</tr>
<tr>
<td>Diamante</td>
<td>2300</td>
</tr>
</tbody>
</table>

Il coefficiente di conducibilità termica non è una proprietà intrinseca, ma dipende dallo stato del materiale, e può variare con la temperatura, la pressione e gli eventuali trattamenti termici che il materiale ha subito in precedenza. Nel diagramma seguente (Figura 117) viene rappresentata la variabilità delle conducibilità termica di diversi materiali al variare della temperatura. In particolare, l’andamento della curva riferita all’acqua è caratterizzata da forti discontinuità in corrispondenza dei cambiamenti di fase, a causa delle importanti variazioni di struttura che avvengono al passaggio di stato acqua/ghiaccio/vapore.

In generale, l’acqua è la sostanza di uso comune che presenta la più ampia variabilità del valore di conducibilità termica con la temperatura. Per l’acqua in fase liquida, la conducibilità termica ha un valore intermedio, che si attesta intorno a 0,6W/mK, e cresce al crescere della temperatura fino a 120°C secondo la seguente equazione dove T_c è la temperatura dell’acqua in °C (da Abuel-Naga, Bergado e Bouazza, 2008):

$$\lambda = 0.569 + (1.884 \times 10^{-3})T_c^2 - (0.0772 \times 10^{-5}) \times T_c^2$$

Con il diminuire della temperatura, in corrispondenza del passaggio di fase dallo stato liquido a quello solido, la conducibilità termica aumenta repentinamente (Figura 117-118), arrivando ad un valore pari a circa 2W/mK, appena terminato il passaggio di fase. Inoltre, la conducibilità termica del ghiaccio continua a crescere al decrescere della temperatura, raggiungendo un valore pari a 3,5W/mK intorno ai -100°C. Nella fase vapore invece, la conducibilità termica, rispetto alla fase liquida, cala di un ordine di grandezza al passaggio di fase e di nuovo aumenta all’aumentare della temperatura.
Considerando il sedimento come mezzo poroso in cui nei vuoti della matrice solida è presente acqua interstiziale genericamente in forma liquida, la variabilità del valore di conduttività termica dell’acqua connessa con i passaggi di fase liquido-solido riveste particolare
interesse per l’analisi del comportamento termico dei sedimenti connesso con i fenomeni che si realizzano quando la temperatura scende al di sotto del punto di congelamento del sedimento stesso. Le variazioni di conducibilità termica del sedimento dovute al cambiamento delle condizioni di temperatura, saranno infatti certamente influenzate dalle variazioni di conducibilità termica del fluido interstiziale al passaggio dallo stato liquido a quello solido. Per quanto riguarda i minerali componenti i sedimenti invece, la variabilità della conducibilità termica dei minerali con la temperatura è molto più contenuta di quella dell’acqua, come descritto in seguito.

4.1.3 Fattori che influenzano la conducibilità termica dei sedimenti

La struttura del sedimento ed il modo in cui le particelle solide sono aggregate a formare i ‘pacchetti’ determina la porosità effettiva e il trasferimento di calore attraverso le superfici di interfaccia. I sedimenti naturali possono essere suddivisi da questo punto di vista in due categorie: quelli che contengono uno scheletro granulare di particelle più grosse in contatto tra loro (sabbie), dove i sedimenti fini sono una piccola porzione e non interferiscono con le variazioni di volume dello scheletro solido, e quelli in cui invece dominano le particelle più fini (limi argillosi). Il comportamento di queste due categorie per quanto riguarda il trasferimento di calore è completamente diverso. Di seguito si descrivono i principali fattori che influenzano la capacità termica di un sedimento:

1. la composizione mineralogica: in un primo approccio semplificato, la conducibilità termica di un materiale composito come un sedimento può essere valutata come media pesata dei valori di conducibilità tipici dei minerali componenti. Questo metodo speditivo è spesso utilizzato per fornire una prima stima della conducibilità termica dei materiali sciolti e delle rocce, tenendo conto delle percentuali diverse dai vari minerali che li compongono. La conducibilità termica dei più comuni minerali che compongono i sedimenti sciolti è stata quindi misurata separatamente, come riportato in Tabella 26. Di conseguenza, osservando i valori di λ a temperatura ambiente dei minerali più comuni, si possono trarre alcune informazioni significative per i sedimenti composti (Midttomme & Roaldset, 1998):

 ✓ il quarzo è il minerale, tra quelli più diffusi, caratterizzato dal valore di conducibilità termica più elevato: essendo il componente principale dei materiali sabbiosi, questo suggerisce che i depositi prevalentemente sabbiosi saranno caratterizzati da elevati valori di λ;
 ✓ al contrario, i fillosilicati, che caratterizzano la composizione dei sedimenti fini a prevalente matrice coesiva, presentano valori di λ pari a circa un terzo di quello tipico del quarzo, suggerendo quindi un basso valore di conducibilità termica per i sedimenti più fini;
 ✓ per quanto riguarda i diversi minerali fillosilicati (kaolinite, illite e smectite), essi hanno valori di conducibilità termica simili tra loro, pur essendo caratterizzati da uno sviluppo di superficie specifica interna molto diverso. Sembra quindi che la superficie specifica sia un fattore poco influente sulle proprietà termiche del
sedimento, visto che minerali di smectite, in cui è altissima la superficie specifica interna, e quelli di illite, che presentano superficie specifica interna limitata, sono descritti da valori di λ del tutto simili (Midttomme, Kristi e Roaldset, 1998);

verificando il diverso valore di conducibilità termica di aria e acqua allo stato liquido e solido, si può dedurre che mezzi porosi saturi saranno migliori conduttori di calore rispetto a quelli parzialmente saturi (λ aria $\ll \lambda$ acqua) e che un mezzo poroso ghiacciato sarà molto più conduttivo di uno non ghiacciato (la conducibilità termica dell’acqua passa da un valore di 0,6 W/mK a 20°C a 2,32W/mK del ghiaccio a -10°C).

Tabella 26: Conducibilità termica di minerali comuni (dati da Horai, 1971 e da VDI 4640 Blatt 1_2010)

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Thermal conductivity (W/m °C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quartz</td>
<td>7,8</td>
</tr>
<tr>
<td>Calcite</td>
<td>3,4</td>
</tr>
<tr>
<td>Dolomite</td>
<td>5,1</td>
</tr>
<tr>
<td>Anhydrite</td>
<td>6,4</td>
</tr>
<tr>
<td>Pyrite</td>
<td>19,2</td>
</tr>
<tr>
<td>Siderite</td>
<td>3,0</td>
</tr>
<tr>
<td>Orthoclase</td>
<td>2,3</td>
</tr>
<tr>
<td>Albite</td>
<td>2,3</td>
</tr>
<tr>
<td>Halite</td>
<td>6,5</td>
</tr>
<tr>
<td>Mica</td>
<td>2,3</td>
</tr>
<tr>
<td>Chlorite</td>
<td>5,1</td>
</tr>
<tr>
<td>Kaolinite</td>
<td>2,8</td>
</tr>
<tr>
<td>Smectite</td>
<td>1,8</td>
</tr>
<tr>
<td>Illite</td>
<td>1,8</td>
</tr>
<tr>
<td>Air</td>
<td>0,03</td>
</tr>
<tr>
<td>Water</td>
<td>0,60</td>
</tr>
</tbody>
</table>

2. **Porosità/densità del materiale:** al diminuire della porosità, la conducibilità termica aumenta; infatti più il materiale è compatto e denso, più il contatto tra i grani solidi è esteso arealmente, maggiore è la capacità di trasmettere il calore per conduzione. Questo aspetto suggerisce l’aumentare della conducibilità termica con il grado di consolidazione nei materiali fini. Inoltre, un processo di compattazione o addensamento (come si è verificato sia anche il processo di congelamento e scongelamento) probabilmente accresce la capacità di trasmissione termica del materiale (Abuel-Naga, Bergado, e Bouazza, 2008). Per i materiali fini di matrice prevalentemente limoso-argillosa, la porosità del materiale è il fattore che
Cap 4 Misura delle variazioni di conduttività termica dei materiali rappresentativi della sequenza litostatigrafica veneziana dovute a variazioni di temperatura

maggiormente influenza la capacità di trasmettere il calore per conduzione, insieme al contenuto d’acqua.

![Diagram](image)

Figura 119: Andamento della conduttività termica di una argilla sciolta al variare di porosità e temperatura: nel grafico sono rappresentati i risultati di un test sperimentale misurando la conduttività termica di un medesimo materiale in diverse condizioni di porosità, sottoponendo a diverse variazioni di temperatura (da 30 a 50°C; da 30 a 70°C oppure da 30 a 90°C). Si osservi come per tutti e tre gli incrementi di temperatura considerati, l’andamento della conduttività termica sia del tutto simile, con un aumento di circa il 30% corrispondente ad una diminuzione della porosità di circa il 18% (Abuel-Naga, Bergado, e Bouazza, 2008).

3. **Dimensione delle particelle e distribuzione della curva granulometrica:** in generale, i materiali più grossolani hanno conduttività maggiore di quelli più fini. La resistenza al passaggio di calore offerta dai punti di contatto tra grani diversi è maggiore rispetto a quella offerta dal materiale all’interno di uno stesso grano: a parità di materiale costituente, più il corpo solido è scomposto in tante piccole parti, minore è la capacità di trasmettere calore. Nei sedimenti, la conduttività termica diminuisce al diminuire della dimensione dei grani (Midttomme, Kirsti, E. Roaldset, 1998). Anche questo elemento quindi suggerisce valori di conduttività termica maggiori per i depositi più grossolani, piuttosto che per i sedimenti fini.

4. **Area specifica:** nei sedimenti argillosi, i film liquidi formati dalle molecole d’acqua che formano il double electrical layer attorno alle particelle solide offrono particolare resistenza al passaggio di calore, costituendo quindi una specie di barriera al flusso termico, presente solo nei materiali a prevalente matrice coesiva. Anche questa è una delle cause per cui la conduttività termica nei materiali argillosi risulta inferiore rispetto a quelli a grana più grossolana (Midttomme, Kirsti, E. Roaldset, 1998). Come già evidenziato, la superficie specifica interna non sembra essere un fattore particolarmente influente sulle proprietà termiche del terreno, visto che i minerali di
smectite (caratterizzati da altissima superficie specifca interna) e di illite (con superficie specifca interna molto bassa) hanno simili valori di \(\lambda \).

![Diagramma di flusso che mostra gli effetti di primo e secondo livello della dimensione dei grani sulla conducibilità termica (Midttomme, Kirsti e Roaldset, 1998).]

Figura 120: Diagramma di flusso che mostra gli effetti di primo e secondo livello della dimensione dei grani sulla conducibilità termica (Midttomme, Kirsti e Roaldset, 1998).

5. E’ noto anche che l’attitudine a trasmettere calore per conduzione dipende dalla
tessitura del sedimento: la conducibilità termica risulta essere una proprietà anisotropa, che assume un diverso valore a dipendenza del fatto che il flusso di calore risulti parallelo o perpendicolare alla struttura del materiale. L’anisotropia è ovviamente più marcata nei materiali argillosi, dove il piano di deposizione fornisce una direzione per lo più omogenea alle particelle, mentre è meno marcata nei depositi più grossolani, dove la direzione delle particelle è più disordinata.

Per quanto riguarda l’influenza della forma delle porosità, gli effetti cambiano a seconda della loro dimensione, forma e distribuzione. Maggiore risulta la dimensione dei pori, e la loro contiguità, maggiore risulta la conducibilità termica, poiché permeabilità e conducibilità termica sono direttamente proporzionali (Midttomme, Kirsti e Roaldset, 1998).

6. **Contenuto d’acqua/saturazione** (da Nidal H. Abu-Hamdeh, 2003): come già precedentemente accennato, la conducibilità termica aumenta all’aumentare del contenuto d’acqua (perché l’acqua è un miglior conduttore termico rispetto all’aria) e anche del grado di saturazione (al diminuire quindi della percentuale di aria presente nei vuoti).

Al crescere del contenuto d’acqua e del grado di saturazione, cresce la conducibilità termica del sedimento.

Per un medesimo incremento di contenuto d’acqua aumenta più rapidamente la conducibilità termica di un deposito sabbioso, rispetto all’incremento che si verifica in un materiale argilloso. Questo effetto è attribuibile al fatto che, nel materiale più grossolano, l’incremento di contenuto d’acqua ‘riempie’ velocemente il vuoto tra una particella di sabbia e l’altra dando rapidamente continuità al mezzo, che diventa
quindi più conduttivo. La conducibilità dei sedimenti sabbiosi si innalza velocemente al crescere del contenuto d’acqua, fino a raggiungere un picco corrispondente ad un contenuto d’acqua limitato (intorno a 18-20%, cfr. Figura 123). Superato questo valore di picco, all’ulteriore aumento di contenuto d’acqua, l’incremento di conducibilità termica del sedimento è estremamente contenuto. Per un sedimento fine al contrario, l’aumento progressivo di contenuto d’acqua va primariamente a soddisfare le richieste elettriche delle singole particelle, senza portare ad un incremento importante di conducibilità termica. Nei sedimenti argillosi quindi, la crescita della conducibilità termica con il contenuto d’acqua è più contenuta (cfr. Figura 122)

7. Infine, è noto che la conducibilità termica varia con le condizioni ambientali di temperatura e pressione.

4.1.4 Variazione di conducibilità termica dei sedimenti al variare della temperatura

Si può dire, quindi, che la conducibilità termica di un materiale fine coesivo è solitamente inferiore di quella di un materiale più sabbioso, sebbene in entrambi i casi i valori possono variare a seconda delle caratteristiche dei sedimenti considerati. La composizione mineralogica è l’elemento predominante nella definizione delle proprietà termiche delle sabbie e dei materiali sciolti, mentre nei materiali argillosi, oltre alla tipologia di minerali presenti che hanno conducibilità termica piuttosto contenuta (rispetto al quarzo, abbondante nelle sabbie) con valori intorno a 1,8–2,8 W/mK, i fattori predominanti sono tutti quelli che determinano o influenzano le forze di attrazione elettrica espresse dalle particelle sui fluidi interstiziali, quali la porosità e la densità del materiale e il valore di contenuto d’acqua.

E’ già stato detto che la conducibilità termica varia al variare della temperatura del sedimento: la sabbia ha generalmente un valore di λ variabile da 1,5 fino a 3 volte quella dei materiali coesivi, riscontrando le differenze più accentuate in condizioni di temperature più elevate. Di seguito si riportano i risultati prodotti da uno studio particolarmente interessante condotto recentemente da Nicolaev et al. (2013), sugli effetti congiunti del grado di saturazione e variazione di temperatura sulla conducibilità termica dei sedimenti, considerando però solo temperature superiori allo zero.

Al crescere di contenuto d’acqua (W) e grado di saturazione, sono stati riconosciuti tre andamenti del valore di λ, differenziati a seconda della temperatura del sedimento.

Per quanto riguarda un materiale coesivo (Nicolaev et al., 2013 - cfr Figura 121 e Figura 122):

- considerando un sedimento inizialmente in condizioni dry, quando viene aggiunta una prima quantità d’acqua, le molecole si polarizzano e vanno a posizionarsi attorno alle particelle solide attratte dalle cariche elettriche superficiali (Horiguchi, 1979): in corrispondenza di bassi contenuti d’acqua, l’incremento di conducibilità termica al crescere di W risulta lento, fino a che la quantità d’acqua presente non è sufficiente a rivestire
completamente le particelle solide (W<12%, nel caso del materiale testato) raggiungendo un valore limite;
- superato il valore limite, l’ulteriore incremento di contenuto d’acqua inizia a riempire i vuoti intergranulari generando così una rapida crescita della conducibilità termica complessiva del sedimento, dovuta alla maggiore continuità offerta al mezzo poroso (Fricke et al., 1997). L’aumento di conducibilità termica dipende dalla temperatura ed è più rapido per temperature maggiori di 62°C (vedi Figura 122 - 123). Il valore di picco raggiunto per temperature molto elevate è così alto da essere superiore a quello corrispondente a condizioni di piena saturazione: queste effetti è attribuito al fatto che la quantità di acqua presente non riempie completamente i pori, permettendo anche trasmissione di calore tramite migrazione di vapore. Il fenomeno cessa quando, a causa di un ulteriore incremento di contenuto d’acqua, le condizioni di saturazione aumentano (cfr. Figura 122 - 123) impedendo lo spostamento della fase vapore e quindi la trasmissione per convezione (Fricke et al., 1997);
- l’andamento della conducibilità termica per ulteriori aumenti di contenuto d’acqua si differenzia a dipendenza della temperatura: per sedimenti a temperature medio basse (fino a 50°C), il trend continua allo stesso modo, con aumento della conducibilità termica al crescere del contenuto d’acqua; mentre per sedimenti ad elevate temperature, si osserva un valore di contenuto d’acqua limite (W=30%, nel materiale sperimentato), superato il quale si rileva un decremento della conducibilità termica. Per sedimenti ad elevate temperature, infatti, l’apporto di trasmissione del calore per convezione, dovuto alla migrazione di vapore, è rilevante: l’aumento ulteriore di contenuto d’acqua porta ad un maggiore riempimento dei pori che bloca le particelle di vapore presenti in tasche d’aria completamente circondate da particelle/acqua, impedendone la migrazione e quindi il trasferimento di calore per moti convettivi.

Figura 121: Diagramma schematico della variazione di struttura al crescere del contenuto d’acqua (da Fricke et al., 1997)
A parità di contenuto d’acqua, e quindi leggendo il grafico in figura 124 lungo le linee verticali, la conducibilità termica aumenta all’aumentare della temperatura, per qualsiasi valore di temperatura. L’andamento però cambia al variare del contenuto d’acqua: per W<15% l’incremento di λ è piuttosto limitato, nel range di 0,2 – 0,6W/mK; per 12%<W< 30%, la crescita è rapida fino a 0,8 – 1,8W/mK, infine, per W> 30%, la crescita di conducibilità con la temperatura diminuisce all’aumentare del contenuto d’acqua.

Il massimo valore di λ raggiunto corrisponde ad un contenuto d’acqua di circa 30% e alla massima temperatura (λ=1,9W/mK circa).

Anche per quanto riguarda i materiali sabbiosi, l’andamento della conducibilità termica al variare di temperatura e contenuto d’acqua risulta simile a quello già descritto (cfr Figura 123).

Si osserva però che:
- I valori limite di contenuti d’acqua che individuano i punti a cui corrisponde una variazione nel comportamento di conducibilità termica hanno valori inferiori: tra 0<W<8% λ cresce lentamente al crescere del contenuto d’acqua; tra 8%<W<18% λ aumenta rapidamente; mentre, a valori superiori, l’andamento di λ cambia con la temperatura continuando a crescere solo se T<60°C, mentre decresce a temperature superiori.
- La massima variazione di conducibilità a parità di contenuto d’acqua avviene in corrispondenza di W=18%, dove λ=4,4W/mK, in corrispondenza della massima temperatura investigata (T=92°C): i materiali sabbiosi quindi subiscono un aumento della conducibilità termica all’aumentare della temperatura più importante dei materiali fini, e in corrispondenza di contenuti d’acqua inferiori, raggiungendo inoltre valori di λ più elevati.
- Per i sedimenti sabbiosi inoltre, privi di coesione, è sufficiente un inferiore incremento di contenuto d’acqua per aumentare la conducibilità termica.
L’andamento ‘a tre stadi’ della conducibilità termica al crescere del contenuto d’acqua cambia dunque a seconda della temperatura del sedimento (figura 122 - 123): a temperature comprese tra 2<T<40°C la trasmissione del calore è dominata dal fenomeno di conduzione nella parte liquida, e la conducibilità cresce sempre con il contenuto d’acqua. E’ questo il range di temperatura considerato anche nelle misure condotte direttamente nella ricerca esposta in questa tesi. Ci si aspettano quindi valori di conducibilità termica misurata nei sedimenti sia coesivi che sabbiosi crescenti con la temperatura.

Quando la temperatura è più elevata (T > 50°C), il fenomeno di convezione diventa rilevante incrementando la capacità effettiva di trasmissione del calore, fino a raggiungere complessivamente valori maggiori di quelli attribuibili alla trasmissione per sola conduzione (Figura 122-123). La migrazione del vapore diventa veramente significativa ad alte temperature (T>70°C) e per suoli con contenuto d’acqua moderato (grado di saturazione all’incirca compreso tra 0,25 e 0,50).

Invece, in condizioni prossime a quelle dry (S<0,25) o prossime alla saturazione (S>0,75) la trasmissione attraverso il trasferimento di vapore è quasi trascurabile, e l’incremento di conducibilità termica con la temperatura risulta contenuto.

Nel caso studio considerato e quindi anche nelle misure effettuate direttamente, si riscontrano condizioni prossime alla saturazione e temperatura inferiore a 50°C: si attendono quindi valori di conducibilità termica intorno a 1- 1,4W/mK per i sedimenti coesivi, leggermente crescenti con la temperatura, e intorno a 3- 3,5W/mK per i materiali sabbiosi.
4.1.5 Variazioni di conducibilità termica dei sedimenti in condizioni di congelamento

In condizioni di congelamento o di parziale congelamento del terreno, la conducibilità termica dei sedimenti fini e sabbiosi cambia al variare della tipologia del terreno, della composizione mineralogica e delle condizioni di saturazione.

L’aumento della densità del sedimento associato alla diminuzione di porosità indotti dal processo di congelamento genera un aumento della conducibilità termica, principalmente dovuto a tre fattori: una maggiore quantità di materia per unità di volume, minor presenza nei pori di aria o acqua e infine un miglior trasferimento di calore nelle zone di contatto tra i grani (Esch, 2004). La porosità iniziale del sedimento è il fattore determinante poiché, oltre ad influenzare direttamente la conducibilità termica, ha una grande importanza nei processi di congelamento, agendo sulla quantità di unfrozen water presente nel sedimento ad una data temperatura e sui fenomeni legati alla migrazione dell’acqua verso le zone di accrescimento delle lenti di ghiaccio.

In condizioni ghiacciate un sedimento ha quindi sempre una conducibilità termica maggiore di quella che aveva in condizioni non ghiacciate, come rappresentato in figura seguente. Ci si attende quindi che questo risultato emerga anche dalle misure di conducibilità termica eseguite direttamente su campioni di sedimenti prelevati nell’area di studio.

![Diagrama](image.png)

L’importante effetto del processo di congelamento e quindi dell’aumento del contenuto di ghiaccio sulla conducibilità termica è mostrato in figura 125, riportata da Esch (2003). Nel permafrost naturale, si riscontra un aumento rapido della conducibilità termica al crescere del contenuto di ghiaccio, in dipendenza anche della densità iniziale del sedimento, fino al raggiungimento di un valore massimo, superato il quale la ‘sovrasaturazione’ di contenuto di ghiaccio porta ad una riduzione di conducibilità termica. Questa condizione viene raggiunta a causa della migrazione dell’acqua verso la fascia dove sta avvenendo l’accrescimento delle lenti di ghiaccio detta frost fringe, che rompe gli equilibri solido-liquido esistenti nel terreno nella
situazione precedente all’instaurarsi delle condizioni di temperatura inferiori al *freezing point*. La decrescita di conducibilità in condizioni di eccessivo contenuto di ghiaccio viene attribuita alla presenza di piccole bolle d’aria e discontinuità nel mezzo, che riducono le capacità di trasmissione del calore.

Si tratta quindi di una condizione che può verificarsi solo nel corso dei fenomeni di congelamento del terreno indotto in modo naturale, dove è possibile la migrazione di acqua proveniente dai vari livelli deposizionali verso la *frost fringe*.

![Figura 125: (a) Conducibilità termica di sedimenti in condizioni ghiacciate alla temperatura di -5°C (γ indicato); (b) variazione in funzione del contenuto di ghiaccio in campioni di permafrost naturale (Esch, 2003)](image)

Oltre alla quantità di ghiaccio, il fattore che maggiormente influenza il valore assunto dalla conducibilità termica in sedimenti ghiacciati è la quantità di *unfrozen water* presente ad una data temperatura. Questa dipende, come già precedentemente descritto, dalle varie caratteristiche del sedimento (composizione mineralogica, tessitura, grado di consolidamento), dalle caratteristiche dell’acqua interstiziale (contenuto d’acqua, saturazione, salinità) e da condizioni ambientali come pressione e temperatura. Nei suoli in condizioni di congelamento, è il complesso equilibrio dinamico esistente tra l’*unfrozen water* e il ghiaccio presente che determina, tra le altre cose, anche le proprietà termiche del terreno (Figura 126).
Cap. 4 Misura delle variazioni di conducibilità termica dei materiali rappresentativi della sequenza litostatigrafica veneziana dovute a variazioni di temperatura

Figura 126: Conducibilità termica di sedimenti in condizioni ghiacciate, in dipendenza dalla conducibilità termica della parte solida del sedimento, parametrizzata in funzione del grado di saturazione (S) (densità in condizioni secche=1,6g/cm3, temperatura -4°C) (da Farouki, 1981).

4.2 LE ANALISI SPERIMENTALI ESEGUITE

Di seguito vengono esposti i risultati ottenuti dalle serie di misure dei parametri termici eseguite. Il materiale testato è rappresentativo di entrambe le categorie litologiche principali presenti nel contesto geologico del caso studio, avendo considerato sia campioni di sedimento limoso-argilloso che sabbioso. Le misure sono state effettuate in diverse condizioni di temperatura, anche a temperature al di sotto del punto di congelamento del sedimento, con lo scopo di misurare le eventuali variazioni dovute al processo di congelamento. I valori dei parametri termici ricavati da queste misure sono successivamente stati utilizzati per la caratterizzazione dei parametri di scambio termico del terreno nell’implementazione del modello agli elementi finiti realizzato con lo scopo di analizzare l’estensione dell’anomalia termica indotta nel terreno e della sua evoluzione nel tempo (come riportato nel cap. 5).

4.2.1 Metodo di misura e strumentazione utilizzata

Per effettuare le analisi termiche dei campioni di terreno, è stato utilizzata la sonda ISOMET 2114, uno strumento di misura portatile per la misura diretta delle proprietà di scambio termico di una vasta gamma di materiali (Figura 127). Lo strumento misura direttamente la
conducibilità termica, e fornisce una stima indiretta di diffusività termica (κ) e capacità termica (cp).

Il metodo di misurazione applicato è di tipo dinamico (unsteady-state). I metodi dinamici si differenziano da quelli statici perché misurano la conducibilità termica del materiale in una situazione transitoria: una iniziale differenza di temperatura viene imposta tra le facce del provino e la misura di conducibilità termica viene effettuata mentre il flusso di calore tende a riequilibrare la situazione termica del materiale, quindi mentre la distribuzione della temperatura interna varia nel tempo. Questo fa sì che il tempo necessario per eseguire l’esperimento sia inferiore a quello richiesto utilizzando metodi di tipo stazionario ed inoltre aumenta l’accuratezza del risultato poiché le disomogeneità del campo e le perdite di calore laterali hanno una influenza minore sui risultati ottenuti.

La misura si basa sull’analisi della risposta del materiale analizzato a variazioni di temperatura e flusso di calore, in risposta ad impulsi di calore in modo intermittente, con una modulazione di periodo fisso. Gli impulsi di calore sono prodotti mediante riscaldamento elettrico di un resistore inserito nella sonda, in contatto diretto con il campione testato. La misura viene effettuata dalla sonda stessa, in cui è incorporato anche un sensore di temperatura. I valori di conducibilità sono ricavati conoscendo la quantità di calore ceduta in modo costante (q) per unità di lunghezza fornita dal riscaldatore, e misurando l’aumento di temperatura T provocato dopo il tempo t in un punto a distanza r dalla fonte di calore nel materiale testato, secondo l’equazione:

$$T_1 - T_2 = \frac{q}{4 \pi \lambda} \ln \left(\frac{T_2}{T_1} \right)$$

dove T1 e T2 le temperature misurate nei tempi di scansione, ricavando la conduttività termica.

Lo strumento utilizzato è dotato di due tipi di sonde di misura: sonde ad ago per materiali incoerenti e sonde di superficie per materiali coesivi.

Figura 127: La sonda ISOMET utilizzata per le misure sperimentali, con le due sonde ad ago (per i materiali sciolti) e circolare piana (per campioni di roccia).
4.2.2 Descrizione del materiale utilizzato nella misura di conducibilità termica al variare della temperatura

Per quanto riguarda i materiali testati, sono stati utilizzati campioni con caratteristiche che si mantengono nella media dei materiali tipici della sequenza stratigrafica del sottosuolo lagunare, in modo che i risultati ottenuti possano essere considerabili generalmente validi. Le misure sono state effettuate su due campioni di materiale coesivo e uno di materiale sabbioso. Come in precedenza, i materiali sono stati caratterizzati dal punto di vista geotecnico secondo le procedure standard, e la composizione mineralogica è stata ricavata tramite diffrattometria a polveri a raggi X, validata tramite confronto con i risultati dell’analisi chimica a fluorescenza. Di seguito si descrivono i materiali utilizzati e si confrontano i risultati ottenuti.

Figura 128: Localizzazione dei sondaggi da cui sono stati ricavati i materiali utilizzati nelle misure dei parametri termici.
4.2.2.1 **Materiale argilloso**

Il campione denominato *Clay1*, prelevato in località Quarto d’Altino dal sondaggio ID 1388 A, appartenne al livello deposizionale individuato alla profondità compresa da 1,0 a 1,8 m. Le analisi di laboratorio lo definiscono come un limo argilloso di media plasticità. Le sue caratteristiche geotecniche sono in linea con gli altri materiali fini presenti nel sottosuolo lagunare, tranne che per la percentuale di quarzo presente, di cui questo campione è particolarmente ricco poiché risultata pari al 28%, mentre la percentuale di quarzo dei sedimenti coesivi dell’area allo studio è mediamente pari al 14%.

Tabella 27: Principali caratteristiche geotecniche e mineralogiche del materiale Clay1

| ID1388A |
|-----------------|-----------------|
| profondità di prelievo (m.s.m.) | 1,0 - 1,8 |
| località di prelievo | Quarto d’Altino |
| contenuto organico [%] | 1,0 |
| Gs | 2,73 |
| frazione argilloso | 23% |

LIMITI DI ATTERBERG
- limite liquido [%] | 31 |
- limite plastico [%] | 29 |
- indice di plasticità | 32 |

COMPOSIZIONE MINERALOGICA
- fillosilicati [%] | 28 |
- quarzo [%] | 28 |
- calcite [%] | 35 |
- dolomite [%] | 39 |
- feldspati [%] | 30 |

Il secondo materiale coesivo utilizzato, denominato *Clay2*, è stato prelevato in comune di Quarto d’Altino in prossimità del precedente (codice sondaggio ID1390), appartenente al livello deposizionale riconosciuto alla profondità compresa tra 1,20 a 3,25 m. I risultati forniti dalle analisi di laboratorio l’hanno definito come un limo e, sebbene sia presente una percentuale di fillosilicati piuttosto elevata (49%) e presenti un elevato indice plastico (27%), nella Carta di Casagrande rientra nella classe delle argille inorganiche di media plasticità, come il campione precedente. Per quanto riguarda la composizione mineralogica, la percentuale di quarzo presente è elevata anche in questo caso (27%).
Cap. 4
Misura delle variazioni di conduttività termica dei materiali rappresentativi della sequenza litostratigrafica veneziana dovute a variazioni di temperatura

Tabella 28: Principali caratteristiche geotecniche e mineralogiche del materiale Clay2.

| ID 1390B |
|-----------------|-----------------|
| **profondità di prelievo (m.s.m.)** | 1,20 - 3,25 |
| **località di prelievo** | Quarto d’Altino |
| **contenuto organico [%]** | 1,5 |
| **Gs** | 2,783 |
| **frizione argillosa [%]** | 0% |

LIMITI DI ATTERBERG
- limite liquido [%]: 49
- limite plastico [%]: 22
- indice di plasticità: 27

COMPOSIZIONE MINERALOGICA
- fillosilicati [%]: 49
- quarzo [%]: 27
- calcite [%]: 13
- dolomita [%]: 3
- feldspati [%]: 3
- gesso [%]: 0,4
- plagioclase [%]: 5

Confrontando la composizione mineralogica dei due campioni di materiale fine utilizzati, Clay1 e Clay2, si nota che entrambi presentano una percentuale di quarzo elevata e tra loro simile (28% e 27%, rispettivamente), mentre il secondo contiene una quantità percentuale di fillosilicati quasi doppia rispetto al primo (28% e 49%). Poiché il quarzo è il minerale con più alta conduttività termica, ci si aspetta da entrambi delle buone proprietà termiche.

Figura 129: Composizione mineralogica dei materiali argillosi utilizzati nelle misure dei parametri termici a confronto con quelli utilizzati nei test precedenti.

4.2.2.2 **Materiale sabbioso**

Il materiale più grossolano su cui sono state svolte le misure dei parametri termici, è stato prelevato dal livello presente alla profondità 23,5m – 24,5m in corrispondenza del sondaggio denominato SJ, eseguito in località Tessera all’interno dell’area di Superjet s.r.l. Si tratta quindi di una sabbia pleistocenica, di origine continentale. Dal punto di vista granulometrico, il fuso rientra
per la maggior parte nella granulometria tipica delle sabbie, anche se è presente una percentuale di materiale più fine, che trova riscontro anche nella composizione mineralogica che mostra la presenza di un 4% di minerali fillosilicati. E’ questo il medesimo materiale che era stato già utilizzato per la verifica della deformazione indotta nelle sabbie dalla sollecitazione termica ciclica. Si noti in questo caso che la percentuale di dolomite (53%) è ovviamente molto più elevata rispetto ai campioni di materiale fine.

Tabella 29: Principali caratteristiche geotecniche e mineralogiche del materiale Sand1

<table>
<thead>
<tr>
<th>SJ sabbia</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>profondità di prelievo (m.s.m.)</td>
<td>23,5 - 24,5</td>
</tr>
<tr>
<td>località di prelievo</td>
<td>Tessera</td>
</tr>
</tbody>
</table>

COMPOSIZIONE MINERALOGICA

<table>
<thead>
<tr>
<th>minerali [%]</th>
<th>4</th>
<th>16</th>
<th>14</th>
<th>53</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>fillosilicati</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>quarzo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>calcite</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dolomite</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>feldspati</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.2.2.3 Preparazione del materiale

Il materiale descritto è stato preparato rimaneggiandolo a slurry (figura 130) tramite miscelazione con acqua deionizzata, in quantità tale da ottenere un comportamento di tipo plastico. Con ciascun materiale sono stati realizzati 2 campioni uguali, che sono poi stati sottoposti al medesimo processo di prova.

Figura 130: Durante la fase di preparazione del materiale Clay2: a) miscelazione con acqua deionizzata a formare una slurry; b) i due provini di materiale Clay2A e Clay2B, pronti per la misura.

Le misure sono state effettuate sui due campioni in diverse condizioni di temperatura, utilizzando un box termostatato. Le temperature imposte hanno seguito una precisa sequenza, tale
da indurire nel sedimento un ciclo di congelamento e successivo scongelamento, ritornando infine alla temperatura iniziale: rispettivamente quindi i campioni sono stati portati a +20° C (ambiente), +2° C, -8°C, -20°C, +40°C, +20°C. Ad ogni passo, per assicurarsi che il materiale fosse a temperatura omogenea al suo interno ed effettivamente alla temperatura impostata nel box termico, i campioni sono stati mantenuti all’interno dell’ambiente a temperatura condizionata per circa 20 ore prima di effettuare la misura. In ciascuna condizione termica sono state eseguite due serie di misure, da cui successivamente si è ricavato il valore medio. Inoltre, per ciascuna condizione, è stato misurato il volume del campione, il peso e il contenuto d’acqua (W), utilizzati per valutare le condizioni di densità, saturazione e porosità.

Il grado di saturazione, che risulta intorno al 50%, è stato ricavato secondo:

\[S = \frac{(V_{acqua})}{V_{vuoto}} = \frac{(W*Gs)}{e} \]

dove Gs era stato misurato in laboratorio, e gli altri valori sono ricavati:

\[e = \frac{V_{vuoto}}{V_{solido}} = \frac{(Gs(1+W))}{\gamma - 1} \]

\[\gamma = \text{peso}/\text{volume} \]

Nel corso delle misure sono state utilizzate entrambe le sonde di cui è dotato lo strumento: per il materiale a temperature superiori allo zero è stata utilizzata la sonda ad ago inserita all’interno (figura 131), mentre per le temperature inferiori allo zero è stata utilizzata principalmente la sonda piana circolare. Alcune difficoltà pratiche di esecuzione sono state riscontrate nel corso dell’esecuzione a causa dei cambiamenti subiti dal materiale nel processo di congelamento: a temperature inferiori allo zero, la formazione di ghiaccio con struttura filamentososa disposta ‘a ventaglio’ sulla superficie del campione (figura 132) impediva infatti l’adeguato contatto del materiale con l’apparato di misura. Il problema è stato risolto in un primo momento tagliando il campione con la fresa per roccia (variandone così il volume) e in altri casi cercando di rendere più liscia possibile la parte superficiale del campione in esame.

Anche nel corso delle misure effettuate in condizioni di temperatura superiore allo zero, dopo la fase di congelamento, nei campioni di materiale argilloso in alcuni casi si è creato un distacco del materiale dalla sonda ad ago, che ha interrotto il contatto e peggiorato così le condizioni di misura.
Dalla Santa Giorgia - Effetti sulle proprietà meccaniche, idrauliche e termiche prodotti da scambiatori geotermici nei terreni argillosi: il caso studio della città di Venezia

Figura 131: Lo strumento nel corso di una fase di misura del materiale Sand1.

Sebbene quindi siano stati eseguiti diversi tentativi per risolvere i vari problemi, alcune misure non hanno fornito risultati attendibili. Sarebbe quindi necessario ripetere le misure considerando un numero più elevato di campioni, in modo da ottenere una maggiore ripetibilità e attendibilità dei risultati.

Figura 132: L’aspetto della superficie del campione in condizioni ghiacciate, si osservi il rigonfiamento e la formazione dei filamenti di ghiaccio, che hanno ostacolato l’andamento delle misure impedendo un contatto ottimale tra sonda piana e materiale.
4.2.3 I risultati ottenuti – materiale argilloso

Di seguito si riportano i valori dei parametri termici ricavati dalle misure effettuate sui due materiali argillosi Clay1 (A e B) e Clay2 (A e B) al variare della temperatura: per campione i risultati riportati sono il valore medio tra le due misure ripetute nelle medesime condizioni (Figure 133 - 134). Si ricorda che, mentre i valori di conducibilità termica sono stati misurati direttamente, quelli di capacità termica volumetrica sono stati stimati dallo strumento stesso in modo indiretto.

![Conducibilità termica misurata nei due materiali Clay1 e Clay2 – confronto.](image)

Figura 133: Conducibilità termica misurata nei due materiali Clay1 e Clay2 – confronto.

![Capacità termica misurata nei due materiali Clay1 e Clay2 – confronto](image)

Figura 134: Capacità termica misurata nei due materiali Clay1 e Clay2 – confronto

In conseguenza all’avvenuto cambiamento di fase nel materiale, a temperature inferiori a quella critica, la conducibilità termica subisce un consistente aumento, mentre la capacità termica volumetrica subisce una consistente diminuzione.

Dai risultati ottenuti emerge un trend simile per entrambi i materiali (figure 133 – 134 - 135), sebbene i valori misurati a temperature inferiori allo zero presentino una certa variabilità, in parte
dovuta alla precisione di misura dello strumento (±5%) ed in parte alla effettiva difficoltà riscontrata nell’utilizzo della sonda sul materiale in condizioni ghiacciate. Il valore di temperatura di congelamento per i sedimenti utilizzati in questi test non è stato misurato: esso è variabile a seconda del sedimento considerato e delle condizioni al contorno (cap.2), ma è noto che per limi argillosi esso assume un valore intorno ai -2°C. Per questo motivo nei grafici il tratto di collegamento dei diversi valori misurati si interrompe: non è noto il valore di temperatura a cui effettivamente avviene il cambiamento.

Inoltre, nei dati misurati si può osservare un effetto ‘di isteresi’ che emerge grazie alla successione di temperature imposte, tali da indurre nel materiale testato un ciclo di congelamento e successivo scongelamento: i valori registrati a +20°C prima che il terreno abbia subito congelamento sono leggermente differenti da quelli registrati dopo il ciclo di gelo e disgelo. Questo effetto è in linea con quello di consolidamento/addensamento già osservato in precedenza.

Dai risultati ottenuti è possibile ricavare l’andamento della conducibilità termica al variare della temperatura:

- A temperature superiori allo zero, la conducibilità termica risulta debolmente crescente al crescere della temperatura: l’andamento (con T>0°C) può essere descritto per i due materiali fini testati con le seguenti equazioni:
 - *Clay1*: \(\lambda = 0.005 \, T + 1.28 \)
 - *Clay2*: \(\lambda = 0.002 \, T + 0.99 \)

Per entrambi i campioni, quindi, i valori misurati confermano ciò che si attendeva dalle conoscenze emerse dalla letteratura: essi mostrano il medesimo trend con coefficiente angolare simile molto contenuto, mentre l’intercetta è leggermente maggiore per il campione denominato *Clay1*. La conducibilità termica quindi risulta leggermente crescente con la temperatura con T>0°C e il suo valore si può approssimare a 1,28 W/mK per *Clay1* e 1W/mK per *Clay2*.

- Come ci si attendeva, quando la temperatura scende al di sotto del valore critico, la conducibilità termica subisce un aumento repentinno determinato dal cambiamento di fase

Figura 135: Conducibilità termica misurata nei due materiali distinguendo Clay1 e Clay2.
Cap.4 Misura delle variazioni di conducibilità termica dei materiali rappresentativi della sequenza litostatigrafica veneziana dovute a variazioni di temperatura

...del fluido interstiziale e, al decrescere ulteriore della temperatura, il suo valore tendenzialmente aumenta fino ad arrivare a 1,72 - 1,78 W/mK. I dati mostrano valori molto simili tra loro, a parte quelli ottenuti dal campione Clay2B in condizioni di congelamento che presentano un andamento discordante, probabilmente dovuto alle difficoltà riscontrate in fase di misura.

La differenza registrata al passaggio del valore critico è dell’ordine del 40% per il campione che ha una minor percentuale di fillosilicati, mentre è dell’ordine del 75% per il campione più ricco di fillosilicati (che ha anche un IP maggiore, pari a 27). Si può ipotizzare che l’incremento di conducibilità termica in condizioni ghiacciate sia crescente con la percentuale di fillosilicati presenti nel materiale, essendo questi i minerali maggiormente coinvolti nei cambiamenti di tessitura collegati ai fenomeni di congelamento del sedimento.

Per quanto riguarda la capacità termica volumetrica, il valore medio a temperature maggiori di quella critica è pari a 2,03 MJ/m³K, mentre a temperature inferiori il valore si abbassa fino al valore medio di 1,50 MJ/m³K.

4.2.4 I risultati ottenuti – materiale sabbioso

I risultati ottenuti dalle misure effettuate sul campione di materiale sabbioso sono rappresentati nel grafico seguente (Figura 136-137). Le misure in condizioni di terreno ghiacciato si sono rivelate ancora più difficili con il materiale sabbioso a causa della granulosità della superficie, che non permetteva una corretta adesione tra terreno e sonda di misura. Per questo motivo si è ottenuto un solo valore valido a temperature inferiori al freezing point.

![Grafico mat. sabbioso](image)

Figura 136: Conducibilità termica misurata nel materiale sabbioso Sand1.
Nel caso del materiale Sand1, i valori di conducibilità termica misurati sono più elevati rispetto a quelli registrati nei due materiali argillosi, come atteso: per valori di temperatura al di sopra del freezing point, la conducibilità termica si può approssimare a 1,85 W/mK. Anche in questo caso, a temperature inferiori a quella critica, si riscontra un improvviso incremento di conducibilità dovuto al cambiamento di fase: i valori misurati nei due campioni però sono discordanti, dimostrando una limitata attendibilità del risultato. Nel campione Sand1A è stato misurato, infatti, un aumento fino a 2,24 W/mK (pari ad un incremento del 20% rispetto al valore medio misurato a T>T\text{critico}), mentre nel campione Sand1B il valore misurato è pari a 3,00 W/mK, corrispondente ad un aumento del 60% rispetto al valore misurato in condizioni di T>T\text{critico}.

Per quanto riguarda la capacità termica volumetrica, anche in questo caso a temperature inferiori a quella critica si registra una brusca diminuzione: il valore medio in condizioni di T>T\text{critico} è pari a 2,33 MJ/m³K, superiore a quello registrato per i materiali coesivi, mentre in condizioni di congelamento il valore medio è 1,54 MJ/m³K.

4.3 CONCLUSIONI

Concludendo, sebbene la misura in condizioni di terreno ghiacciato si sia rivelata difficoltosa a causa delle trasformazioni indotte nel materiale dal fenomeno di congelamento, dai dati ricavati è evidente la variazione repentina dei parametri termici che avviene a causa del cambiamento di fase del sedimento. In condizioni di temperature inferiori a quella critica, sia nei sedimenti argillosi che in quelli sabbiosi, la conducibilità termica subisce un repentino incremento, mentre la capacità termica volumetrica subisce una brusca diminuzione. I valori ricavati sono riassunti in tabella 30: tenendo conto del grado di affidabilità delle misure e della limitata ripetibilità, soprattutto in condizioni di
Cap.4 Misura delle variazioni di conducibilità termica dei materiali rappresentativi della sequenza litostatigrafica veneziana dovute a variazioni di temperatura

temperatura inferiore a quella critica, essi sono da considerarsi indicativi e forniscono quindi una prima stima.

Tabella 30: Parametri termici medi ricavati dalle serie di misure effettuate (quelli a temperature inferiori a quella critica sono da considerarsi indicativi).

<table>
<thead>
<tr>
<th>Materiali</th>
<th>Conducibilità termica [W/mK]</th>
<th>Capacità termica [MJ/m³K]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$T > T_{\text{critico}}$</td>
<td>$T < T_{\text{critico}}$</td>
</tr>
<tr>
<td>Clay1</td>
<td>1,28</td>
<td>1,72 - 1,78</td>
</tr>
<tr>
<td>Clay2</td>
<td>1</td>
<td>1,75 ?</td>
</tr>
<tr>
<td>Sand</td>
<td>1,85</td>
<td>2,24 - 3,00</td>
</tr>
</tbody>
</table>

I valori dei parametri ricavati dalle misure sono stati utilizzati nella caratterizzazione del comportamento termico del materiale nell’implementazione del modello agli elementi finiti sviluppato per stimare l’estensione dell’anomalia termica generata da una sonda geotermica verticale nel terreno, come descritto nel capitolo seguente.
5 MODELLAZIONE DELL’ANOMALIA TERMICA INDOTTA NEL TERRENO DA UNA SONDA GEOTERMICA VERTICALE

Nei capitoli precedenti sono state descritte le variazioni indotte nelle proprietà meccaniche, di permeabilità e infine delle proprietà termiche, indotte nei sedimenti fini a matrice prevalentemente limoso-argillosa da variazioni dello stato termico generate da una sonda geotermica che utilizza additivi anticongelanti nel fluido termovettore. Un tale regime di funzionamento può indurre fenomeni di congelamento e scongelamento (e successivo riscaldamento) nei livelli deposizionali nel suo intorno, se l’anomalia termica provocata nel terreno induce temperature inferiori al freezing point del sedimento, che varia a seconda delle caratteristiche del sedimento stesso e della profondità a cui si trova.

L’ulteriore passo conoscitivo necessario è dunque stimare l’estensione della porzione di sottosuolo che viene sottoposta ad un abbassamento di temperatura tale da scendere al di sotto di quella critica, dove quindi effettivamente si instaurano fenomeni ciclici di congelamento e scongelamento, generando di conseguenza le variazioni evidenziate nel corso della fase sperimentale nelle proprietà meccaniche, idrauliche e termiche del terreno.

A questo scopo, sono stati sviluppati due modelli matematici agli elementi finiti rappresentativi del caso studio considerato: il primo modello rappresenta un sistema sonda-terreno a sonda unica, verticale, lunga 100m, rappresentata in modo lineare, il cui regime di funzionamento è stato ricavato tramite simulazione dinamica a partire dalle richieste termiche di un tipico palazzo storico veneziano. Il sottosuolo circostante è stato in un primo approccio rappresentato in modo omogeneo, caratterizzandolo con le proprietà del materiale testato nelle analisi sperimentali. Le condizioni al contorno, come l’andamento della temperatura dell’aria e la situazione termica iniziale del terreno, sono state impostate coerentemente. Il secondo tipo di modello realizzato è invece completamente discretizzato e rappresenta una singola fascia della sonda intera e del sottosuolo circostante, di spessore pari a soli 50cm. Caratterizzando con parametri diversi il terreno e il regime di funzionamento della sonda, questo secondo modello ha permesso di rappresentare 4 diverse fasce di terreno a varie profondità.

Nella fase sperimentale è emerso inoltre che i parametri di comportamento termico caratteristici del sedimento in fase ghiacciata si differenziano dai valori assunti in fase non ghiacciata (cap.4):
Cap.5 Modellazione dell’anomalia termica indotta nel terreno da una sonda geotermica verticale

204

per questo motivo le attività di modellazione sono state arricchite attraverso l’applicazione di un plug-in originale capace di simulare il cambiamento di fase del terreno, variandone le proprietà termiche in condizioni ghiacciate.
Il funzionamento del sistema sonda-terreno e la conseguente anomalia termica sono stati simulati mediante il codice di idro-termodinamica chiamato FEFLOW: l’analisi ha fornito interessanti indicazioni circa l’evoluzione nel tempo e nello spazio delle condizioni critiche che inducono congelamento nel sottosuolo.

5.1 ALCUNE NOTE CIRCA L’ESTENSIONE E L’EVOLUZIONE DELL’ANOMALIA TERMICA INDOTTA DA UNA BHE

Lo studio dell’intensità dell’anomalia termica indotta da una sonda verticale a circuito chiuso può essere condotto attraverso misure di campo oppure attraverso la modellazione matematica ad elementi finiti.
L’estensione nello spazio e l’evoluzione nel tempo dell’anomalia termica indotta nel terreno dipendono da una parte dal regime di funzionamento della sonda geotermica e quindi dalla successione temporale di portate e temperature del fluido circolante necessarie per soddisfare le richieste termiche dell’edificio asservito, e, dall’altra, dalle proprietà termiche e condizioni iniziali del terreno stesso. In particolare, le condizioni di congelamento del terreno possono essere raggiunte solo se all’interno della sonda vengono utilizzati additivi anticongelanti nel fluido termovettore, in modo da abbassarne la temperatura di lavoro per ottenere un incremento del prelievo di calore dal terreno per metro lineare di sonda. La temperatura può scendere in misura diversa dipendentemente della percentuale di anticongelanti immessi nel fluido circolante: fino a -8°C (20% di glicole) o fino a -20°C (40% di glicole), ecc. Si è già detto come questo metodo sia molto diffuso nei paesi del nord Europa, USA e Canada, dove le richieste termiche invernali sono importanti e, allo stesso tempo, la temperatura del terreno è già in partenza contenuta (5-7°C). Inoltre, l’uso di additivi anticongelanti (per lo più glicole) si è diffuso anche nei climi temperati perché consente di ridurre la lunghezza totale delle sonde o di soddisfare le richieste termiche dell’edificio anche in caso di forte sbilanciamento dei carichi termici verso il riscaldamento, con conseguente progressivo raffreddamento del terreno circostante la sonda. Nel caso studio considerato, il centro storico della città di Venezia, il 40% degli impianti è stato dichiarato avere glicole all’interno del fluido termovettore.
Il primo studio che si trova in letteratura è basato su misure di campo, effettuate nel sottosuolo attorno ad una sonda geotermica singola lungo tutta la sua lunghezza per un periodo di circa 10 anni, ripetendo le misure a distanza di altri 10 anni. Da questi studi emerge chiaramente che l’anomalia termica indotta è significativa in un’area molto ristretta nell’intorno della sonda, e a breve termine, mentre a 20m di distanza la variazione di temperatura misurata è nulla anche per lunghi periodi di funzionamento (Figura 139). Lo studio (Rybach e Eugster, 2002; Rybach e Eugster, 2010) riguarda un impianto che funziona a servizio di un edificio residenziale
monofamiliare in territorio svizzero, in solo regime di riscaldamento invernale (richiesta termica di picco 70W/m), da ottobre a maggio, con riposo nel periodo estivo. Non sono riportate indicazioni più precise riguardo ai carichi termici medi mensili. Attraverso il posizionamento di sonde di misura diretta, la temperatura è stata misurata per un periodo di circa 10 anni a diverse profondità alla distanza di 1m dalla sonda, al termine della stagione invernale e del successivo periodo di recupero termico naturale del terreno (quindi all’inizio della stagione invernale successiva).

Dai profili di temperatura misurati (Figura 139) emerge chiaramente l’influenza della variazione della temperatura atmosferica nei primi 15m di terreno, mentre da questa profondità in giù, per tutta la lunghezza della sonda (105m), il flusso di calore geotermico è dominante tanto che il punto che risulta avere la temperatura più bassa si colloca a circa 20m di profondità. La diminuzione della temperatura del terreno cala significativamente nel campo vicino nei primi 2-3 anni di funzionamento dell’impianto: successivamente, il raffreddamento incrementale diminuisce anno dopo anno, fino a che viene raggiunta una condizione di equilibrio quasi stabile a circa 1 – 2K al di sotto del profilo termico precedente, in modo costante lungo tutta la lunghezza della sonda. Purtroppo, non sono disponibili misure a distanze inferiori.

![Figura 138: Profili di temperatura a lungo termine generati nel sottosuolo da una sonda geotermica in esercizio in territorio svizzero (Rybach e Eugster, 2002).](image)

L’attività di misura svolta è successivamente stata completata da un’attività di simulazione per rappresentare il campo di temperatura indotto nel terreno nella sua interezza, e gli autori concludono osservando che l’alterazione termica è accentuata attorno alla sonda, dove si riscontra un gradiente termico molto elevato, e distribuita in modo omogeneo lungo tutta la profondità, anche nel periodo più freddo dell’anno (Figura 139b).
Ovviamente l’elemento che più influenza l’entità e l’estensione dell’anomalia termica è il regime di funzionamento dell’impianto, dato dalle richieste termiche dell’edificio asservito: la casistica possibile è estremamente variabile, e solo un’attività modellistica dedicata può rappresentare l’anomalia termica indotta nel terreno (Bonte et al., 2011; Eslami-Nesjad e Bernier, 2012).

Se si considera un impianto caratterizzato da un funzionamento sia estivo che invernale, la variazione di temperatura indotta nel terreno genera, rispetto alla situazione ‘indisturbata’, sia fenomeni di raffreddamento, quando l’impianto estrae calore dal terreno per renderlo disponibile all’edificio, sia fenomeni di riscaldamento nel periodo estivo, quando l’impianto disperde nel terreno il calore prelevato dall’edificio. Il bilanciamento dei due funzionamenti stagionali risulta fondamentale per contenere l’estensione e l’intensità dell’anomalia termica generata: nel corso del periodo estivo, la cessione di calore al terreno, aumentandone la temperatura, ricarica la risorsa termica disponibile per la stagione invernale successiva (Haehnlein et al, 2013; Signorelli et al., 2004).

Inoltre, gli effetti termici sul terreno si sovrappongono anno dopo anno. Se le richieste dell’edificio risultano non equilibrate, soprattutto se sono molto sbilanciate verso una maggiore richiesta di riscaldamento piuttosto che di raffreddamento, come avviene nei paesi nordici, il calore estratto dal terreno anno dopo anno e non più ceduto, induce un effetto di raffreddamento progressivo del sottosuolo. A causa dell’abbassamento della temperatura nell’intorno della sonda, l’estrazione di calore dal terreno necessiterà di sempre minori temperature del fluido termovettore per realizzare una differenza termica sufficiente per soddisfare le necessità di riscaldamento dell’edificio.
(Zanchini et al., 2012). Questo aspetto è stato indagato, tra gli altri, nella ricerca pubblicata da Zarella e Pasquier (2015), che confronta l’andamento di due edifici comparabili soggetti però a due diversi climi, uno collocato a Padova (Nord Italia) e uno a Montreal (Canada). Di seguito si riportano i carichi termici e le temperature in ingresso e uscita dal campo sonde, derivate dalle simulazioni condotte. Si osservi come lo sbilanciamento delle richieste termiche dell’edificio porti al progressivo raffreddamento del terreno.

![Figura 140: a) Carichi termici richiesti dall’edificio testato e, b) temperature in ingresso e c) in uscita dalle sonde ricavate dalle simulazioni di un impianto di medie dimensioni collocato in Canada e caratterizzato da sbilanciamento tra i carichi invernali ed estivi: si noti come al 5° e 10° anno le temperature risultano entrambe inferiori rispetto a quelle simulate nel corso del primo anno di funzionamento (da Zarella e Pasquier, 2015).](image-url)
5.2 LE ATTIVITÀ DI MODELLAZIONE AGLI ELEMENTI FINITI

Lo studio dell’anomalia termica indotta nel sottosuolo è stata svolta tramite modellazione numerica agli elementi finiti (FEM), in stretta collaborazione con altri ricercatori. L’obiettivo principale è fornire una prima stima dell’estensione della porzione di suolo che subisce effettivamente processi ciclici di congelamento e scongelamento, a causa delle particolari condizioni di esercizio della sonda geotermica.

Le simulazioni sono state effettuate utilizzando il software FEFLOW® versione 6.2 (Finite Element subsurface FLOW system) della WASY. Questo codice unisce algoritmi di calcolo potenti e versatili che permettono di risolvere una larga gamma di problemi, sia riguardanti il trasporto idraulico che la trasmissione del calore in mezzi porosi, con strumenti grafici e di analisi dei risultati molto sofisticati: si rimanda ai relativi manuali (Diersh, 2014) per gli aspetti teorici e pratici legati all’uso del software ed alle equazioni di risoluzione applicate.

Il software FEFLOW utilizza il metodo di risoluzione agli elementi finiti a due e tre dimensioni per risolvere le equazioni differenziali che descrivono i processi di trasporto di calore nel sottosuolo, tenendo conto sia della componente diffusiva che di quella convettiva, combinati con i processi di filtrazione idraulica. Il metodo agli elementi finiti consente una notevole flessibilità nella realizzazione della maglia di calcolo, fornendo la capacità di simulare geometrie complesse con possibilità di raffinamento della griglia di calcolo intorno a punti e/o linee singolari. Il codice di calcolo utilizzato non studia però, né tiene conto, di possibili variazioni di volume degli elementi, che vengono mantenuti come rigidi: non si può quindi utilizzare per studiare i fenomeni di sedimento nei pressi della sonda che sono emersi in fase sperimentale, ma è lo strumento più avanzato attualmente per studiare l’evoluzione nel tempo e nello spazio dell’anomalia termica indotta nel terreno, simulando i fenomeni di trasmissione del calore.

Per rappresentare in modo più aderente alla realtà il cambiamento di fase indotte nei sedimenti, e le conseguenti variazioni di proprietà termiche, le simulazioni modellistiche sono state svolte applicando un plug-in originale che simula il cambiamento di fase dei sedimenti tenendo conto del rilascio del calore latente e ne varia le proprietà termiche in condizioni ghiacciate, secondo quanto riportato (cap.4). Il codice utilizzato, applicabile ai modelli sviluppati con il software FEFLOW, è stato sviluppato da alcuni ricercatori dell’istituto Technische Universität di Darmstadt (Germania) (Anbergen et al., 2014), ed è uno dei pochi componenti, tra i modelli che simulano i fenomeni di trasporto in mezzi porosi, in cui attualmente ‘ implementata la possibilità di variare i parametri termici del mezzo poroso dovuti al cambiamento di fase.

L’attività di modellazione svolta è stata duplice: inizialmente è stato realizzato un modello completo del sistema sonda-terreno, rappresentando in modo lineare un’intera sonda lunga 100 m (profondità totale del modello 120 m). Il terreno è stato rappresentato come omogeneo, caratterizzato tramite le proprietà del materiale limoso-argilloso utilizzato in fase sperimentale (definendo i parametri di porosità, conducibilità idraulica, conducibilità e capacità termica ecc.). Il regime di funzionamento della sonda è stato definito a partire dai carichi termici richiesti da un edificio tipico del centro storico di Venezia, come descritto di seguito.
I risultati ottenuti sono stati considerati attendibili nel campo lontano dalla sonda, ma hanno evidenziato che le dimensioni della maglia di calcolo nel suo intorno, e di conseguenza i risultati ottenuti, non erano adeguate alla dimensione del fenomeno che si voleva rappresentare. In pratica, l’isoterma critica che definisce le condizioni di congelamento, si attesta ad una distanza molto contenuta dalla sonda anche nella configurazione del caso studio, come anticipato dalla letteratura, tale che il metodo di rappresentazione della sonda lineare e la mesh di calcolo utilizzata conseguentemente non sono sufficientemente discretizzate in prossimità della sonda stessa.

Il passo successivo è stato quindi quello di realizzare un secondo tipo di modello, a scala maggiore, rappresentando una slice orizzontale del sistema sonda-terreno di soli 0,5m di spessore: la sonda all’interno è rappresentata in modo completamente discretizzato, così da ottenere una mesh di calcolo molto più fitta e raffinata in prossimità della sonda, adeguata alle dimensioni del fenomeno allo studio, e che fornisce quindi risultati più attendibili.

Il modello completamente discretizzato, una volta disegnato, è stato caratterizzato in modo da rappresentare 4 diversi livelli de posizionali del medesimo limo-argilloso a 4 diverse profondità lungo la sonda (4, 20, 50 e 80m), attribuendo al terreno per ciascuna fascia di profondità le caratteristiche definite attraverso i risultati ottenuti nel corso della fase sperimentale applicando al medesimo materiale il carico verticale corrispondente al carico litostatico (come descritto nel par. 3.5). La discretizzazione del modello sonda-terreno intero (lungo 120m) richiederebbe un tempo di calcolo troppo elevato.

I risultati ottenuti per ogni livello di profondità considerato, composti insieme, forniscono una prima stima ‘per punti’ dell’estensione delle condizioni critiche che inducono congelamento nel contorno della sonda.

5.3 IMPLEMENTAZIONE DEL MODELLO AGLI ELEMENTI FINITI DEL SISTEMA COMPLETO SONDA-TERRENO

La realizzazione del modello completo sonda-terreno e il suo utilizzo hanno richiesto diverse fasi di lavoro, descritte nei paragrafi seguenti:

- la definizione del dominio di calcolo e la realizzazione della mesh bidimensionale, poi estesa in 3D;
- la definizione delle condizioni di esercizio dell’impianto, che definiscono temperatura e portata del fluido termovettore all’interno della sonda, derivate dalle richieste termiche di un edificio-tipo;
- la rappresentazione corretta dell’elemento sonda, tenendo conto dei materiali usati e delle caratteristiche del fluido termovettore;
- la caratterizzazione del sottosuolo e delle sue condizioni iniziali, come porosità, conducibilità idraulica, saturazione, temperatura iniziale, conducibilità termica ecc., a rappresentare il contesto geologico tipico del caso studio considerato;
la definizione delle condizioni al contorno del sistema lungo tutta la durata della simulazione: principalmente la temperatura dell’aria, variabile nel tempo;
la definizione dei punti di controllo e degli istanti di salvataggio degli output della simulazione effettuata;
la presentazione e l’analisi dei risultati ottenuti in forma grafica, tramite rappresentazione istantanea della distribuzione delle isoterme indotte nel terreno in alcuni momenti definiti e l’andamento della temperatura del fluido termovettore lungo tutta la profondità della sonda; infine l’andamento della temperatura del terreno misurata in continuo in alcuni punti di controllo.

Purtroppo, i risultati ottenuti dalle simulazioni modellistiche non sono stati validati perché attualmente non è disponibile una serie temporale di misura di temperatura misurata in situ in un contesto adatto a rappresentare il caso studio considerato, da confrontare con i valori forniti dal modello.

5.3.1 Valutazione delle richieste termiche dell’edificio considerato

L’analisi modellistica è stata condotta considerando le condizioni di esercizio di un impianto a servizio di un edificio-tipo realizzato nel centro storico di Venezia. E’ stato preso come esempio rappresentativo il Palazzo Grassi (figura 141), che ha dimensioni e forme architettoniche tipiche. Dalle caratteristiche di Palazzo Grassi sono state derivate quelle tipiche di questa tipologia costruttiva, utilizzate per descriverne il comportamento energetico (ad esempio numero di piani, volume totale, superfici vetrate, materiali utilizzati ecc.), in modo da utilizzare un set di dati con carattere generale rappresentativo della tipologia di edificio e all’ambiente urbano considerato.

Figura 141: Facciata esterna sul Canal Grande di palazzo Grassi, l’edificio utilizzato come esempio per ricavare le caratteristiche energetiche della tipologia edilizia da considerare.
La valutazione delle necessità energetiche del sistema è stata condotta tramite simulazione dinamica utilizzando il modello Transys, in collaborazione con alcuni ricercatori del Dipartimento di Ingegneria Industriale. Il software viene definito di simulazione dinamica perché simula il comportamento energetico del sistema edificio non in modo statico, ma considerandone l’evoluzione nel tempo, e quindi nelle diverse stagioni.

L’analisi parte dalla modellazione dell’edificio rappresentandone le caratteristiche che ne definiscono il comportamento energetico, per arrivare alla determinazione del fabbisogno termico in relazione alle necessità di riscaldamento invernale e raffrescamento estivo, attraverso la simulazione di temperature che si realizzano nelle zone interne di controllo.

Per stabilire il fabbisogno termico dell’edificio-tipo rappresentativo del palazzo storico veneziano, è stato tenuto conto di:

- dimensioni esterne ed esposizione dei muri al riscaldamento solare: è stata considerata una piana rettangolare con lati 30m×20m, altezza 25m;
- condizione di adiacenza per ciascun lato ad altri edifici: è stato considerato un solo lato completamente libero, che in questo, come anche in molti altri casi, è rappresentato dalla facciata esposta sul Canal Grande, mentre altre volte il palazzo è affacciato su un campo di dimensioni importanti. Gli altri tre lati sono stati considerati liberi ma non riscaldati dall’irraggiamento solare, visto che per la maggior parte i palazzi sono estremamente ravvicinati sui fianchi anche se non contigui per la presenza di strette calli tra uno e l’altro;
- estensione areale della superficie vetrata su ogni lato dell’edificio: la facciata principale sul Canal Grande (lato sud, libera) ha 260m² di finestre (quasi 50% della superficie della facciata), mentre le altre facciate hanno finestre per 150m²;
- numero di piani: l’altezza del palazzo è stata considerata di 25m, con 4 piani non uguali tra loro: l’ultimo è basso, tipo sottotetto, mentre quelli centrali sono molto alti;
- caratteristiche di coibentazione/isolamento termico: è stato considerata la presenza di vetri singoli e pareti in pietra non isolate, in considerazione delle limitazioni date dalla legislazione locale agli interventi sulle facciate esterne dovute al rispetto delle norme architettoniche per il mantenimento del patrimonio storico.

La destinazione d’uso è di tipo museale, con grandi ambienti, necessità di controllo di temperatura e umidità, presenza di molte persone nelle ore centrali della giornata, assenza durante la notte.
La simulazione dinamica ha fornito i fabbisogni termici con andamento orario medio per ciascun mese dell’anno, e quindi le potenze termiche richieste (figura 142). Il fabbisogno energetico invernale totale è pari a 455.848kWh/anno e quello estivo è pari a 105.895KWh/anno. Dalla richiesta termica dell’edificio, considerando il valore del coefficiente di prestazione (COP) pari a 4 tipico di una pompa di calore, è stata calcolata l’energia termica che è necessario scambiare con il terreno, e da questa è stato dimensionato un possibile campo sonde adatto, tenendo conto del contesto geologico locale (tabella 31). Il campo sonde ricavato è composto da 45 sonde posizionate a matrice quadrata, interasse 6-8metri, lunghe 100m ciascuna, in polietilene ad alta densità, configurazione a doppia U.

Figura 142: Profilo di carico medio orario, variabile mese per mese.
Tabella 31: Riassunto dei carichi termici utilizzati nella simulazione.

<table>
<thead>
<tr>
<th>fabbisogno energetico dell’edificio</th>
<th>gennaio</th>
<th>febbraio</th>
<th>marzo</th>
<th>aprile</th>
<th>maggio</th>
<th>giugno</th>
<th>luglio</th>
<th>agosto</th>
<th>settembre</th>
<th>ottobre</th>
<th>novembre</th>
<th>dicembre</th>
</tr>
</thead>
<tbody>
<tr>
<td>[KWh]</td>
<td>119037</td>
<td>92124</td>
<td>68613</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>69921</td>
</tr>
<tr>
<td>energia termica fornita dallo scambio con il terreno (COP = 4)</td>
<td>89278</td>
<td>69093</td>
<td>51460</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>52441</td>
<td>79614</td>
<td></td>
</tr>
<tr>
<td>potenza oraria scambiata con il terreno</td>
<td>120</td>
<td>103</td>
<td>69</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>73</td>
<td>107</td>
<td></td>
</tr>
<tr>
<td>[KWh]</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SE 45 SONDE DA 100M (lungh totale 4500m)</th>
<th>tasso di scambio per metro lineare di sonda</th>
<th>portata in sonda (considerando △temp = 5°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[W/m]</td>
<td>26,7</td>
<td>0,226</td>
</tr>
<tr>
<td></td>
<td>22,8</td>
<td>0,194</td>
</tr>
<tr>
<td></td>
<td>15,4</td>
<td>0,130</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0,036</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0,090</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0,076</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SE 38 SONDE DA 100M (lungh totale 3800m)</th>
<th>tasso di scambio per metro lineare di sonda</th>
<th>portata in sonda (considerando △temp = 5°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[W/m]</td>
<td>31,6</td>
<td>0,268</td>
</tr>
<tr>
<td></td>
<td>27,1</td>
<td>0,229</td>
</tr>
<tr>
<td></td>
<td>18,2</td>
<td>0,154</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0,043</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0,090</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

5.3.2 Caratteristiche generali del modello e condizioni iniziali

Dell’intero campo sonde è stata simulata una sonda unica, lunga 100m, con configurazione a doppia U.

5.3.2.1 Generazione della mesh di calcolo

Per generare la maglia di calcolo, innanzitutto è stato definito il dominio bidimensionale, con una estensione quadrata di 60x60m. All’interno di questo dominio è stata costruita la maglia di calcolo di superficie agli elementi finiti, partendo dalla digitalizzazione dell’unico punto particolare come nodo fisso della maglia, corrispondente alla sonda verticale. La discretizzazione dello spazio all’interno del dominio è stata realizzata tramite generazione di elementi triangolari: la posizione dei punti attorno al punto centrale in cui è stata rappresentata la sonda è stata calcolata analiticamente per collocare i primi 6 punti ai vertici di un esagono regolare, secondo il metodo descritto nei *White Papers (vol.5)* nel paragrafo 1.11 – *Important note on meshing BHE nodes*. Questo metodo ha permesso di dare un’impronta molto ordinata e quanto più possibile simmetrica allo sviluppo successivo della maglia di calcolo. La generazione della mesh interna al dominio è stata sviluppata in modo semiautomatico con l’aiuto di uno specifico algoritmo chiamato *Triangle*, che permette di creare elementi triangolari che rispettino il principio di Delaunay, massimizzando l’angolo minore di tutti gli angoli interni ai triangoli presenti, in modo da evitare angoli molto acuti: questo metodo di ottimizzazione della discretizzazione della maglia di risoluzione delle equazioni minimizza il tempo di calcolo e le possibilità di errore.
In un primo momento i vertici dell’esagono regolare avevano una distanza dal centro di 43cm, mentre successivamente la griglia di calcolo è stata raffinata all’interno dell’esagono iniziale formando nuovi elementi a costituire esagoni di minori dimensioni, più stretti attorno alla sonda centrale, allo scopo di infittire la mesh nell’intorno della sonda e diminuire la distanza a cui poter inserire il punto di controllo di misura della temperatura nel terreno. La distanza minima tra il punto che rappresenta la sonda e i nodi più vicini è così stata ridotta a 10,7cm (figura 143). A partire dalla maglia bidimensionale, è stata generata quella tridimensionale per estrusione, inserendo layers a varia quote per consentire la spaziatura del dominio anche in verticale. Il dominio di calcolo risultante è profondo 120m, suddiviso in 44 slices, realizzate mediamente con passo di 10m e infittite in alcuni punti particolari, in modo da ottenere una maggiore precisione e sensibilità di calcolo (figura 145):

- in prossimità della superficie, con il primo livello che si trova a +1m, poi ogni 50cm fino a -1m, e successivamente con passo di 1m fino alla profondità di -11m, per agevolare il calcolo negli strati superficiali, dove le temperature del terreno dipendono sia dal funzionamento dell’impianto (temperatura e portata del fluido simulato all’interno della sonda), sia da quelle dell’aria (variabili nel tempo);
- a partire da -11m con l’aumentare della profondità, la distanza aumenta gradualmente fino ad un layer ogni 10m: questo passo viene mantenuto per tutta la profondità del dominio, tranne che in prossimità del piede della sonda, dove dalla quota -99m a -101m è stata realizzata una slice ogni 20cm in modo da aumentare la densità della maglia, permettendo un livello di raffinamento adatto a far convergere il calcolo a soluzione anche in questo punto particolare, in cui la sonda termina.

In totale quindi la maglia di calcolo è composta da 98516 nodi e 186835 elementi, con solo lo 0,3% degli elementi triangolari che violano il principio di Delunay.
5.3.2.2 Rappresentazione della sonda verticale

La sonda è rappresentata nella griglia di calcolo in modo bidimensionale: inserita in corrispondenza di un punto singolo, viene estrusa in verticale. Nell’implementazione del modello, per quanto riguarda la risoluzione dei fenomeni di trasmissione del calore legati al funzionamento della sonda, il modello permette di rappresentarla con le varie possibili configurazioni (coassiale, a singola U, a doppia U), definendo le geometrie delle tubazioni interne e le proprietà dei materiali e del fluido termovettore. Nel nostro caso, si tratta di una sonda a doppia U, in cui scorre una miscela di acqua e glicole al 25%.

La figura seguente riassume le caratteristiche utilizzate nella schematizzazione della sonda, le dimensioni e distanze tra i tubi, le proprietà termiche del materiale di riempimento e infine le proprietà del fluido termovettore.

![Figura 144: La finestra di caratterizzazione della sonda verticale: caratteristiche geometriche e dei materiali](image)

5.3.2.3 Caratterizzazione del terreno

Il mezzo poroso in cui è inserita la sonda è stato considerato uguale per tutto il dominio di calcolo, attribuendogli le proprietà idrauliche e termiche ricavate dalle analisi condotte sui limi-argillosi utilizzati nella fase sperimentale, utilizzando i parametri tipici del campione SJ1 (descritti nel par.
3.5.1), come riportato nella seguente tabella 32. La conducibilità idraulica è stata considerata isotropa in tutte le direzioni.

Tabella 32: Caratteristiche del terreno limoso-argilloso imposte in modo omogeneo su tutto il dominio.

<table>
<thead>
<tr>
<th>MATERIAL PROPERTIES</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydraulic conductivity</td>
<td>9,00E-10 m/s</td>
</tr>
<tr>
<td>Porosity</td>
<td>0,487</td>
</tr>
<tr>
<td>Thermal conductivity (bulk)</td>
<td>1,3 W/mK</td>
</tr>
<tr>
<td>Volumetric heat capacity (bulk)</td>
<td>2,16 MJ/m3 K</td>
</tr>
</tbody>
</table>

Il terreno è stato considerato come completamente saturo, con livello piezometrico in corrispondenza del piano campagna. Le condizioni iniziali di temperatura sono state ricavate considerando la temperatura media dell’aria nella zona e il gradiente geotermico medio (3°C/100m) (Figura 145).

![Figura 145: Condizioni iniziali di temperatura imposte al terreno: si osservi anche la rappresentazione della mesh nella sua componente verticale, con l’infittimento dei piani in prossimità della sonda (al centro) e in corrispondenza del piede della sonda (alla profondità di 100m).](image)
5.3.3 Condizioni al contorno

Le condizioni al contorno imposte sono l’andamento della temperatura dell’aria, e il regime di funzionamento della sonda.
La prima condizione è stata ricavata utilizzando la serie storica di temperature dell’aria misurata nella stazione di misura di Cavanis, attiva dal 1900 nel centro storico di Venezia, in zona Accademia. Le misure considerate terminano nell’anno 2002. Da questa serie di misure è stato ricavato il climogramma su base mensile della temperatura media giornaliera, calcolando i valori massimi, minimi e quelli percentili (figura 146).

![Stretta mensile delle temperature medie giornaliere - stazione Cavanis (Venezia centro storico), dal 1900 al 2002.](image1)

Di queste, è stata utilizzata la serie al percentile 0,35 in modo da considerare una situazione climatica critica e quindi di elevata richiesta termica di riscaldamento.
La serie temporale di temperatura imposta nella simulazione decennale (mantenuta costante a base mensile) è quindi rappresentata nel seguente grafico (figura 147).

![Condizioni al contorno: valore delle temperature medie mensili dell’aria.](image2)
L’altra condizione al contorno è rappresentata dalla serie temporale delle potenze termiche scambiate nella sonda e delle portate del fluido termovettore, ricavate dai carichi termici di Palazzo Grassi, come precedentemente descritto. La simulazione è pluriannuale e inizia con il mese di novembre. Si considera che nei mesi di aprile-maggio e settembre-ottobre l’impianto rimane spento. La portata (figura 148) è stata calcolata a partire dalla potenza richiesta considerando un delta termico di 3°C scambiato durante tutto il percorso del fluido all’interno della sonda e la capacità termica pari a 3930 J/kg K, tipico della miscela di acqua e glicole al 25%, secondo l’equazione seguente:

$$Q_{calore} = Portata \cdot c \cdot \Delta T$$

![Diagram](image)

Figura 148: Condizioni al contorno: a) valore delle potenze mensili scambiate nel sistema, il segno negativo intendono una estrazione di calore dal modello; b) andamento delle portate mensili del fluido termovettore che fluisce dentro la sonda, poi ripetute ciclicamente nella simulazione pluriannuale.

5.3.4 I risultati ottenuti

Come si può osservare dalle figure che seguono, i risultati del modello hanno restituito l’evoluzione nel tempo e nello spazio dell’anomalia termica indotta nel terreno nel suo complesso. I risultati sono stati rappresentati innanzitutto come descrizione della temperatura assunta dal terreno al termine della stagione invernale (21 febbraio) del decimo anno di funzionamento. Ci si attende infatti che questo sia il momento più critico per il terreno, in cui l’anomalia termica è più...
estesa e intensa, poiché a causa dello sbilanciamento delle richieste termiche dell’edificio verso il riscaldamento, si realizza un progressivo raffreddamento del terreno dovuto all’estrazione di calore da parte della sonda. ed
Nella figura 149 la distribuzione istantanea delle isoterme all’interno dell’intero dominio di calcolo al termine della decima stagione invernale è rappresentata a confronto con quella che si riscontra al termine della stagione di ricarica estiva (23 settembre): si osservi come in prossimità della sonda alla fine dell’inverno vengano raggiunte condizioni di temperature inferiori allo zero, sebbene il gradiente di temperatura sia estremamente ripido, mentre nel campo più lontano il disturbo termico è molto contenuto.

Figura 149: Distribuzione della temperatura nel sottosuolo, dopo 10 anni di funzionamento della sonda, al termine del decimo inverno (a) e alla fine della ricarica estiva (b).

Nelle figure 150 - 151 viene rappresentata la situazione delle isoterme nella situazione ritenuta più critica (fine inverno), vicino alla superficie, dove la isoterma 10°C si posiziona a circa 1m dalla sonda, e nei pressi del piede della sonda, dove la isoterma 10°C è a 0,5m circa dalla sonda, e il campo indisturbato (T=15°C) a 3,7m.
Figura 150: Andamento delle temperature nel sottosuolo, dopo 10 anni di funzionamento della sonda, al termine del decimo inverno – zoom dei punti particolari.
Considerando il piano a -4m di profondità, rappresentato nelle figure seguenti, si osservi che la isoterma -2°C, individuata come la situazione di temperatura che porta a congelamento il sedimento a questa profondità, si attesta all’incirca a 4cm dal punto centrale della maglia di calcolo, in cui è rappresentata la sonda geotermica. A 25cm dalla sonda la temperatura è intorno ai 5°C e a 1,3m la temperatura è già a 10°C.

Figura 151: Andamento delle temperature nel sottosuolo, dopo 10 anni di funzionamento della sonda, al termine del decimo inverno (1 marzo): nel disegno sono state evidenziate le isoterme di maggiore interesse e la loro distanza dal centro (dove è stata materializzata la sonda geotermica). I punti rappresentati in bianco sono i vertici iniziali dell’esagono regolare da cui poi è stata generata la griglia di calcolo.

Nella costruzione del modello, sono stati materializzati 11 punti di controllo posizionati in corrispondenza del nodo più prossimo a quello in cui è stata materializzata la sonda (10,7cm), su layers diversi e cioè alle profondità di -0, -2, -4, -6, -8, -10, -15, -20, -30, -60 e-100m, segnalati in pianta dalla presenza della bandierina verde. Dalle serie temporali di temperatura registrate nei punti di controllo lungo tutto il corso della simulazione (figura 152 - 153) si ricava che la temperatura effettivamente decade anno dopo anno, dimostrando il progressivo raffreddamento del terreno, sebbene non scenda mai al di sotto dello zero, nemmeno nel punto di controllo più superficiale (n.1), che è maggiormente influenzato anche dalla temperatura dell’aria.
Figura 152: Andamento della temperatura misurata nel terreno nei punti di controllo più superficiali, forniti dai risultati del modello a sonda completa.

Figura 153: Andamento della temperatura misurata nel terreno nei punti di controllo posizionati a 10,7cm di distanza dalla sonda lungo tutta la profondità: a) nei primi 500 giorni di simulazione e b) negli ultimi 500 giorni di simulazione.

Si osservi come le temperature diminuiscano con il procedere del tempo a tutte le profondità rilevate, a causa del raffreddamento progressivo del terreno.

La temperatura del fluido termovettore all’ingresso e all’uscita della sonda si mantiene costantemente al di sotto dello zero celsius per soddisfare le richieste termiche dell’edificio: fin dal primo anno di funzionamento arriva a circa -8°C, e scende progressivamente anno dopo anno (figura 154).
5.3.4.1 **Risultati ottenuti utilizzando i parametri termici del sedimento argilloso tipici delle condizioni di congelamento**

I risultati ottenuti dal modello di sonda completa dimostrano quindi che il volume di terreno in cui effettivamente l’anomalia termica induce una temperatura prossima a quella critica ha dimensioni estremamente contenute ed è contenuto in una corona circolare con raggio inferiore ai 10cm. Le indagini sperimentali però (capitoli 3 e 4) hanno evidenziato che, se un sedimento argilloso viene sottoposto a cicli di congelamento e scongelamento, la modifica della struttura che esso subisce è irreversibile fin dal primo ciclo di congelamento, producendo una deformazione non trascurabile ed una variazione delle proprietà meccaniche e termiche. Si è già detto che il codice di calcolo utilizzato considera gli elementi finiti come rigidi e non permette di studiare gli effetti dei fenomeni legati alle variazioni di volume a scala del modello. L’analisi modellistica condotta è quindi dedicata a studiare unicamente gli effetti della seconda tipologia.

Nel capitolo 4 sono state illustrate le misure dirette di conducibilità termica condotte su due campioni di limo-argilloso locale: i risultati hanno indicato che, mentre a temperature superiori allo zero la conducibilità termica varia in funzione della temperatura in un range limitato, quando la temperatura scende al di sotto di quella critica, i parametri termici subiscono una variazione repentina in corrispondenza del cambiamento di fase ed in condizioni ghiacciate la legge di variabilità in funzione della temperatura (con \(T<T_{\text{critica}} \)) è diversa da quella in condizioni di \(T>T_{\text{critica}} \). Nel codice di calcolo utilizzato per implementare il modello è possibile considerare la variazione dei parametri termici del terreno in funzione della temperatura (Diersch, 2014). Allo stato attuale però, il software ha la possibilità di considerare un solo stato del materiale considerato (o solido o liquido) e non è possibile definire i parametri variabili secondo due equazioni diverse, in modo condizionale (con \(T>T_{\text{critica}} \) oppure con \(T<T_{\text{critica}} \)). Una volta quindi definita la legge di variabilità del parametro in funzione della temperatura, essa viene applicata dal modello durante tutto il corso della simulazione, anche fuori dal suo effettivo campo di validità.
Un primo approccio al problema è stato condotto svolgendo un’analisi della sensibilità del modello ai valori dei parametri termici utilizzati, eseguendo quindi una seconda simulazione che utilizza i valori di conducibilità e diffusività termica misurati per il medesimo tipo di materiale (limo argilloso) in condizioni ‘ghiacciate’, per tutta la durata della simulazione. La simulazione di cui sono stati esposti i risultati in precedenza era stata eseguita utilizzando i valori misurati nella fase sperimentale a temperature superiori allo zero ($\lambda_{\text{bulk}} = 1,3W/mK$ e $C=2,16MJ/m^3K$). Di seguito si riporta l’immagine (Figura 155) di confronto del campo termico indotto nel terreno nei due casi allo stesso istante (23 febbraio del decimo anno di funzionamento): nel riquadro superiore (a) è rappresentata la distribuzione delle isoterme restituita dalla simulazione condotta con i valori dei parametri termici in condizioni ‘non ghiacciate’, mentre nel riquadro inferiore è rappresentato il risultato ottenuto dalla simulazione condotta con i parametri termici misurati in condizioni ‘ghiacciate’ ($\lambda = f(T < T_{\text{critica}}): y = -0,0255x + 1,4198$; $c_v = f(T < T_{\text{critica}}): y = 0,0308x+ 1,985$).

Si osservi come nei dintorni della sonda il gradiente di temperatura sia più rapido (isoterme più ravvicinate) nel caso in cui sono stati utilizzati i parametri tipici della condizione di terreno ‘congelato’, mentre la situazione si inverte con l’aumentare della distanza, come anche riscontrato da Eslami-Nesjad e Bernier (2012).
Figura 155: Rappresentazione del campo di temperatura bidimensionale (layer a 4m di profondità), a seconda del valore di conducibilità e capacità termica utilizzati nella caratterizzazione del terreno: a) parametri termici tipici del sedimento a temperature superiori allo zero; b) parametri termici tipici del sedimento in condizioni di congelamento.

Il confronto tra le temperature misurate nei punti di controllo posizionati a 10,7cm dal centro-sonda alle varie profondità (figure 156 - 157) evidenziano come i risultati forniti dalla simulazione che utilizza i parametri termici che caratterizzano il terreno in condizioni ‘ghiacciate’,
varino in un range di variabilità più contenuto (il valore minimo è più alto perché è maggiore la velocità di scambio termico) e che la differenza tra le due serie si mantiene costante per tutta la lunghezza della sonda.

Figura 156: Andamento della temperatura misurata nel terreno nei punti di controllo posizionati a 10,7 cm di distanza dalla sonda lungo tutta la profondità, restituiti dalla simulazione effettuata considerando i valori dei parametri termici in condizioni ‘ghiacciate’: a) nei primi 500 giorni di simulazione e b) negli ultimi 500 giorni di simulazione. Si osservi come le temperature diminuiscano con il procedere del tempo a tutte le profondità rilevate, a causa del raffreddamento progressivo del terreno.

Figura 157: Andamento della temperatura misurata nel terreno nei punti di controllo posizionati a 10,7 cm di distanza dalla sonda a -4 m (a), -20 m (b) e -60 m (c), ponendo a confronto le serie di temperature restituite dalla simulazione effettuata considerando i valori dei parametri termici in condizioni ‘ghiacciate’, riportate a tratti, con quelli assunti in condizioni ‘non ghiacciate’, rappresentati con linea continua.

5.3.4.2 Risultati ottenuti con lunghezza totale del campo sonde ridotta al 85%

E’ stata inoltre svolta un’ulteriore simulazione, considerando la condizione di un campo sonde sottodimensionato, con lunghezza totale delle sonde cioè pari all’85% di quella necessaria. In questo caso, la potenza di calore scambiata per metro lineare di sonda aumenta, insieme alla
portata di fluido termovettore, in modo da soddisfare ugualmente le richieste termiche dell’edificio (figura 158).

Figura 158: Le condizioni di funzionamento imposte alla sonda nel caso in cui la lunghezza totale del campo sonde sia sottodimensionata rispetto a quella effettivamente necessaria per ben soddisfare le richieste termiche dell’edificio asservito, a confronto con quelle tipiche del caso di sonde ben dimensionate.

La distribuzione delle temperature sul volume di terreno che deriva da questa simulazione è rappresentata nelle figure seguenti, al culmine della stagione estiva ed invernale del decimo anno di funzionamento (figura 159-160).
Figura 159: Andamento delle temperature nel sottosuolo, dopo 10 anni di funzionamento della sonda, al termine del decimo inverno (a) e alla fine della ricarica estiva (b). Le scale sono state uniformate.

Figura 160: Andamento delle temperature nel sottosuolo (zoom) ottenuto dalla simulazione che utilizza terreno omogeneo argilloso, dopo 10 anni di funzionamento della sonda (lunghezza totale campo sonde pari all’85%), al termine del decimo inverno (a) e alla fine della ricarica estiva (b).
Anche in questo caso l’influenza sulla temperatura del terreno è estremamente ristretta attorno alla sonda, dove il gradiente termico è molto ripido(figura 161).

![Diagrama](attachment:Figura161.png)

Figura 161: Andamento della temperatura misurata nel terreno nei punti di controllo posizionati a 10,7 cm di distanza dalla sonda lungo tutta la profondità, restituiti dalla simulazione effettuata considerando la lunghezza totale delle sonde sottodimensionata: a) nei primi 500 giorni di simulazione e b) negli ultimi 500 giorni di simulazione. Si osservi come le temperature siano inferiori rispetto a quelle misurate nei medesimi punti nelle simulazioni effettuate con lunghezza totale delle sonde pari al 100%.

In generale, alla distanza minima rilevata la temperatura misurata è inferiore a quella corrispondente ottenuta dalla simulazione effettuata utilizzando la lunghezza totale delle sonde al 100%, come riportato in figura 162. Nel caso di sonde con una lunghezza totale ridotta all’85%, la temperatura rilevata nel punto di controllo, posizionato alla distanza di 10,7 cm assume anche valori negativi.
Cap. 5 Modellazione dell’anomalia termica indotta nel terreno da una sonda geotermica verticale

Figura 162: Andamento della temperatura misurata nel terreno nei punti di controllo posizionati a 10.7 cm di distanza dalla sonda alla profondità di -4 m (sopra) e -20 m (sotto), restituiti dalla simulazione effettuata considerando la lunghezza totale delle sonde sottodimensionata, a confronto con quelli ottenuti considerando l’impianto correttamente dimensionato: a) nei primi 500 giorni di simulazione e b) negli ultimi 500 giorni di simulazione.

Il confronto del campo di temperature simulate nella condizione più critica per quanto riguarda le condizioni di congelamento del terreno, la fine di gennaio dell’ultimo anno di simulazione (figura 163), evidenzia che, in caso di sonde sottodimensionate e conseguente aumento della potenza di calore estratta per metro lineare fino ad assumere valori intorno a 30 W/m, l’anomalia termica indotta nel terreno si accentua: la isoterma corrispondente a 0°C ha un raggio di circa 13 cm dal bordo del materiale di riempimento (mentre nel caso precedente aveva un raggio di circa 8 cm) e le temperature minime raggiunte sono inferiori (-8°C invece che -3°C).
Figura 163: Distribuzione della temperatura a fine gennaio del decimo anno di funzionamento a confronto tra i due modelli a) con sonde dimensionate al 100% e b) con sonde dimensionate all’85%. Si osservi la posizione del punto di controllo (bandierina) dove sono state rilevate le serie di temperatura lungo tutto l’arco temporale della simulazione (posizionata a 10,7 cm dalla sonda lineare).
5.3.4.3 Risultati ottenuti considerando il sedimento sabbioso

Fino ad ora le analisi modellistiche descritte sono state svolte rappresentando tutto il volume di terreno come omogeneo e formato da materiale limoso-argilloso, poiché è questa la tipologia di sedimento maggiormente sensibile alle conseguenze indotte nelle proprietà meccaniche ed idrauliche dai cicli di gelo e disgelo, tra quelli più diffusi nel contesto geologico di bassa pianura alluvionale considerato. A completamento dell’attività di modellazione, è stata sviluppata una nuova simulazione condotta con il medesimo modello a sonda intera, caratterizzando il terreno come materiale sabbioso: le proprietà caratteristiche sono state impostate ricavandone i valori dai parametri misurati durante la fase sperimentale della ricerca (tabella 33) (vedi anche par. 5.4.2.1 per il metodo di definizione delle proprietà termiche del sedimento utilizzato nel codice di calcolo).

Tabella 33: Caratteristiche del terreno sabbioso imposte in modo omogeneo su tutto il dominio.

<table>
<thead>
<tr>
<th>MATERIAL PROPERTIES</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydraulic conductivity</td>
<td>1,00E-03 m/s</td>
</tr>
<tr>
<td>Porosity</td>
<td>0,26</td>
</tr>
<tr>
<td>Thermal conductivity fluid</td>
<td>0,65 W/mK</td>
</tr>
<tr>
<td>Volumetric heat capacity fluid</td>
<td>4,2 MJ/m3 K</td>
</tr>
<tr>
<td>Thermal conductivity solid</td>
<td>2,39 W/mK</td>
</tr>
<tr>
<td>Volumetric heat capacity solid</td>
<td>2,7 MJ/m3 K</td>
</tr>
</tbody>
</table>

Le condizioni al contorno del regime di funzionamento della sonda sono state imposte definendo la potenza scambiata e la portata, come rappresentato in figura 164. La temperatura del fluido termovettore all’interno della sonda viene quindi stabilita dall’efficienza di scambio termico che si instaura tra sonda e terreno. Essendo in questo caso il sedimento sabbioso caratterizzato da migliori capacità di scambio termico, la temperatura del fluido termovettore rimane più elevata rispetto a quella che si instaurava nel caso di terreno costituito da materiale fine, senza mai scendere sotto lo zero (figura 164).

I risultati ottenuti dimostrano che l’anomalia termica indotta nei materiali sabbiosi nelle medesime condizioni di funzionamento del sistema geotermico è molto più contenuta nello spazio e nell’entità rispetto a quella indotta nei sedimenti fini: al termine della stagione invernale i valori più bassi di temperatura indotta nel terreno rimangono superiori a 2°C (Figura 165 - 166), mentre nel materiale argilloso nelle medesime condizioni scendevano fino a -3°C.
Dalla Santa Giorgia - Effetti sulle proprietà meccaniche, idrauliche e termiche prodotti da scambiatori geotermici nei terreni argillosi: il caso studio della città di Venezia

Figura 164: Condizioni al contorno imposte nella sonda lineare e grafico delle temperature in ingresso e uscita dalla sonda misurate nel corso della simulazione.

Figura 165: Distribuzione della temperatura restituita dal modello impostato considerando il terreno omogeneo di tipo sabbioso: a) al 23 settembre del decimo anno di funzionamento dopo la ricarica estiva e b) al 23 febbraio del decimo anno di funzionamento.
Cap.5 Modellazione dell’anomalia termica indotta nel terreno da una sonda geotermica verticale

Figura 166: Temperatura restituita dal modello impostato considerando il terreno omogeneo di tipo sabbioso sulla 5° slice (profondità 4m) a) al 23 settembre del decimo anno di funzionamento dopo la ricarica estiva e b) al 23 febbraio del decimo anno di funzionamento. In questo caso le leggende non sono state uniformate appositamente per evidenziare le differenze.
5.4 **IMPLEMENTAZIONE DEL MODELLO COMPLETAMENTE DISCRETIZZATO DI UNA SINGOLA SLICE DEL SISTEMA SONDA-TERRENO**

I risultati ottenuti dal modello a sonda completa evidenziano una importante discordanza tra le dimensioni del dominio di calcolo (60x60x120m) e quindi del grado di raffinamento della *mesh* nei dintorni della sonda, e la dimensione del fenomeno che si vuole indagare, dalle dimensioni estremamente contenute (dell’ordine di una decina di centimetri). In pratica, il metodo di rappresentazione della sonda monodimensionale e la maglia di calcolo che si genera di conseguenza non sono sufficientemente discretizzate per rappresentare il problema e potrebbero portare nel processo di risoluzione numerica delle equazioni a risultati non del tutto corretti. L’accuratezza dei risultati forniti dal modello nei nodi, è infatti legata alla raffinatazza della discretizzazione della maglia di calcolo stessa.

Inoltre, emerge anche la necessità di rappresentare in modo più raffinato e corrispondente alla realtà il fenomeno di congelamento del sedimento, essendo esso l’oggetto dello studio, descrivendo con una accuratezza maggiore i principali elementi che caratterizzano il passaggio di fase. Da questa esigenza è nata la collaborazione con il gruppo di ricerca del Technische Universität di Darmstadt (Germania) che sta sviluppando un *plugin* di FEFLOW dedicato proprio alla modellazione del cambiamento di fase nei mezzi porosi (Anbergen et al., 20014; Coussy, 2005).

Per entrambi questi motivi, si è quindi proceduto a realizzare il secondo tipo di modello agli elementi finiti, per rappresentare con maggiore precisione l’immediato intorno della sonda dove si colloca il fenomeno allo studio e restituire quindi risultati con un livello di precisione più adeguato.

Per indagare in modo più accurato i fenomeni che avvengono in prossimità della sonda, si è proceduto a realizzare un modello che rappresenti la sonda non come un oggetto bidimensionale, ma in modo completamente discretizzato, rendendo molto più fitta e raffinata la maglia di calcolo al suo interno e nell’area adiacente. In questo caso il numero di maglie necessario per ottenere risultati accurati nei dintorni della sonda è tale da non permettere di rappresentare il sistema sonda-terreno nella sua interezza, ma solo una singola fascia orizzontale. Si è deciso quindi di procedere rappresentando quattro diverse fasce, corrispondenti a quattro diverse giaciture del livello deposizionale, rispettivamente pari a -4, -20, -50 e -80m. Le profondità scelte corrispondono a quelle che sono state già prese in considerazione durante la fase sperimentale, analizzando l’influenza dell’entità del carico litostatico sulla deformazione indotta nei sedimenti limoso-argillosi sottoposti a ciclo di congelamento e scongelamento (vedi par. 3.5- Influenza del carico verticale applicato). Nei quattro modelli le caratteristiche proprie del materiale (porosità, conducibilità idraulica, parametri termici ecc) sono quindi state imposte ricavando i valori dei vari parametri dalle misure effettuate sui provini sottoposti ai carichi di 40, 200, 500 e 800kPa rispettivamente, in modo coerente per rappresentare le condizioni del sedimento alle varie profondità considerate.
Le condizioni al contorno, in particolare la temperatura indisturbata del terreno nel campo lontano e le caratteristiche del flusso all’interno del tratto di sonda (temperatura e portata) sono state ricavate invece dai risultati ottenuti dal modello completo sonda-terreno, già precedentemente descritto. Nei paragrafi seguenti vengono descritte le caratteristiche del modello e le condizioni al contorno utilizzate.

Inoltre, per rappresentare al meglio il fenomeno di cambiamento di fase, è stato applicato lo specifico plug-in di FEFLOW, come descritto in seguito.

5.4.1 Caratteristiche generali del modello

Il modello realizzato è ancora una volta un modello che combina processi di trasporto di flusso e di calore, entrambi in condizioni transitorie.

Nella costruzione del modello completamente discretizzato la dimensione areale del dominio di calcolo è di 20 x 20m. Nella tabella 34 si riassumono le caratteristiche geometriche principali.

<table>
<thead>
<tr>
<th>Tabella 34: Caratteristiche del dominio di calcolo</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOMETRY</td>
</tr>
<tr>
<td>Model area</td>
</tr>
<tr>
<td>Model depth</td>
</tr>
<tr>
<td>BHE depth</td>
</tr>
<tr>
<td>Slices</td>
</tr>
<tr>
<td>Borehole diameter D</td>
</tr>
<tr>
<td>pipe distance w</td>
</tr>
<tr>
<td>pipe outside diameter</td>
</tr>
<tr>
<td>pipe wall thickness</td>
</tr>
<tr>
<td>pipe inside diameter</td>
</tr>
<tr>
<td>Cross section of one pipe</td>
</tr>
<tr>
<td>pipe inside diameter</td>
</tr>
<tr>
<td>Cross section of double-U pipe</td>
</tr>
<tr>
<td>pipe inside diameter</td>
</tr>
</tbody>
</table>

5.4.1.1 Generazione della mesh di calcolo

Per la discretizzazione della maglia di calcolo questa volta si è proceduto partizionando il dominio iniziale in sottodomini, in modo da poter differenziare le proprietà delle varie parti che costituiscono la sonda ed imporre condizioni iniziali differenziate. Per rappresentare al meglio la struttura e il funzionamento della sonda a doppia U, lo spazio all’interno della sonda è stato suddiviso in quattro quadranti simmetrici (figura 167).
La mesh è poi stata estrusa in verticale, per realizzare il modello tridimensionale, creando 6 slices, rappresentando una fascia di terreno di soli 50 cm di spessore in tutto (figura 169). La maglia di calcolo che ne è derivata è composta da un numero di nodi totale di 115968, corrispondenti a 192750 elementi.

La qualità della mesh risultante è molto elevata: la percentuale di triangoli che violano il principio di Delunay è inferiore a 0,1%, nessun triangolo ha angoli superiori a 120° e solo il 22,0% ha angoli maggiori di 90° (figura 168), il numero di Peclet è ovunque pari a 0.
Figura 169: Rappresentazione della mesh tridimensionale di calcolo del modello completamente discretizzato: a destra il particolare della sonda.

5.4.1.2 Caratterizzazione del terreno

Il terreno è quindi stato caratterizzato in modo diverso in ciascuno dei quattro modelli (tabella 35), a rappresentare le caratteristiche del sedimento assunte alle quattro profondità considerate, derivando i valori dei parametri da imporre dagli esperimenti eseguiti in precedenza.

<table>
<thead>
<tr>
<th>fascia di terreno alla profondità:</th>
<th>- 4 m</th>
<th>- 20 m</th>
<th>- 50 m</th>
<th>- 80 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>porosità</td>
<td>0,495</td>
<td>0,438</td>
<td>0,405</td>
<td>0,387</td>
</tr>
<tr>
<td>conducibilità idraulica materiale (m/s)</td>
<td>8,72E-10</td>
<td>3,00E-10</td>
<td>2,30E-10</td>
<td>1,08E-10</td>
</tr>
</tbody>
</table>

I parametri di porosità sono stati ricavati dai valori dell’indice dei vuoti misurati al termine della fase di consolidazione primaria e secondaria, prima dell’inizio dei cicli termici, nel corso delle prove edometriche svolte con carico verticale applicato pari al valore corrispondente (par. 3.5 – figura 170). I valori di conducibilità idraulica verticale (figura 171) sono stati ricavati dalle prove di permeabilità svolte sul materiale ‘naturale’, che non ha subito congelamento, in corrispondenza dei diversi carichi applicati (come descritto nel par. 3.14).
Figura 170: Rappresentazione del valore di porosità imposto alle quattro diverse profondità: a) a -4m, b) a -20m, c) a -50m e d) a -80m.

Figura 171: Rappresentazione del valore di conducibilità idraulica verticale imposto alla fascia che rappresenta il terreno alla profondità di -20m, nella visione 2D e 3D.
In tabella 36 si riportano i valori di conducibilità idraulica imposti all’interno dei tubi, in corrispondenza delle tubazioni e nel materiale di riempimento.

Tabella 36: Valori di conducibilità idraulica imposti agli altri materiali: all’interno delle tubazione è stato imposto un valore di conducibilità molto elevato per permettere il passaggio istantaneo del fluido, e realizzare un flusso omogeneo sulla sezione.

<table>
<thead>
<tr>
<th>Materiali</th>
<th>Valore</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydraulic conductivity inside pipe</td>
<td>1 m/s</td>
</tr>
<tr>
<td>Hydraulic conductivity pipe</td>
<td>1,00E-16 m/s</td>
</tr>
<tr>
<td>Hydraulic conductivity grout</td>
<td>1,00E-12 m/s</td>
</tr>
</tbody>
</table>

5.4.1.3 Condizioni di temperatura imposte

Le condizioni iniziali di temperatura del terreno (figura 172) sono state imposte, per ciascuna fascia di profondità, pari alla temperatura misurata nel campo lontano alla quota corrispondente alle varie fasce nel modello della sonda completa (-4, -20, -50 e -80m), dove erano stati appositamente posizionati dei punti di controllo della temperatura nel terreno a circa 28cm dalla sonda, per rilevarne il valore indisturbato (figura 173).

Figura 172: Andamento delle temperature indisturbate del terreno alle varie profondità, utilizzate per impostare sia le condizioni iniziali che le condizioni al contorno come serie temporali.

Da questi valori, misurati per tutta la durata della simulazione, sono stati ricavati gli andamenti nel tempo della temperatura, utilizzati per imporre le condizioni al contorno della temperatura indisturbata del terreno, variabile nel tempo, per le diverse slice. Le condizioni al contorno sono state impostate in tutti i layer di ciascuna slice, nei nodi nel campo lontano dalla sonda.
Figura 173: Attribuzione delle condizioni al contorno della temperatura alla slice che rappresenta la fascia di terreno a -4m di profondità: a sinistra, il posizionamento della condizione al contorno sui nodi, a destra, la serie temporale con cui la condizione al contorno è stata definita.

5.4.1.4 Condizioni di temperatura e flusso imposte all’interno della sonda

Le condizioni di flusso idraulico all’interno dei condotti della sonda sono state ricavate dal modello che rappresenta la sonda completa: le condizioni di flusso sono costanti per tutto il percorso della sonda e quindi identiche per ciascuna slice, mentre le condizioni di temperatura sono differenziate per ciascuna profondità rappresentata (figura 174).

Figura 174: Esempio di andamento della temperatura all’interno della sonda nel modello a sonda completa, tipico delle due stagioni di funzionamento del sistema. La linea tratteggiata rappresenta la temperatura del fluido mentre scende lungo la sonda, mentre la linea continua rappresenta la temperatura del fluido in risalita. Dalle temperature del fluido termovettore misurate all’interno della sonda in ciascun mese di funzionamento sono stati ricavati i valori di temperatura mensile da attribuire al fluido nei modelli che rappresentano le fasce di sonda e terreno alle diverse profondità, rappresentate dai riquadri trasversali.
Le condizioni di flusso e temperatura sono state imposte mediante l’applicazione di serie temporali sul nodo centrale alla sezione di ciascun condotto, sui layer superiore ed inferiore di ciascuna slice.

Rispettando il funzionamento della configurazione della sonda a doppia U, le portate sono state assegnate in due dei quattro tubi in ingresso e negli altri due in uscita nei layers superiori, imponendo il medesimo valore di flusso, ricavato dall’andamento del flusso nel modello di sonda completa, con segno opposto; viceversa è stato imposto nei layers inferiori.

Le condizioni di temperatura del fluido termovettore in ingresso in ciascun ‘tratto’ di sonda rappresentata sono state attribuite mantenendo un valore mensile costante, ricavato dai valori di temperatura del fluido misurati nel modello a sonda completa, alla profondità corrispondente (figura 174 - 175).

![Figura 175: Rappresentazione schematica delle serie temporali delle temperature imposte nel fluido termovettore alle varie fasce di profondità.](image)
5.4.2 La rappresentazione del fenomeno del cambiamento di fase

E’ già stato detto come la versione commerciale del codice di calcolo utilizzato non sia in grado di simulare in modo realistico il cambiamento di fase del sedimento. Si è proceduto quindi ad applicare ed adattare al caso specifico un particolare plug-in sviluppato da alcuni ricercatori del Technische Universität Darmstadt dedicato alla rappresentazione del cambiamento di fase del fluido interstiziale da liquido a solido, tenendo conto del concomitante rilascio di calore latente.

5.4.2.1 Caratterizzazione delle proprietà termiche del terreno

Per ciascuna fascia di terreno, è stato necessario caratterizzare il comportamento del sedimento in corrispondenza del cambiamento di fase, quantificando alcuni parametri utilizzati nel plug-in per descriverlo. Innanzi tutto, è stato necessario definire il valore di capacità termica del sedimento, non solo in condizioni di temperatura superiori allo zero, ma anche alle temperature inferiori a quella critica. In secondo luogo è stato necessario definire le condizioni che inducono al cambiamento di fase, nelle specifiche condizioni del terreno rappresentate (dipendente dal tipo di sedimento, grado di compattazione ecc.), cioè appunto definire il valore critico di temperatura, superato il quale inizia la formazione delle lenti di ghiaccio che da inizio all’intero processo.

La conducibilità termica del terreno è definita all’interno del codice di calcolo FEFLOW secondo il modello concettuale semplificato (cfr. par. 4.1), come somma pesata della conducibilità termica della fase liquida e della fase solida, a dipendenza del valore di porosità (n), considerando condizioni di completa saturazione:

$$\lambda_{bulk} = n \times \lambda_{fluido} + (1 - n) \times \lambda_{solido}$$

Questo metodo permette al modello di ricalcolare il valore di conducibilità complessiva del sedimento a dipendenza delle condizioni di compattazione (porosità n) e quindi a dipendenza della profondità considerata, partendo dalla definizione della conducibilità termica della sola parte solida e del solo fluido interstiziale. Il terreno nei quattro modelli discretizzati è stato quindi caratterizzato impostando il medesimo valore di conducibilità termica della componente solida, partendo dal quale il valore di conducibilità termica complessivo corrispondente alla porosità del materiale a quella profondità è stato calcolato dal codice stesso per ciascuna fascia di profondità rappresentata.

Allo stesso modo, il metodo di calcolo descritto permette di valutare il cambiamento di conducibilità termica che si verifica nel sedimento in condizioni ghiacciate, attribuendo tutta la variazione alla componente fluida che ha subito il cambiamento di fase.

Il medesimo approccio è utilizzato per determinare i valori di capacità termica volumetrica.

I parametri termici del sedimento sono quindi stati caratterizzati utilizzando i valori ottenuti dalle misure effettuate direttamente nella fase sperimentale (cap.4) (riportati in tabella 37), che forniscono la conducibilità termica complessiva del mezzo poroso. In condizioni a temperature
superiori allo zero e porosità pari a 0,5 nel corso delle misure, il valore di conducibilità termica misurato (1,32W/mK) ha permesso il calcolo della λ della sola componente solida (1,99W/mK), considerando il fluido interstiziale composto da acqua. Di conseguenza, in condizioni ghiacciate, essendo noti sia il valore da attribuire alla componente solida, sia quello complessivo misurato (pari a 1,81W/mK), la variazione misurata viene attribuita in toto alla variazione di conducibilità termica del fluido che ha cambiato fase, che viene calcolato essere pari a $\lambda_{\text{ice}} = 1.68W/mK$. E’ stato già accennato infatti che il codice di calcolo non permette di variare il valore della porosità, che quindi viene mantenuto uguale sia a temperature superiori allo zero, sia in condizioni ghiacciate. Lo stesso tipo di valutazioni è stato eseguito per quanto riguarda la capacità termica volumetrica.

Nell’impostazione del plug-in è inoltre necessario impostare le condizioni di temperatura critica a cui si instaura il fenomeno di congelamento del sedimento (T_1), ed anche un secondo valore di temperatura (T_2), a cui il fenomeno può essere considerato concluso.

Il modello infatti definisce il mezzo in tre possibili stati:
- liquido, quando $T > T_1$;
- parzialmente ghiacciato, quindi in parte liquido e in parte solido, se $T_1 > T > T_2$;
- completamente ghiacciato quanto $T < T_2$.

E’ noto però che, in qualsiasi condizione di temperatura anche fortemente al di sotto di quella critica a cui inizia il fenomeno di congelamento, una parte del fluido si mantiene allo stato liquido. Quindi è stato introdotto il concetto di W_{res} che rappresenta il contenuto d’acqua che si mantiene allo stato liquido anche alla temperatura T_2, il cui valore è stato assunto pari a 0,05 in accordo con la letteratura.

$$\lambda_{\text{bulk}} = n \times (W_{\text{res}} \times \lambda_{\text{fluid}} + (1 - W_{\text{res}}) \times \lambda_{\text{ice}}) + (1 - n) \times \lambda_{\text{solid}}$$

Il medesimo ragionamento è stato condotto per la capacità termica volumetrica ($c_{\text{ice}} \rho = 3,21MJ/m^3K$; ricavata come prodotto tra capacità specifica e densità della fase ghiacciata.

Tabella 37: Valori dei parametri termici imposti per caratterizzare il terreno alle varie fasce di profondità.

<table>
<thead>
<tr>
<th>caratteristiche termiche del terreno (independenti dalla profondità)</th>
<th>$T < T_1$</th>
<th>$T > T_1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volumetric Heat Capacity of fluid phase MJ/m3K</td>
<td>3,26</td>
<td>4,2</td>
</tr>
<tr>
<td>Volumetric Heat Capacity of solid phase MJ/m3K</td>
<td>0,14</td>
<td>0,14</td>
</tr>
<tr>
<td>Thermal Conductivity of fluid W/mK</td>
<td>1,63</td>
<td>0,65</td>
</tr>
<tr>
<td>Thermal Conductivity of solid W/mK</td>
<td>1,99</td>
<td>1,99</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>fascia di terreno alla profondità:</th>
<th>- 4 m</th>
<th>- 20 m</th>
<th>- 50 m</th>
<th>- 80 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>temperature che definiscono il processo di congelamento:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>starting temperature T_1</td>
<td>-2</td>
<td>-2,5</td>
<td>-3</td>
<td>-3,5</td>
</tr>
<tr>
<td>temperature at which the sample is totally frozen T_2</td>
<td>-4</td>
<td>-4</td>
<td>-6</td>
<td>-6</td>
</tr>
</tbody>
</table>
5.4.3 I risultati ottenuti

I risultati ottenuti per ciascuna fascia di terreno rappresentata vengono riportati di seguito (Figure 176 - 177).
Figura 176: Distribuzione della temperatura nel terreno al termine del decimo inverno di funzionamento della sonda alle varie fasce di profondità simulate: a) -4m, b)-20m, c)-50m e d)-80m.

Dal confronto emerge chiaramente che, all’aumentare della profondità del terreno considerata, il gradiente termico indotto nei pressi della sonda aumenta, cosicché le isoterme di riferimento risultano più vicine alla sonda stessa: la isoterma corrispondente a 0°C si pone a 19cm nel livello più superficiale (-4m) e a 14cm, 11 e 10cm rispettivamente in corrispondenza delle altre fasce di terreno considerate. Questo effetto è il risultato dell’influenza combinata di tutti i fattori presi in considerazione nella modellazione e diversi per ciascuna fascia di terreno rappresentata:
temperatura indisturbata del terreno, temperatura di funzionamento del fluido all’interno della sonda e proprietà termiche del terreno che variano con il suo stato di compattazione.
Figura 177: Distribuzione della temperatura nel terreno al termine del decimo inverno di funzionamento della sonda alle varie fasce di profondità medicate: a) -4m, b) -20m, c) -50m e d) -80m.

I punti di osservazione, in cui è stata rilevata la temperatura in modo continuo, sono stati posizionati come descritto (figura 178).
Figura 178: Distribuzione dei punti di osservazione della temperatura

Figura 179: Temperature rilevate nei punti di osservazione a (a) 5cm e (b)9cm dal bordo sonda, nelle diverse fasce di terreno a confronto, nei primi(a sinistra) e ultimi(a destra) 500 giorni di simulazione.
Dal confronto diretto delle serie di temperature misurate nei vari punti di controllo si ricava che, nel regime di funzionamento considerato, la differenziazione tra le anomalie termiche indotta alle varie fasce di profondità aumenta nel tempo. Se si considera un funzionamento pluriannuale dell’impianto, l’isoterma riferita alla temperatura corrispondente a 0°C ha un raggio superiore a 9 cm per tutta la lunghezza della sonda (fino a 80 m) (vedi fig. 179). Inoltre, la differenza di temperatura misurata nel medesimo punto di controllo alle varie profondità (figura 180) è maggiore più ci si allontana dalla sonda, registrando anomalie termiche più contenute con l’aumentare della profondità.

Figura 180: Temperature rilevate nei punti di osservazione a (a) 30 cm e (b) 1 m dal bordo sonda, nelle diverse fasce di terreno a confronto, nei primi (a sinistra) e ultimi (a destra) 500 giorni di simulazione.
5.5 CONCLUSIONI E POSSIBILI SVILUPPI

I risultati forniti dalle simulazioni eseguite hanno fornito una prima stima dell’estensione dell’anomalia termica indotta nel terreno nelle diverse condizioni analizzate.

Dai risultati ottenuti dal modello di sonda completa emerge che, in questo tipo di schematizzazione del sistema, e considerando il terreno omogeneo in tutto il dominio, costituito da materiale limoso-argilloso:

- L’anomalia termica indotta nel momento considerato più critico (fine inverno del decimo anno di funzionamento dell’impianto) scende fino a circa -3°C nei dintorni della sonda, portando a temperature inferiori a quella critica di congelamento (considerata uguale a -2°C per i livelli superficiali) un volume di terreno con raggio molto contenuto, di circa 5 cm. Questo avviene per un campo sonde ‘ben dimensionato’ sebbene la situazione considerata preveda una richiesta termica dell’edificio sbilanciata verso il riscaldamento a causa di condizioni climatiche particolarmente rigide, che provocano un progressivo raffreddamento del terreno, e un abbassamento della temperatura di lavoro del fluido termovettore anche oltre a -8°C il volume di terreno effettivamente interessato da fenomeni di congelamento e scongelamento ciclici è estremamente circoscritto nei dintorni della sonda.

- Leggermente maggiore (raggio pari a 13 cm) è il volume interessato da temperature inferiori allo zero, nel caso in cui l’impianto sia sottodimensionato con una lunghezza totale del campo sonde pari all’85% di quella calcolata come adeguata alla soddisfazione delle richieste termiche dell’edificio.

- Poiché il software utilizzato caratterizza i parametri termici del terreno tramite una funzione monotona della temperatura, non permettendone una definizione condizionale, è stata effettuata una ulteriore simulazione utilizzando i parametri termici misurati nei sedimenti fini in condizioni di congelamento (par. 4.1.8), allo scopo di valutare la sensitività del modello: i risultati ottenuti dimostrano che il gradiente termico indotto è più ripido nei dintorni della sonda, mentre nel campo lontano l’anomalia indotta nel secondo caso risulta più estesa. In questo caso, il risultato ottenuto fornisce solo un’idea della sensibilità del modello ai valori di conducibilità/capacità termica utilizzati, mentre non ha un valore di rappresentazione fisica del fenomeno dato che il codice applica la medesima legge di variabilità del parametro su tutto il range di variazione della temperatura in modo incondizionato.

Nel caso in cui il sottosuolo venga rappresentato costituito da materiale sabbioso, secondo le caratteristiche misurate nel corso della fase sperimentale della ricerca, l’anomalia termica risulta molto più contenuta e la temperatura del terreno non scende mai sotto lo zero, grazie alle migliori performance guadagnate nello scambio termico.

La reale situazione stratigrafica presenta una continua successione di livelli coesivi e sabbiosi di spessore limitato: sarebbe interessante sviluppare un modello in cui rappresentare una stratigrafia più conforme a quella reale, non quindi un dominio di materiale caratterizzato da una sequenza di
depositi differenziati con le adeguate proprietà termiche. Probabilmente l’anomalia termica indotta risulterebbe differenziata per ciascun livello deposizionale, innestando processi di scambio termico anche in direzione ‘verticale’, tra un deposito e l’altro.

La realizzazione del modello completamente discretizzato di una singola fascia del sistema sonda-terreno e l’applicazione nel corso delle simulazioni dell’originale plugin dedicato, che fornisce la possibilità di differenziare la temperatura critica del terreno alle diverse profondità, hanno permesso di rendere più raffinata la riproduzione dei fenomeni di congelamento nei dintorni della sonda ottenendo una maggiore affidabilità dei risultati, come è evidente in figura 181.

![Diagrama 181](image.png)

Figura 181: Campo di temperatura restituito dalle simulazioni effettuate con a) modello a sonda intera e b) modello completamente discretizzato, alla medesima profondità di -4m.
I risultati ottenuti con questo secondo tipo di modello mostrano che:

- Le condizioni di temperatura inferiore a 0°C vengono raggiunte lungo tutta la lunghezza della sonda: l’isotermà riferita alla temperatura corrispondente a 0°C ha un raggio che si pone a 19cm nel livello più superficiale (−4m) e a 14cm, 11 e 10cm rispettivamente a −20, −50 e −80m.
- Confrontando i risultati ottenuti alle varie fasce di profondità, si osserva che la differenza tra le anomalie termiche indotte aumenta nel tempo, considerando un funzionamento pluriannuale dell’impianto;
- Inoltre, all’aumentare della profondità considerata, il gradiente termico indotto nei pressi della sonda aumenta, cosicché le isoterme si avvicinano tra loro.

Se si individuano a ciascuna profondità la distanza a cui si pone l’isotermà corrispondente alla temperatura critica (riportate in tabella 37) si osserva che il volume di terreno effettivamente interessato da condizioni di congelamento decresce all’aumentare della profondità: le condizioni che inducono congelamento nel terreno hanno un raggio di 7, 3 e 1,5cm rispettivamente a −4, −20 e −50m, mentre a −80m l’isotermà critica, corrispondente a −3,5°C è interna al volume occupato dal materiale di riempimento.
Lo studio della letteratura e gli esperimenti eseguiti hanno permesso di suddividere, come già precedentemente sottolineato, i sedimenti in due macro tipologie caratterizzate da un diversa reazione alle alterazioni dello stato termico. Da una parte, i sedimenti a matrice fine prevalentemente limosa-argillosa, che subiscono variazioni tessiturali, deformative e di comportamento meccanico e termico irreversibili, a causa degli effetti prodotti da una variazione di temperatura, in particolare se è tale da indurne cambiamenti di fase, sulle proprietà della componente acquosa, parte integrante della struttura stessa del sedimento, poiché legata alle particelle solide da forze elettriche. Dall'altra parte si collocano i sedimenti più grossolani, sciolti, sabbiosi, privi di coesione e di legami elettrici con l'acqua interstiziale, che non dimostrano subire importanti variazioni nelle proprietà meccaniche, sebbene soggetti a condizioni cicliche di congelamento e scongelamento. Si possono a tal fine distinguere i sedimenti in due macroclassi granulometriche sulla base della sensibilità ai processi di gelo-disgelo. Tali sedimenti possono distinti in materiali sensibili a granulometria argilloso-limosa, e la classe dei depositi 'non sensibili', con granulometria più grossolana non coesivi, tipicamente sabbiosi.. Dalle analisi dei risultati sperimentali è emerso che sono molti i fattori che influenzano la risposta di un sedimento alle variazioni termiche (oltre alla granulometria, la composizione mineralogica, contenuti critici di fluido interstiziale, condizioni al contorno come concentrazione e tipologia di sale nelle soluzioni interstiziali, grado di compattazione, carico applicato), ma è stata scelta la tipologia granulometrica come principale elemento discriminante perché tale parametro risulta rappresentare gli aspetti più significativi relativamente ai processi studiati. L'intento infatti è quello di proporre una mappa tematica del territorio che ne descriva una prima zonazione, di sensibilità geologica alle alterazioni termiche. La zonazione proposta si basa sulla distribuzione e sulla abbondanza nella sequenza deposizionale delle due macro categorie di sedimenti, nel centro storico della città di Venezia. La mappa tematica riproduce la distribuzione nel territorio dell'abbondanza percentuale dei sedimenti ‘coesivi’, che sono stati identificati come più sensibili alle alterazioni termiche. In queste aree sarà quindi
Cap. 6 - Implementazione della banca dati stratigrafica e realizzazione della mappa di sensibilità del territorio alle variazioni termiche.

necessario porre maggiore attenzione nella progettazione e al regime di funzionamento degli impianti geotermici verticali a circuito chiuso, tale da evitare che si producano nel sottosuolo cicli di congelamento e scongelamento nei sedimenti circostanti le sonde di scambio termico.

Una mappa di questo tipo può essere di supporto in fase decisionale all’ente pubblico competente al rilascio delle autorizzazioni alla realizzazione di sistemi geotermici a circuito chiuso, per consentire di gestire i processi decisionali secondo le migliori prassi nel rispetto dell’ambiente e delle buone pratiche di efficienza energetica.

Ovviamente, la mappa può fornire un valore indicativo, da confrontare con le informazioni stratigrafiche locali che il soggetto progettista dell’impianto deve valutare in corso di progettazione all’ente preposto.

Si è quindi necessariamente proceduto innanzi tutto all’approfondimento della conoscenza stratigrafica del territorio interessato, attraverso la raccolta di nuovi dati stratigrafici disponibili ai vari enti territoriali ed alla implementazione di questi all’interno della esistente banca dati stratigrafica della Provincia di Venezia (ora Città Metropolitana). I dati sono stati verificati e controllati e infine inseriti in modo omogeneo con quelli già presenti. Il lavoro di raccolta dei dati stratigrafici da altri enti ed archiviazione omogenea ha richiesto molto tempo ed attenzione.

Nel corso dell’analisi stratigrafica, visto che l’analisi sperimentale ha evidenziato che il comportamento deformativo risulta differenziato a dipendenza dello stato di sovraconsolidazione del sedimento, si è rivolta particolare attenzione ad individuare il caratteristico livello fortemente sovraconsolidato detto *caranto*, presente con una certa continuità nel sottosuolo veneziano. Tale approccio ha portato a definire una mappa più aggiornata e precisa delle precedenti che descrive la distribuzione del *caranto* nel sottosuolo del centro storico, ed inoltre alla possibilità di distinguero dagli altri sedimenti fini normal-consolidati nella mappa di sensibilità geologica alle alterazioni termiche qui prodotta.

Infine, partendo dall’analisi dell’assetto stratigrafico, l’elaborazione congiunta di tutti i dati stratigrafici presenti nella banca dati ha permesso di produrre la mappa di sensibilità geologica del territorio alle alterazioni termiche del centro storico e parte del litorale, dove risulta più elevata la densità informativa e dove è maggiore la probabilità che vengano realizzati impianti di sonde geotermiche verticali a circuito chiuso.

6.1 LA BANCA DATI GEOLOGICO STRATIGRAFICA DELLA PROVINCIA DI VENEZIA

L’analisi dell’assetto stratigrafico del sottosuolo della città di Venezia si è basata sulle numerose informazioni geologico-stratigrafiche archiviate nelle esistenti banche dati a disposizione della Provincia di Venezia (ora Città Metropolitana) e dalle conoscenze acquisite nella realizzazione del progetto “I Sistemi Idrogeologici della Provincia di Venezia – Acquiferi superficiali” realizzato dall’Università di Padova e la Provincia di Venezia nel 2013. La banca dati è stata aggiornata ed estesa con la ricerca e l’implementazione di nuovi dati stratigrafici disponibili, successivamente elaborati in modo omogeneo, allo scopo di definire l’abbondanza percentuale nel
territorio delle due macroclassi di sedimenti di interesse, prima nei punti di indagine, successivamente estendendo sul territorio in modo areale l’informazione disponibile, dove possibile, per arrivare alla produzione finale della mappa di sensibilità geologica alle alterazioni termiche.

Sono state inoltre prodotte alcune mappe tematiche, che rappresentano i risultati della parte di studio riguardante la distribuzione dei materiali naturali nel territorio lagunare da cui è stata tratta la cartografia di sintesi.

6.1.1 Tipologia di informazioni presenti e struttura della banca dati

La informazioni contenute nella banca dati delle indagini geologico-stratigrafiche informatizzata della Provincia di Venezia sono strutturate in tabelle tra loro collegate tramite un codice identificativo univoco (ID_DATO), che identifica ogni singolo punto di indagine.

Le tipologie di informazioni raccolte si possono raggruppare in tre distinte categorie:

a. coordinate spaziali: consistono in una coppia di valori numerici che permettono di ubicare ogni singola indagine in un determinato punto del territorio secondo uno specifico sistema di riferimento cartografico, attualmente viene utilizzato il Sistema di Riferimento Roma 40 - Gauss Boaga fuso est. Queste informazioni sono archiviate nella tabella “GENERALE”.

b. informazioni sull’origine del dato e sulle caratteristiche dell’indagine: in questo campo viene indicato il committente, la ditta esecutrice dell’indagine, la data d’esecuzione, lo scopo dell’indagine stessa e il rilevatore che ha effettuato la descrizione della stratigrafia; inoltre, qualora l’indagine non sia stata acquisita direttamente dalla Provincia di Venezia, ma ottenuta da un altro Ente, viene anche riportato il codice originale e la provenienza del dato.

c. Viene inoltre riportata la quota iniziale e la profondità d’indagine, il livello della falda dal piano campagna misurata dopo l’esecuzione dell’indagine stessa da parte del geologo rilevatore. descrizione della stratigrafia: i dati stratigrafici ricavati dalle perforazioni mediante carotaggi sono archiviati nella tabella “STRATIGRAFIA”. Ad ogni sondaggio sono quindi associate le informazioni che descrivono ogni singolo strato, che consistono in:
 - numero identificativo dello strato crescente con la profondità dal piano campagna;
 - profondità del tetto, del letto e spessore di ogni singolo strato;
 - descrizione geologico-stratigrafica dello strato;
 - litotipo prevalente che caratterizza lo strato (definito da un codice numerico associato alla litologia dello strato);
 - indicazioni circa la presenza o meno di fossili, resti inorganici, resti vegetali, livelli di torba, concrezioni e caranto e anche indicazioni circa eventuali altre informazioni presenti nelle relazioni tecniche cartacee.

Particolarmente rilevante ai fini delle successive elaborazioni è la metodologia scelta di codifica informatizzata del litotipo prevalente. A ogni strato viene attribuito, sulla base della descrizione geologico-stratigrafica, un litotipo (per la standardizzazione dei termini litologici ci si è
basati sulle “Raccomandazioni” dell’Associazione Geotecnica Italiana A.G.I. - 1977), che descrive una determinata distribuzione delle percentuali delle componenti granulometriche principali (ghiaia, sabbia, limo, argilla, ecc). Ogni litotipo è identificato in modo univoco da uno specifico codice numerico, e ad esso viene anche associato un apposito retino descrittivo. L’informatizzazione delle informazioni stratigrafiche tramite l’utilizzo di litotipi codificati è stato fondamentale per effettuare le elaborazioni necessarie per la realizzazione delle mappe tematiche. Il codice litologico è dato da una combinazione di quattro cifre nel quale:

- **1a cifra**: identifica la litologia principale, dove 1 = argilla; 2 = limo; 3 = sabbia; 4 = ghiaia; 5 = ciottoli; 6 = torba.
- **2a cifra**: quantifica la percentuale della litologia principale, dove 0 = 50%; 1 = 50-75; 2 = 75-90%; 3 = 90-95%; 4 = 100%.
- **3a cifra**: identifica la litologia secondaria dove 0 = assente; 1 = argilla; 2 = limo; 3 = sabbia; 4 = ghiaia; 5 = ciottoli; 6 = torba.
- **4a cifra**: quantifica la litologia secondaria dove 0 = assente; 1 = argilla; 2 = limo; 3 = sabbia; 4 = ghiaia; 5 = ciottoli; 6 = torba.

Le principali tipologie litologiche sono quindi così rappresentate: argilla = 1400; argilla debolmente limosa = 1320; limo sabbioso = 3200; sabbia e limo = 3020; argilla limosa sabbiosa = 1023. Le codifiche litologiche utilizzate per l’archiviazione informatizzata dei sondaggi sono ben schematizzate nella tabella seguente.

Tabella 38: Codifiche litologiche utilizzate per l’archiviazione informatizzata dei sondaggi.
6.1.2 Aggiornamento della banca dati geologico-stratigrafica

L’aggiornamento della banca dati stratigrafica a disposizione della Provincia di Venezia è stata effettuata mediante recupero e digitalizzazione di un grande numero di nuove informazioni geologico-stratigrafiche, sia provenienti da materiale cartaceo, sia da archivi di altri enti a cui è stata inoltrata un’apposita richiesta. Oltre all’inserimento di nuove informazioni è stato anche realizzato un controllo ed un’eventuale correzione dei dati esistenti.

Le nuove informazioni inserite nella banca dati hanno la seguente provenienza:
- 322 stratigrafie richieste ed ottenute da Insula S.p.a. in formato digitale;
- 86 stratigrafie provenienti dagli archivi cartacei della Provincia di Venezia;
- 280 stratigrafie e 244 prove penetrometriche richieste ed ottenute dal Consorzio Venezia Nuova in formato digitale.

Particolare attenzione è stata posta all’acquisizione di stratigrafie caratterizzate da una elevata profondità di indagine. La profondità totale di una indagine stratigrafica è infatti un elemento fondamentale: spesso sono disponibili un gran numero di sondaggi che riguardano solo gli strati più superficiali, mentre è raro disporre di indagini stratigrafiche profonde, tanto che a causa del decrescere del numero di indagini con la profondità, decresce il grado di conoscenza del sottosuolo. Considerando che le sonde geotermiche sono impianti che penetrano in profondità 30, 50 o addirittura 100m, per la realizzazione della mappa di sensibilità termica risulta fondamentale la raccolta di queste indagini, in modo da acquisire una maggiore conoscenza del sottosuolo in profondità.

6.1.2.1 Riferimento altimetrico dei punti informativi

Si è proceduto a verificare il riferimento altimetrico dei vari sondaggi inseriti nella banca dati: alcuni infatti avevano come riferimento il piano campagna, altri erano riferiti al livello del medio mare, altri ancora non dichiaravano il riferimento altimetrico.

La precisione del riferimento altimetrico e la definizione di un riferimento univoco risulta fondamentale per riportare le informazioni relative alle profondità di tetto e letto dei singoli strati deposizionali ad un unico riferimento comune a tutti i sondaggi (mslm), in modo da poter confrontare tra loro in modo efficace le varie stratigrafie.

Quindi, i sondaggi in cui era riportata la definizione del riferimento altimetrico sono stati elaborati di conseguenza, mentre per quelli di cui non era noto il riferimento, la quota di inizio stratigrafia è stata assunta coincidente con il piano campagna, ricavandone il valore dal Modello Digitale del Terreno disponibile nel geoportal della Regione del Veneto, con celle di 5 metri di lato (DTM5) (figura 182). I sondaggi e le prove penetrometriche senza riferimento altimetrico sono stati sovrapposti al DTM5 georeferenziato, identificando per ciascun punto di indagine la quota riportata nel DTM per quello stesso punto, ed inserendo questo valore in un nuovo campo, denominato QUOTA_dtm.
6.2 ELABORAZIONE DEI DATI GEOLOGICO-STRATIGRAFICI PER LA REALIZZAZIONE DELLA MAPPA DI SENSIBILITÀ

Per elaborare le informazioni stratigrafiche presenti nella banca dati al fine di realizzare la mappa di sensibilità termica del territorio allo studio, è stato necessario innanzi tutto selezionare le informazioni necessarie ed esportarle nei formati adeguati. La mappa della sensibilità geologica del territorio alle alterazioni termiche è basata infatti sull’abbondanza o meno nel territorio e sulla distribuzione spaziale dei sedimenti che sono stati caratterizzati come più sensibili alle alterazioni termiche, quindi appartenenti alla macro-classe che è stata definita come ‘sedimenti coesivi’.

I dati stratigrafici sono stati quindi esportati in due *shapefile*, il primo contenente informazioni sul sondaggio (codice identificativo del sondaggio, profondità, quota d’inizio sondaggio, coordinata x, coordinata y), il secondo contenente informazioni sulla sequenza stratigrafica (codice identificativo del sondaggio, numero dello strato, profondità del tetto dall’inizio sondaggio, profondità del letto dall’inizio sondaggio, descrizione della successione stratigrafica, codice litologico). I due shapefile sono stati denominati rispettivamente: “UBL_stratigrafieTOT” e “STRATIGRAFIE_TOT”.

Figura 182: Modello digitale del terreno dell’intero territorio regionale con celle di 5 metri di lato (DTM5) – Venezia, utilizzato per la quotatura delle informazioni stratigrafiche fornite senza riferimento altimetrico.
6.2.1 Definizione delle macro-classi litologiche

Le informazioni stratigrafiche, sono state accorpate per similitudine di comportamento alle sollecitazioni termiche in 5 macro-classi semplificate. Tra queste sono successivamente state selezionate le due principali macroclassi suddivise in sedimenti ‘coesivi’, che si sono dimostrati più sensibili alle alterazioni termiche, e quelli ‘granulari’, che hanno dimostrato effetti trascurabili alle alterazioni termiche.

Le macro-classi individuate in cui sono state raggruppate le litologie descritte secondo i codici litologici (descritti in Tabella 38: Codifiche litologiche utilizzate per l’archiviazione informatizzata dei sondaggi), sono di seguito descritte:

1. ‘sedimenti coesivi’: raggruppa i sedimenti a prevalente matrice fine, a partire dai depositi limosi, comprendendo anche quelli definiti come ‘livello sabbioso con argilla’, in modo cautelativo;

2. ‘sedimenti granulari’: raggruppa i livelli più grossolani, privi di forze elettriche di coesione, a partire dal limo sabbioso, fino alla sabbia;

3. ‘torba’: sebbene sia una categoria scarsamente presente, riferita a livelli di spessore molto limitato, l’alto contenuto organico tipico di questo litotipo potrebbe portare a risposte alle sollecitazioni termiche differenziate: non essendo stata caratterizzata in laboratorio, ma sulla base delle testimonianze bibliografiche analizzate si è preferito raggruppare questa tipologia di sedimenti in una classe differenziata;

4. ‘riporto’: è noto dalla tipica sequenza stratigrafica locale che i primi tre metri circa di profondità sono costituiti da materiale di riporto, principalmente scarti edili o fanghiglia. Quando la descrizione nella stratigrafia l’ha reso possibile, lo strato di riporto è stato inserito nella classe ‘coesivo’, se era menzionato come riporto argilloso o simile, o nella classe ‘granulare’, se era definito come ‘riporto granulare’, ‘ciottoli e scarti edili’ e simili. Negli altri casi, in cui la natura dello strato era più indefinita, e’ stato invece inserito nella generica classe ‘riporto’;

5. ‘livello sovraconsolidato’: in questa classe sono stati inseriti tutti i livelli definiti nella descrizione stratigrafia come caranto o individuati come tale in corso di elaborazione, a partire dalle caratteristiche riportate, come definito nel par. 6.1.3.1;

6. ‘non definito’: questa classe comprende per la maggior parte spessori di acqua lagunare presente in alcune stratigrafie, e alcuni livelli di cui non era presente o comprensibile la descrizione riportata nella descrizione stratigrafica del sondaggio.

Tutti i livelli presenti nel file “STRATIGRAFIE_TOT” sono stati quindi ri-codificati secondo le nuove macro-classi, inserendo questa informazione in un nuovo campo (tabella 39). Ciaratamente, le due macro-classi di interesse sono quelle dei sedimenti ‘coesivi’ e ‘granulari’, mentre le altre sono state create per completezza.
6.2.2 Definizione dell’area di studio

L’area di studio considerata si concentra principalmente sul centro storico della città, mentre i dati stratigrafici disponibili e di nuovo inserimento nella banca dati, sono distribuiti anche lungo il litorale dalla foce del F. Sile a Nord-Est a quella del F. Brenta a Sud-ovest.

L’analisi è stata suddivisa in 3 sottoaree, tenendo conto della diversa tipologia deposizionale, della geometria e della diversa distribuzione areale dei punti di informazioni

1. sottoarea 1: centro storico e Giudecca, compresa anche la zona di Murano e Le Vignole;
2. sottoarea 2: litorale compreso tra la bocca di porto di Lido, verso nord e la foce del Sile, e all’interno della laguna fino alle isole di Burano e Torcello;
3. sottoarea 3: settoreolitoranea dalla bocca di Lido verso sud, comprendendo le due isole di Lido e Pellestrina, e il centro abitato di Chioggia fino alla foce del Brenta.
Figura 183: Suddivisione dell’area studio in tre sottoaree omogenee

6.2.3 Distribuzione percentuale dei sedimenti granulari e coesivi nel sottosuolo

A partire dalle informazioni stratigrafiche disponibili nella nuova banca dati, raggruppate nelle macro-classi precedentemente definite, è stata calcolata la distribuzione percentuale sull’intera colonna verticale dei sedimenti, in ciascun punto informativo. Sono state messe perciò in evidenza in particolare le due macro-classi di interesse e cioè:

- sedimenti ‘granulari’ (prevallenti composizioni limoso-sabbioso e sabbia), considerati come ‘poco sensibili’ alle variazioni termiche;

- sedimenti ‘coesivi’ (da argilla a limo debolmente sabbioso), considerati come ‘particolarmente sensibili’ alle sollecitazioni termiche. In questa categoria a questo livello di analisi è stata compresa anche la macroclasse ‘livello sovra-consolidato’ riferita allo strato di caranto. Questa scelta è stata guidata dal fatto che, seppur caratterizzato da una risposta deformativa diversa, lo spessore di caranto in tutta la colonna stratigrafica è estremamente contenuto (1-3m). Poiché tale livello stratigrafico assume spessori variabili con un limite inferiore non sempre identificabile, non è stato possibile, in questa elaborazione basata sugli spessori dei vari livelli, considerarlo una classe separata. Questa scelta è comunque di tipo cautelativo, visto che il materiale sovraconsolidato non partecipa in modo significativo ai processi di deformazione termo-indotta.

A seconda della frequenza di distribuzione delle informazioni disponibili, sono state individuate tre distinte fasce di profondità su cui è stata svolta la medesima tipologia di analisi:
- primi 15 m (0-15m): nei primi 15 m di profondità è disponibile una altissima densità di informazioni stratigrafiche. Inoltre i risultati sperimentali hanno evidenziato che le conseguenze indotte nei livelli deposizionali dalle alterazioni termiche sono più intense quando il carico litostatico è limitato, quindi nei livelli più superficiali, sia per quanto riguarda le deformazioni indotte sia per l’aumento di permeabilità verticale. Infine, sono i livelli superficiali che maggiormente interagiscono con la superficie, con le strutture di fondazione, i relativi bulbi di pressione, sedimenti della pavimentazione ecc.
- primi 50 m (0-50m): rappresenta il livello intermedio di profondità, quota al di sopra della quale sono localizzate gran parte delle sonde geotermiche verticali nel centro storico, per motivi tecnici di dimensione dei macchinari utilizzati per la realizzazione dei fori, come già descritto nel cap.1;
- primi 100 m (0-100m): è questo il livello di profondità massimo, in cui la densità di dati disponibili diminuisce fortemente, raggiunto dalle installazioni di sonde geotermiche verticali più profonde.

6.2.3.1 Rappresentazione per punti di informazione

Per ciascun punto informativo, è stato calcolato lo spessore totale occupato da sedimenti appartenenti alla macro-classe ‘coesivo’ e quello occupato da sedimenti appartenenti alla macro-classe ‘granulare’. Gli spessori dei diversi livelli appartenenti alla stessa macro-classe sono stati sommati su tutta la profondità considerata. Questo metodologia non rispetta la sequenza deposizionale: ad esempio un valore pari a 50% di materiale coesivo può essere dato sia da una distribuzione che vede concentrati i depositi coesivi nella metà superiore della colonna stratigrafica, sia dalla situazione opposta, sia da una continua alternanza di livelli coesivi e granulari. Questa scelta operativa è guidata dal fatto che l’obiettivo del lavoro è la valutazione dell’abbondanza di materiali termicamente sensibili lungo tutto il percorso della sonda geotermica, indipendentemente dalla loro successione, e non una ricostruzione della situazione stratigrafica. Successivamente, è stato calcolato il valore percentuale rappresentato dallo spessore totale occupato dai sedimenti ‘coesivi’ e ‘granulari’ rispetto alla estensione totale della fascia di profondità considerata. Il calcolo della percentuale di abbondanza delle due macro-classi principali sull’intero spessore è stato effettuato per ciascuna fascia di profondità e cioè dalla superficie fino a -15mslm, fino a -50mslm e fino a -100mslm, come già precedentemente definito. Ovviamente, a seconda dell’area di studio e della fascia di profondità considerata, il numero di stratigrafie utilizzabili è molto diverso.

In ciascun punto informativo si è quindi proceduto con il seguente metodo:
1. dalle stratigrafie utili sono stati selezionati tutti gli strati ricadenti totalmente o parzialmente nell’intervallo di profondità considerato;
2. per i sondaggi con quota inizio sondaggio uguale o maggiore del livello mare, di ogni strato o frazione di strato è stato calcolato lo spessore in metri e lo spessore percentuale rispetto allo spessore complessivo del sondaggio;
3. per i sondaggi con quota inizio sondaggio al di sotto del livello mare, invece, ricadenti quindi al di fuori delle rive, nei canali, la colonna d’acqua sopra la superficie del terreno viene considerata come strato “Non Definito”: di ogni strato o frazione di strato è stato calcolato in questo caso lo spessore in metri e lo spessore percentuale rispetto alla altezza totale della fascia di profondità considerata (15, 50 o 100m);
4. per ogni strato o frazione di strato è stato assegnato il codice identificativo della categoria litologica semplificata precedentemente definita, affiancata dal valore percentuale relativo alla sua estensione rispetto all’altezza totale della colonna considerata;
5. per ciascun punto informativo sono stati quindi ricalcolati i valori percentuali di spessore delle varie macro-classi semplificate definite, sommando gli spessori dei singoli livelli sull’intera colonna. In particolare, è stata evidenziata per ciascun punto la percentuale sull’intera colonna delle due macro-classi di maggiore interesse (‘sedimenti granulari’ e ‘sedimenti coesivi’, facendo rientrare in questa seconda macro-classe anche quella identificata come ‘livelli sovraconsolidati’).
6. si è quindi ottenuta una nuova tabella contenente l’identificativo del punto di indagine, le sue coordinate di riferimento e la percentuale di abbondanza calcolata per le due macro-classi di interesse.

Per esemplificare, si riporta in figura 184 una stratigrafia tipo della fascia di analisi (0-15msmm), e nella tabella sottostante le relative elaborazioni eseguite.
Cap. 6 - Implementazione della banca dati stratigrafica e realizzazione della mappa di sensibilità del territorio alle variazioni termiche.

Figura 184: Esempio di informazione stratigrafica utilizzata e relativa tabella di elaborazione degli spessori e calcolo dei valori percentuali delle due macro-classi principali (nel disegno riferite come 'sabbia' e 'argilla-limo'). Sono stati utilizzati (evidenziati in grigio) gli strati compresi completamente o parzialmente tra l'inizio sondaggio e -15 mslm.
Tabella 40: Esempio relativo al record tabellare relativo ad un sondaggio stratigrafico (è stato considerata la stratigrafia sopra riportata).

<table>
<thead>
<tr>
<th>codice sondaggio</th>
<th>numero strato</th>
<th>profondità tetto (m/m)</th>
<th>profondità letto (m/m)</th>
<th>spessore strato o frazione di strato (m)</th>
<th>spessore strato (%)</th>
<th>codice geologico semplificato</th>
<th>% sabbia associata al codice semplificato</th>
<th>% argilla e limo associata al codice semplificato</th>
<th>% argilla e limo calcolata per singolo strato o frazione di strato</th>
</tr>
</thead>
<tbody>
<tr>
<td>4000</td>
<td>1</td>
<td>2,19</td>
<td>-1,01</td>
<td>3,2</td>
<td>18,61</td>
<td>riporto</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4000</td>
<td>2</td>
<td>-1,01</td>
<td>-4,81</td>
<td>3,8</td>
<td>22,11</td>
<td>argilla e limo</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>4000</td>
<td>3</td>
<td>-4,81</td>
<td>-5,41</td>
<td>0,6</td>
<td>3,49</td>
<td>sabbia</td>
<td>100</td>
<td>3,49</td>
<td>0</td>
</tr>
<tr>
<td>4000</td>
<td>4</td>
<td>-5,41</td>
<td>-7,21</td>
<td>1,8</td>
<td>10,47</td>
<td>argilla e limo</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>4000</td>
<td>5</td>
<td>-7,21</td>
<td>-8,11</td>
<td>0,9</td>
<td>5,24</td>
<td>argilla e limo</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>4000</td>
<td>6</td>
<td>-8,11</td>
<td>-9,41</td>
<td>1,3</td>
<td>7,56</td>
<td>sabbia</td>
<td>100</td>
<td>7,56</td>
<td>0</td>
</tr>
<tr>
<td>4000</td>
<td>7</td>
<td>-9,41</td>
<td>-12,11</td>
<td>2,7</td>
<td>15,71</td>
<td>argilla e limo</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>4000</td>
<td>8</td>
<td>-12,11</td>
<td>-14,81</td>
<td>2,7</td>
<td>15,71</td>
<td>sabbia</td>
<td>100</td>
<td>15,71</td>
<td>0</td>
</tr>
<tr>
<td>4000</td>
<td>9</td>
<td>-14,81</td>
<td>-15</td>
<td>0,19</td>
<td>1,11</td>
<td>argilla e limo</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>tot</td>
<td></td>
<td></td>
<td></td>
<td>17,19</td>
<td>100</td>
<td></td>
<td>26,76</td>
<td>54,64</td>
<td></td>
</tr>
</tbody>
</table>

6.2.3.2 Interpolazione dei dati puntuali e produzione di mappe areali

Successivamente, l’informazione disponibile in dati puntuali è stata elaborata tramite operazioni di interpolazione, per espandere l’informazione originariamente di tipo puntuale (i punti di informazione sono infatti i sondaggi stratigrafici) in modo spaziale sul territorio. Lo scopo è quello di ottenere una rappresentazione continua della distribuzione sul territorio dell’abbondanza percentuale delle due macro-classi principali di sedimenti definiti come ‘granulari’ e ‘coesivi’ sull’intera sequenza stratigrafica, in una certa fascia di profondità. Ovviamente, la possibilità di estendere l’informazione puntuale sul territorio, ottenendone una distribuzione areale, dipende dalla densità e distribuzione dei punti informativi disponibili. Nel nostro caso, come descritto nei paragrafi successivi, questo secondo passaggio di elaborazione delle informazioni su base geografica è stato possibile solo per la prima fascia di profondità considerata (0-15m), mentre per le altre due fasce, rispettivamente (0-50m) e (0-100m), è stata possibile unicamente la produzione delle mappe puntuali per classi di valori.
Le tecniche di interpolazione spaziale permettono di valutare, a partire dai punti informativi a disposizione, che sono distribuiti in modo irregolare sul territorio di indagine, i valori assunti dalla medesima grandezza in corrispondenza di ciascun nodo di una ideale griglia a maglia regolare distribuita sul territorio. Il passaggio successivo è quello di individuare delle isolinee, e quindi le corrispettive aree tra loro comprese, dove la variabile allo studio acquisisce il medesimo valore. In questo modo l’informazione dapprima disponibile solo puntualmente in corrispondenza dei punti di indagine, viene ‘sparsa’ sul territorio ed acquisisce una dimensione areale.

Il metodo di interpolazione utilizzato in questo caso è il kriging ordinario, che interpola i dati puntuali a disposizione mantenendone la correlazione spaziale, dando cioè nella stima del valore da attribuire a ciascun nodo della griglia ideale più peso ai valori assunti nei punti di informazione più vicini al nodo, e meno peso a quelli più lontani. Il grado di correlazione spaziale tra il nodo della griglia di cui si vuole stimare il valore e i dati puntuali utilizzati, viene quantificata statisticamente con l’uso del variogramma, che descrive la variabilità dei valori assunti nei vari punti informativi più prossimi, in relazione con la loro distanza dal nodo. Il variogramma sperimentale viene poi fittato con quello teorico, ottenendo i valori da attribuire ai parametri da utilizzare nella previsione della variabile studiata.

Attraverso l’analisi variometrica inoltre è possibile evidenziare, anche graficamente, eventuali anisotropie spaziali dei dati, ossia la presenza o meno di una diversa correlazione spaziale tra i valori acquisiti dalla variabile nei vari punti di indagine disponibili, a seconda della direzione considerata. Per questo scopo sono stati analizzati sia il variogramma di superficie che i variogrammi direzionali, allo scopo di individuare l’approccio più idoneo.

La procedura seguita per ciascuna macro-classe di interesse è stata quindi la seguente:

- realizzazione di una griglia regolare estesa all’area studio, costituita da celle quadrate (25 x 25 m);
- analisi del variogramma di superficie per evidenziare eventuali anisotropie;
- studio del variogramma omnidirezionale (o direzionali in presenza di eventuali anisotropie) per acquisire i parametri relativi alla correlazione spaziale della variabile;
- previsione dei dati puntuali attraverso il metodo del kriging ordinario.

L’analisi geostatistica ha prodotto inoltre una valutazione sull’attendibilità dell’elaborazione ottenuta, rappresentata dalla distribuzione dei valori di deviazione standard, che quantifica l’incertezza statistica dei valori stimati nei vari nodi della griglia ideale. Nella cartografia prodotta ad ogni mappa è stata associata la rappresentazione della corrispondente deviazione standard, fornendo quindi una indicazione del grado di affidabilità del risultato, che è variabile da zona a zona: aree con un’elevata deviazione standard indicano un’elevata incertezza della predizione. Le aree in prossimità dei sondaggi o con alta frequenza di punti informativi disponibili presentano invece un valore di deviazione standard basso.

Dalle superfici continue (raster) sono state poi ottenute anche delle isolinee (vector), assumendo il valore dell’equidistanza pari a 10 (valore percentuale). Le due tipologie di dati (raster
e vector) sono state poi rappresentate nelle tavole in modo integrato, così da ottenere un prodotto facilmente leggibile.

6.2.4 Prodotti cartografici relativi alla prima fascia di profondità (fino a -15msmm)

Dalle stratigrafie disponibili, raccolte negli shapefile denominati “STRATIGRAFIE_TOT” e “UBI_stratigrafieTOT” come descritto in precedenza, sono state selezionate solo le stratigrafie con profondità non inferiore a -15 mslm. In totale si tratta di 699 punti di informazione. La profondità è stata ricalcolata in un nuovo campo in mslm, a partire delle quote di inizio sondaggio espresse nel campo “QUOTA” oppure ricostruite in “QUOTA_dtm”, come già descritto.

Nel calcolo non sono state prese in considerazione le stratigrafie in cui il valore delle macro-classi “riporto” o “non definito” è rilevante (il valore di soglia adottato è pari al 25%), nelle quali sarebbero poco attendibili i valori percentuali attribuibili allo spessore delle macro-classi di principale interesse. In definitiva, nell’area del centro storico sono disponibili 234 punti di indagine, con una distanza media di 300m tra uno e l’altro.

Sono stati quindi creati 3 diversi shapefile, uno per ciascuna area di studio (centro storico, nord, Lido-Pellestrina) che rappresentano in ciascun punto informativo i valori di spessore occupato in totale dalle due macro-classi principali sull’intera colonna, calcolati come precedentemente descritto. I valori di abbondanza percentuale sono poi stati rappresentati in due mappe tematiche distinte, una che descrive la distribuzione dell’abbondanza dei sedimenti granulari (figura 186), e una che descrive la distribuzione dell’abbondanza dei sedimenti coesivi (figura 185), nei primi 15 m di profondità, tramite rappresentazione puntuale a classi di valori.
Cap. 6 - Implementazione della banca dati stratigrafica e realizzazione della mappa di sensibilità del territorio alle variazioni termiche.

Figura 185: Rappresentazione puntuale dello spessore percentuale occupato in totale dai sedimenti coesivi nella zona del centro storico (dal piano campagna alla profondità di -15mslmm).

Per la fascia di profondità più superficiale (0 – 15m), la densità dei punti informativi e la loro distribuzione abbastanza omogenea nell’area del centro città ha permesso la realizzazione anche dei successivi passaggi di elaborazione statistica. Sono state quindi effettuate le procedure di kriging ordinario per produrre le mappe della distribuzione dei sedimenti ‘granulari’ e dei sedimenti ‘coesivi’ nell’area considerata. In tabella 41 vengono riportati i valori ricavati dall’analisi variografica utilizzati. I risultati ottenuti dall’interpolazione dei dati puntuali vengono rappresentati nelle figure 187 - 189.
Figura 186: Rappresentazione puntuale dello spessore percentuale occupato in totale dai sedimenti granulari nella zona del centro storico (dal piano campagna alla profondità di -15mslmm).

Tabella 41: Metodo di interpolazione kriging ordinario - parametri utilizzati – area centro storico

<table>
<thead>
<tr>
<th>Distribuzione della percentuale dei sedimenti granulari</th>
<th>Distribuzione della percentuale dei sedimenti coesivi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modello</td>
<td>Sferico</td>
</tr>
<tr>
<td>Lag</td>
<td>300</td>
</tr>
<tr>
<td>Massima distanza di ricerca</td>
<td>3000</td>
</tr>
<tr>
<td>range massimo</td>
<td>1813</td>
</tr>
<tr>
<td>range minimo</td>
<td>/</td>
</tr>
<tr>
<td>rapporto di anistropia geometrica</td>
<td>isotropo</td>
</tr>
<tr>
<td>sill</td>
<td>224</td>
</tr>
<tr>
<td>nugget</td>
<td>206</td>
</tr>
<tr>
<td>Modello</td>
<td>Sferico</td>
</tr>
<tr>
<td>Lag</td>
<td>300</td>
</tr>
<tr>
<td>Massima distanza di ricerca</td>
<td>3000</td>
</tr>
<tr>
<td>range massimo</td>
<td>1723</td>
</tr>
<tr>
<td>range minimo</td>
<td>/</td>
</tr>
<tr>
<td>rapporto di anistropia geometrica</td>
<td>isotropo</td>
</tr>
<tr>
<td>sill</td>
<td>161</td>
</tr>
<tr>
<td>nugget</td>
<td>248</td>
</tr>
</tbody>
</table>
Cap. 6 - Implementazione della banca dati stratigráfica e realizzazione della mappa di sensibilità del territorio alle variazioni termiche.

Figura 187: Mappa della distribuzione dello spessore percentuale occupato da sedimenti ‘granulari’ nei primi 15m di profondità (sottoarea 1- centro).

Figura 188: Mappa della deviazione standard associata alla mappa della distribuzione dello spessore percentuale occupato da sedimenti ‘granulari’ nei primi 15m di profondità (sottoarea 1- centro storico di Venezia).
Figura 189: Mappa della distribuzione dello spessore percentuale occupato dai sedimenti ‘coesivi’ (sottoarea 1- centro storico di Venezia).

Figura 190: Mappa della deviazione standard associata alla mappa della distribuzione dello spessore percentuale occupato da sedimenti ‘coesivi’ nei primi 15m di profondità (sottoarea 1- centro storico di Venezia).
Cap. 6 - Implementazione della banca dati stratigrafica e realizzazione della mappa di sensibilità del territorio alle variazioni termiche.

6.2.5 Distribuzione delle macro-classi principali nei primi 50 m e 100 m di profondità

Dalle stratigrafie ubicate nell’area studio, pre-elaborate e raccolte nei shapefile denominati “STRATIGRAFIE_TOT” e “UBI_stratigrafieTOT” sono state selezionate le stratigrafie con profondità non inferiore a -50 mslm e quelle con profondità non inferiore a -100 m slm.

Per queste due fasce di profondità si riscontra un numero inferiore di stratigrafie disponibili, rispetto alla situazione precedente relativa agli strati superficiali: per quella dalla superficie a -50m sono presenti 214 stratigrafie, mentre per quella più profonda solo 107 in tutto il territorio lagunare. Inoltre esse sono concentrate nelle aree delle bocche di porto, dove sono state effettuate campagne di indagini particolarmente approfondite in relazione alla realizzazione dei lavori del MOSE da parte del Magistrato alle Acque.

Per queste due fasce di profondità dunque, la distribuzione sul territorio dell’abbondanza della presenza di sedimenti ‘coesivi’ e ‘granulari’ è stata rappresentata solo attraverso le mappe puntuali per classi di valori, mentre non è stato possibile procedere con le elaborazioni statistiche per ottenere la rappresentazione areale delle informazioni.

Le stratigrafie selezionate sono state elaborate secondo la metodologia già descritta, riclassificando i livelli stratigrafici nelle macro-classi individuate e poi sommando gli spessori dei livelli appartenenti alla medesima macro-classe. Infine, per ciascuna fascia di profondità, si è ottenuta la tabella contenente l’identificativo del punto di indagine, le sue coordinate di riferimento e il valore percentuale dello spessore occupato sull’intera colonna dai sedimenti appartenenti alle due macro-classi principali individuate. Dalla tabella sono poi stati creati i 2 shapefile denominati:

- lito50: contiene i sondaggi riferiti ai primi 50 m di profondità
- lito100: contiene i sondaggi riferiti ai primi 100 m di profondità

Nel calcolo sono state tralasciate le stratigrafie in cui il valore delle macro-classi “riporto” o “non definito” è rilevante (il valore di soglia adottato è pari al 25%), nelle quali sarebbero poco attendibili i valori percentuali attribuibili allo spessore delle macro-classi di principale interesse.

Le mappe a classi di valori puntuali tematizzate a seconda del valore percentuale dei sedimenti ‘granulari’ e dei sedimenti ‘coesivi’ sono rappresentate nelle figure 191 - 192.
Figura 191: Mappa della distribuzione delle percentuali di spessore occupato da sedimenti ‘granulari’ e da sedimenti ‘coesivi’ nei primi 50 m di profondità (centro storico di Venezia)
Cap. 6 - Implementazione della banca dati stratigrafica e realizzazione della mappa di sensibilità del territorio alle variazioni termiche.

Figura 192: Mappa della distribuzione delle percentuali di spessore occupato da sedimenti ‘granulari’ e da sedimenti ‘coesivi’ nei primi 100 m di profondità (centro storico di Venezia).
In questo caso il numero dei sondaggi non è stato ritenuto sufficiente per realizzare le elaborazioni cartografiche atte a ricavare le superfici continue, anche perché non è stata riscontrata una evidente correlazione tra i valori della variabile rappresentata. La mappa infatti rappresenta lo spessore totale di sedimenti ‘granulari’ (o ‘coesivi’) nei primi 50m o 100m, sommando tutti gli strati appartenenti alle due macro-classi lungo l’intera colonna stratigrafica. Come già sottolineato, lo stesso valore totale può quindi essere frutto di situazioni stratigrafiche molto diverse tra loro: ad esempio il 70% (su 100m) della colonna occupata da sedimenti coesivi può risultare sia dalla presenza di 70m di coesivo sovrastanti 30 m di granulare, sia viceversa, sia da una continua alternanza delle due tipologie, ecc. Sommando gli spessori lungo la verticale si perde completamente la correlazione tra i punti informativi costituita dalla continuità fisica degli orizzonti stratigrafici. Aumentando la profondità considerata nell’indagine, l’operazione di somma degli spessori discosta sempre di più l’informazione ottenuta dal significato stratigrafico. Se quindi per la prima fascia di profondità l’elaborazione areale poteva ancora essere effettuata, all’aumentare della profondità considerata questo passaggio diventa critico. La mappatura degli spessori percentuali però non è priva di significato per l’uso per cui è nata: le sonde geotermiche, infatti, attraversano tutta la colonna stratigrafica e sollecitano termicamente i sedimenti circostanti indipendentemente dalla loro profondità e sequenza lungo la lunghezza della sonda.

Si osservi comunque come le percentuali di abbondanza dei sedimenti ‘coesivi’, quindi individuati come ‘sensibili’ alle alterazioni termiche, assumano valori elevati in quasi tutti i punti informativi rappresentati (quasi sempre >50%), sia nella rappresentazione della fascia di profondità dalla superficie a -50m, sia in quella dalla superficie a -100m.

6.3 LA MAPPA DELLA SENSIBILITÀ GEOLOGICA DEL TERRITORIO ALLE SOLLECITAZIONI TERMICHE

La mappa areale di sensibilità geologica alle sollecitazioni termiche è stata prodotta solo per la prima fascia di profondità, considerando i sedimenti dalla superficie fino alla profondità di -15m, famiglia di profondità più popolata, a partire dalla mappa della distribuzione dei sedimenti appartenente alla macro-classe dei sedimenti ‘coesivi’, ottenuta con l’interpolazione secondo il metodo di *kriging* delle informazioni stratigrafiche puntuali (figura 193). E’ in questa fascia che avvengono i maggiori effetti dell’interazione termica sonda-terreno, costituite dalle deformazioni di compressione e dall’aumento di permeabilità, considerando che i depositi più superficiali sono sottoposti ad un carico litostatico contenuto. Dagli esperimenti eseguiti è infatti emerso che sedimenti sottoposti a carichi litostatici più limitati (quindi più superficiali) presentando una situazione di debole compattazione, risultano più facilmente soggetti al fenomeno di congelamento e relativa compattazione. Inoltre negli strati di terreno più superficiale la variazione di temperatura indotta dall’anomalia termica può risultare più importante poiché si sovrappone all’abbassamento di temperatura dell’aria che avviene nel periodo invernale o in quello immediatamente successivo.
Di seguito si riporta quindi la mappa di sensibilità geologica alle sollecitazioni termiche. Le zone in cui i sedimenti coesivi risultano prevalenti vengono rappresentate in rosso: esse sono quelle più sensibili alle sollecitazioni termiche, e sono quindi le aree della città dove andrà posta maggiore attenzione alle temperature minime utilizzate nei fluidi termovettori all’interno degli impianti geotermici, per evitare che l’anomalia termica indù cicli di congelamento e scongelamento nel sottosuolo circostante. Anche le zone cosiddette ‘di transizione’, dove sedimenti granulari e coesivi sono all’incirca presenti nella medesima quantità (50%), da considerare comunque con attenzione.

Figura 193: Rappresentazione della tipologia granulometrica prevalente nei primi 15 m di profondità per il centro storico di Venezia, equivalente alla mappa di sensibilità geologica del territorio alle sollecitazioni termiche.

Sebbene i fenomeni principalmente di sovraconsolidamento e di aumento della permeabilità idraulica dei livelli coesivi siano confinati nelle immediate vicinanze della sonda di scambio termico, vengano attenuati con la profondità, e parzialmente mitigati dalla presenza di acqua intersitiziale ad elevato tenore salino, la loro entità non può essere trascurata, potendo comportare fenomeni di possibile cedimento locale in superficie con conseguente danneggiamento delle pavimentazioni o danni a strutture superficiali e, inoltre, l’instaurarsi di possibili vie di filtrazione di acque di falda in pressione all’interfaccia sonda-terreno verso livelli più superficiali a causa dell’incremento di permeabilità.

Per prevenire tali conseguenze risulta quindi importante evitare di raggiungere per periodi significativi temperature critiche di esercizio nel fluido termovettore circolante all’interno degli scambiatori a terreno che interessano prevalentemente livelli termo-sensibili di tipo argilloso (aree rosse – figura 193). Rappresentando la tipologia granulometrica prevalente vengono individuate le zone in cui i sedimenti coesivi risultano dominanti nella sequenza stratigrafica, dove quindi il territorio risulta più sensibile alle sollecitazioni termiche, e dove andrà posta maggiore attenzione al controllo delle temperature lato sonde degli impianti geotermici. Le aree a maggiore percentuale
di sedimenti coesivi nei primi 15m di profondità risultano ricadere nei settori più settentrionali dell’area in studio (Murano, San Michele, zona Sant’Alvise), in quelli meridionali (Giudecca e zattere) e nella zona Arsenale e Sant’Andrea. In queste aree è consigliabile non realizzare impianti geotermici a circuito chiuso che prevedano per motivi vari, il raggiungimento di temperatura del fluido termovettore nelle sonde a terreno, inferiori allo °C. Nelle aree centrali (San Giacomo dall’Orio, San Polo) sedimenti granulari e coesivi sono all’incirca presenti nella medesima quantità (50%). Solo la zona alle spalle di San Marco e San Zaccaria sono caratterizzate da un sottosuolo a decisa maggioranza di sedimenti granulari. In queste zone è comunque consigliabile mantenere un profilo prudenziale nelle fasi di esercizio di impianto.

Per facilitare le eventuali operazioni di controllo di congruità con le indicazioni di regolamento, si può ipotizzare l’installazione di sistemi di monitoraggio della temperatura alle sonde di scambio termico.

Alle profondità maggiori (fino a 50m e fino a 100m), la densità dei dati e la mancanza di correlazione evidente tra questi, emersa dall’analisi dei variogrammi, hanno suggerito di non effettuare l’estensione delle informazioni puntuali su tutta la superficie, riconoscendo più corretta la rappresentazione solo in forma di mappe puntuali. Osservando Figura 191 e Figura 192 si nota, nei livelli più profondi, che la presenza di sedimenti coesivi appare decisamente prevalente, con valori percentuali elevati, senza dubbio predominanti in tutta l’area del centro storico di Venezia, per entrambe le fasce di profondità considerate. Solo nella parte centrale, in prossimità della zona di Rialto si individua una zona in cui il valore di presenza dei sedimenti granulari è più elevato (più del 50%). Quindi, sebbene non sia possibile realizzare la mappa di sensibilità geologica alle sollecitazioni termiche del territorio per le fasce di maggiore profondità, anche la rappresentazione puntuale per classi di valori da un’indicazione utile, sebbene localizzata, sulla predominanza, nella zona considerata, dei sedimenti ‘sensibili’ rispetto a quelli ‘non sensibili’.

La predominanza di materiale coesivo, pur nella ridotta disponibilità di punti di informazione, sembra quindi maggiore in profondità che negli strati superficiali, suggerendo una evidente predominanza di sedimenti termicamente sensibili (da limo ad argilla) su buona parte dell’intervallo stratigrafico, indicando un carattere deposizionale più antico prevalentemente costituito da materiali argillosi. Si può concludere che il centro storico di Venezia presenta una elevata e generalizzata sensibilità del sottosuolo alle sollecitazioni termiche, dovuta alla prevalenza di sedimenti sensibili spesso dominanti la caratteristica sequenza stratigrafica:

6.4 Distribuzione spaziale del livello sovra-consolidato denominato Caranto

Infine, è stato effettuata una apposita analisi delle informazioni stratigrafiche disponibili, volta ad individuare il livello guida limoso-argilloso fortemente sovra-consolidato, denominato caranto. Questo orizzonte rappresenta un importante marker temporale perché suddivide i
Cap. 6 - Implementazione della banca dati stratigrafica e realizzazione della mappa di sensibilità del territorio alle variazioni termiche.

... implementazione della banca dati stratigrafica e realizzazione della mappa di sensibilità del territorio alle variazioni termiche.

... sedimenti di origine oloecenica da quelli di origine pleistocenica. Inoltre, i risultati sperimentali ne hanno evidenziato una particolare reazione alle sollecitazioni termiche cicliche di gelo-disgelo, a causa del suo stato di sovraconsolidazione. Spesso, però, questo litotipo non viene indicato in modo esplicito nelle stratigrafie: nella banca dati geologico-stratigrafica originaria, essendo stato riconosciuto e riportato nelle descrizioni stratigrafiche della banca dati provinciale, piuttosto di rado. Al contrario, più spesso le descrizioni stratigrafiche dettagliate riportano indicazioni della presenza di un livello di materiale coesivo, caratterizzato da tipiche striature di colore ocreaceo e da un forte stato di consolidazione, sebbene spesso non venga definito esplicitamente come _caranto_. E' stato quindi svolto un accurato e sistemativo lavoro di dettaglio nell’analizzare le descrizioni stratigrafiche, con lo scopo di individuare quali di questi depositi potessero in effetti essere associabili a tale deposito, per poter migliorare la conoscenza della sua distribuzione spaziale nel sottosuolo veneziano ed n particolare nel centro storico della città.

... sedimenti ocoesivi che potessero avere una o più caratteristiche riconosciute come identificative del _caranto_: stato di sovraconsolidazione o forte compattazione, elevata resistenza alla penetrazione di punta, presenza di striature ocreacee e/o indicazioni di stato di ossidazione, presenza di noduli calcarei. La ricerca è stata effettuata analizzando le descrizioni riportate per tutti i livelli presenti a partire dal piano campagna fino ad una profondità massima di -25mslm, ricercando in tutte le stratigrafie disponibili aventi una profondità sufficiente. E’ noto, infatti, che la quota del tetto del _caranto_ può variare dalla superficie a -3mslm nel settore nord-ovest dell’area studio (area di Marghera), a –14,5mslm ad est (Lido), fino a –20mslm nel settore a sud. Inoltre, sono state escluse dalla ricerca tutte le stratigrafie effettuate su fondo canale, quando la profondità di inizio sondaggio era maggiore di quella in cui ci si attendeva il tetto del livello in quella zona.

... descrizione stratigrafica, e dalla giacitura all’incirca uguale alla profondità attesa dal _caranto_ in quell’area. Infine il riconoscimento veniva confermato o meno tramite il confronto con le informazioni disponibili circa i livelli già identificati come appartenenti allo strato di _caranto_ nei sondaggi limitrofi.

... analisi è stata effettuata complessivamente per 765 stratigrafie, suddividendo i sondaggi in 3 classi:

1. ‘presente’: dove il livello OC è effettivamente stato riconosciuto come appartenente al livello guida limoso-argilloso sovraconsolidato detto _caranto_;
2. ‘non presente’: dove, alla profondità corrispondente a quella attesa per il livello di _caranto_ in quell’area, era invece segnalata la presenza di sedimenti granulari, per lo più sabbia, testimoniando quindi la caratteristica di discontinuità già citata di questo livello, che presenta zone o dove non si sono verificate le condizioni necessarie per la sua pedogenesi, o dove era presente, ma successivamente ha subito processi di erosione in epoche posteriori (Gatto e Previatello, 1974; Mozzi, 2003; Bonardi et al., 2006);
3. ‘non riconosciuto’: dove la precisione della descrizione stratigrafica non era sufficiente per definire né l’appartenenza del livello allo strato di caranto, né per affermare con certezza il contrario.
Nel lavoro di dettaglio qui descritto, sono stati identificati 271 punti informativi in cui la presenza di questo importante marker temporale è stata riconosciuta, e di cui si è individuata la quota del tetto.

Nelle elaborazioni descritte nei paragrafi precedenti, i livelli riconosciuti come caranto sono stati compresi nella macro-classe ‘coesivi’, a causa della difficoltà di individuarne l’effettivo spessore: il tetto infatti è spesso individuabile perché rappresenta una forte discontinuità con il materiale sovrastante nella sequenza stratigrafica, mentre l’individuazione del letto è più difficoltosa a causa della degradazione progressiva del suo grado di compattazione, che si traduce nelle descrizioni stratigrafiche in un accorpamento di questo livello in uno coesivo di maggiore ampiezza. Inoltre, esso è stato accorpato nella famiglia dei coesivi perché risulta anch’esso termo-sensibile, sebbene subisca effetti deformativi opposti agli altri sedimenti coesivi, differenziandosi quindi dai granulari, che sostanzialmente risultano pressoché termicamente inerti.

Sono state quindi realizzate due specifiche mappe tematiche partendo dai dati contenuti nella tabella denominata “CARANTO”: una rappresenta la distribuzione puntuale ed areale del livello guida limoso-argilloso sovraconsolidato denominato caranto, e l’altra ne rappresenta in modo puntuale e tramite isolinee, la quota del tetto dove il livello è stato chiaramente riconosciuto.

6.4.1 Rappresentazione della distribuzione spaziale del livello guida limoso-argilloso sovraconsolidato denominato caranto

La mappa della distribuzione areale del caranto descrive le aree del centro storico della città dove la sua presenza è stata identificata a partire dalle stratigrafie disponibili. I punti informativi in cui la presenza di questo particolare livello è stata riconosciuta sono identificati con il colore scuro.

Inoltre, i punti in cui nelle 766 stratigrafie utilizzate il caranto era stato identificato come ‘non presente’, sono stati evidenziati in modo diverso (colore chiaro). Questi punti rappresentano le aree dove o non ne è avvenuta la formazione perché erano presenti depositi di materiale più grossolano di epoca quindi pleistocenica, oppure il livello di caranto ha subito processi di erosione successivi alla sua formazione, ed e’ così stato sostituito da depositi sabbiosi più recenti, di epoca quindi olocenica.

Anche in questo caso, si è ottenuta dapprima una mappa puntuale a classi di valori e poi, da questi, sono state definite le aree di distribuzione (figura 194): per i punti in cui la presenza del caranto era stata riconosciuta, è stata effettuata l’interpolazione dei dati puntuali utilizzando il metodo chiamato Natural Neighboor, il più adatto ad interpolare dei valori puntuali che descrivono una variabile a due soluzioni. Per i punti invece in cui il caranto era stato definito ‘non presente’, l’individuazione delle aree è stata effettuata in modo manuale, perché la densità di dati era insufficiente. Le aree individuate sono quindi solo un’ipotesi, sostenuta da studi precedenti e dalla conoscenza del sottosuolo locale, a conferma del fatto che il caranto non è un orizzonte continuo, ma presenta numerose interruzioni a carattere sparso.
Osservando la figura 194 si può notare che le aree in cui è certa la presenza del livello di caranto si concentranono nell’area di Piazzale Roma e a sud verso Santa Marta, nell’isola della Giudecca zona Palanca e Sacca Fisola, e verso nord nell’area di Sant’Alvise, Ghetto, Fondamente Nove e area settentrionale dell’Arsenale, San Pietro di Castello e area nord dell’isola di Sant’Elena.
Nella zona centrale (San Giacomo dell’Orio – San Polo) emerge un settore in cui è riconosciuto il caranto, che si trova all’interno della fascia di predominanza sabbiosa.
Al contrario, i punti in cui si è riscontrata la presenza di materiale più grossolano si concentrano nella zona centrale di San Marco, Accademia, Ca’ Foscari, che sono anche le aree che hanno subito la prima urbanizzazione della città e che in generale dimostrano tassi di subsidenza più contenuti (cita), riva dei Sette Martiri e nella punta più meridionale dell’isola di Sant’Elena. Si ritrova in parte la forma già proposta da Zezza (2010), che però si basava su un numero inferiore di stratigrafie analizzate.

I primi tentativi di ricostruzione degli orizzonti stratigrafici veneziani evidenziano la necessità di poter disporre di ulteriori conoscenze stratigrafiche anche per realizzare sezioni longitudinali, per poter meglio comprendere la storia deposizionale locale in un contesto paleo-ambientale dimostrabile, argomento che però non rientra negli obbiettivi principali di questo lavoro.

Figura 194: Distribuzione per punti del livello guida linoso-argilloso sovraconsolidato denominato caranto (Venezia), sovrapposto alla mappa della distribuzione dei materiali argillosi e sabbiosi prevalenti.
6.4.2 **Limite Olocene-Pleistocene – Carta delle isobate**

La seconda mappa tematica rappresenta i punti informativi in cui la presenza del livello di *caranto* è stata individuata, evidenziandone anche la profondità a cui è stato individuato il tetto (in mslm). Questa informazione puntuale è stata poi estratta attraverso la realizzazione di isolinee, rappresentando così la profondità a cui nel sottosuolo può essere intercettato il tetto del *caranto*. Queste isobate rappresentano quindi la quota del limite Olocene-Pleistocene, individuata appunto dal livello guida che, come è noto, costituisce la sommità dei depositi pleistocenici, delimitando il passaggio temporale tra Pleistocene e Olocene.

Sono stati quindi selezionati tutti i sondaggi in cui è presente il livello di *caranto*, e se ne è rappresentata la quota del tetto, dopo aver eliminato eventuali punti anomali per confronto con i punti vicini ottenendo una mappa puntuale a classi di valori, come rappresentato nella figura seguente. Nell’area del centro storico il numero di indagini utilizzate è pari a 149 e la loro distanza media è di 460m.
Per ricostruire le superfici continue a partire dalle informazioni puntuali disponibili in modo irregolare sul territorio è stato utilizzato anche in questo caso il metodo di interpolazione spaziale detto kriging di tipo universale. Questo metodo è stato scelto perché adatto a operare su dati che presentano un trend dipendente dalla posizione dei campioni informativi e quindi una variazione regolare nello spazio della variabile studiata, come avveniva in questo caso. E’ allora necessario modellare il trend esistente con una funzione matematica, per poi procedere all’analisi variografica sul dato privato del trend (residuo), filtrando così i valori di partenza. Il trend si è dimostrato di tipo lineare ed è quindi stato modellato tramite una retta.

L’analisi geostatistica ha restituito anche la valutazione sull’attendibilità dei risultati ottenuti dell’elaborazione espressa in termini di deviazione standard, quantificando l’incertezza statistica associata ad ogni valore previsto.

A partire dalle superfici continue (raster) è stato ottenuto uno shapefile costituito da isolinee equidistanti 1m, che rappresentano le isobate del limite Olocene-Pleistocene (figura 196).
Figura 196: Rappresentazione della le isobate del limite Olocene-Pleistocene (Venezia)
7 DISCUSSIONE DEI RISULTATI

Le conoscenze derivate dagli studi effettuati sulle variazioni delle proprietà meccaniche, idrauliche e termiche dei sedimenti indotte da variazioni di temperatura e principalmente da fenomeni di congelamento e scongelamento, nel corso della ricerca svolta sono state applicate all’ambito della geotermia di bassa entalpia, allo scopo di approfondire lo studio dei possibili impatti ambientali legati all’impiego di sonde geotermiche verticali a circuito chiuso che utilizzano condizioni di esercizio con temperatura del fluido termovettore inferiori allo zero celsius, considerando i possibili effetti dell’anomalia termica generata nel terreno.

L’anomalia termica subita in conseguenza ai processi di scambio termico sonda-terreno, la sua entità e durata, e l’estensione del volume di terreno coinvolto, sono continuamente variabili nel tempo, poiché dipendono dal regime di funzionamento dell’impianto geotermico, dalle proprietà termiche del sottosuolo e dalle condizioni al contorno. Si presentano quindi molteplici scenari possibili determinati principalmente dalle condizioni climatiche, dalla tipologia di edificio considerato, dal contesto geologico, con condizioni di drenaggio, temperatura indisturbata del terreno, presenza di falda ecc.

La fase sperimentale della ricerca svolta è stata indirizzata a valutare gli effetti indotti sulle proprietà meccaniche, idrauliche e termiche su alcune tipologie di sedimenti, sottoponendole a condizioni di stress paragonabili a quelle subite in situ dai vari livelli deposizionali che compongono la sequenza stratigrafica lungo una sonda geotermica.

Innanzitutto, per misurare le possibili deformazioni indotte, i materiali sono quindi stati testati in diverse condizioni, sollecitati dall’applicazione combinata di un carico verticale e una variazione termica. Dal confronto tra i risultati ottenuti considerando diversi intervalli di temperatura applicati (par.3.3), si può dedurre che, se l’anomalia termica non induce nei sedimenti fenomeni di congelamento (e quindi temperature inferiori al freezing point del sedimento), non si generano nei sedimenti circostanti gli scambiatori a terreno processi deformativi significativi. E’ questo il caso di sonde geotermiche che vengono utilizzate in un regime di esercizio ottimale, con un tasso di estrazione di calore medio mensile (non di picco) intorno ai 20W/m, generalmente bilanciat tra carichi termici e frigoriferi.

Quando invece l’anomalia termica indotta dal funzionamento della sonda porta la temperatura del terreno circostante a valori inferiori al freezing point del sedimento stesso (par.3.3), si instaurano nel terreno cicli ripetuti di congelamento e successivo scongelamento. E’ questo il caso in cui la
temperatura di utilizzo del fluido termovettore viene fatta scendere anche al di sotto di -8°C, -15°C, addizionandolo con sostanze anticongelanti, allo scopo di abbassarne il punto di congelamento per incrementare il delta termico tra fluido e terreno e quindi l’estrazione di calore dal sottosuolo nel periodo invernale. In generale l’uso di queste miscele all’interno delle sonde è diffuso soprattutto nei climi rigidi, per soddisfare richieste termiche elevate in riscaldamento, non bilanciate da una sufficiente ricarica termica estiva, e con condizioni iniziali di temperatura del sottosuolo penalizzanti ed ulteriormente aggravate dal progressivo raffreddamento del terreno dovuto alla mancanza di sufficiente ricarica termica estiva. Questo metodo è diffuso anche in climi più temperati perché aumenta la resa di scambio termico per metro lineare di sonda, permettendo quindi di realizzare impianti più economici con una lunghezza totale del campo sonde più contenuta, sebbene la pompa di calore utilizzata debba essere adeguata a supportare le temperature di esercizio e l’aumentata viscosità del fluido richiesta un maggiore dispendio di energia elettrica per la circolazione del fluido nelle sonde, il che comporta una sensibile riduzione delle prestazioni energetiche.

Il caso studio qui considerato appartiene alla casistica descritta: nel centro storico di Venezia, infatti, i sistemi geotermici a circuito chiuso si stanno diffondendo negli ultimi anni come una interessante soluzione ai problemi di climatizzazione di edifici storici di grandi dimensioni, perché consente di ovviare all’installazione esterna di chiller o di torri di evaporazione sui tetti o di caldaie tradizionali, anche a causa delle limitazioni legate alle caratteristiche delle strutture e alla legislazione locale (par. 1.3). Sebbene le condizioni climatiche non siano particolarmente rigide, la configurazione del centro storico di Venezia, caratterizzato da mancanza di spazi aperti necessari per sviluppare arealmente i campi sonde, e la tipologia degli edifici asserviti con aperture di limitata dimensione e difficoltà di utilizzo di macchine adatte a realizzare perforazioni profonde, costringe la realizzazione di campi sonde di estensione totale limitata. In questo particolarissimo contesto urbano, numerosi impianti sono stati realizzati prevedendo l’uso di miscele anticongelanti nel fluido termovettore, in modo da consentire sufficienti capacità di scambio termico del sistema sonde-terreno. La sequenza stratigrafica tipica del caso studio considerata è caratterizzata da una continua alternanza di livelli fini a prevalente matrice limoso-argillosa con livelli più grossolani di tipo sabbioso, che garantiscono condizioni drenate ai depositi più fini (par. 1.3.1). Tale contesto geologico risulta tipico delle situazioni di bassa pianura alluvionale, dove sono costruite molte aree urbane ad elevata densità abitativa. Il caso considerato quindi si riconosce come esempio di un contesto urbano e geologico molto diffuso.

Nella sequenza litostratigrafica tipica del caso studio possono essere riconosciute due macro-classi di sedimenti: da una parte quelli fini, a prevalente natura limoso-argillosa, che si configurano come quelli più sensibili agli effetti dei processi di gelo/disgelo ciclico a causa dell’importante ruolo che le molecole d’acqua rivestono nella struttura stessa del sedimento, dovuto alle proprietà elettrostatiche delle particelle fillosilicatiche (par. 2.1). Al contrario, i sedimenti più grossolani e sabbiosi risultano essere quasi insensibili agli effetti dei cicli di congelamento e scongelamento, dato che le caratteristiche meccaniche non vengono influenzate dai cambiamenti di fase subiti dall’acqua intergranulare (par. 3.7).

Gli esperimenti di laboratorio sono stati svolti in modo da rappresentare gli effetti termo-mecanici dei lito-tipi caratterizzanti la tipica successione stratigrafica locale.
Le prove condotte hanno dimostrato che, nel momento in cui il funzionamento della sonda geotermica induce cicli di gelo e disgelo nel materiale circostante, nei livelli a prevalente matrice limoso-argillosa si riscontrano all’intorno della sonda effetti significativi e cumulativi ciclo dopo ciclo, ma che si sviluppano prevalentemente durante il primo ciclo. Dopo circa 5-7 cicli di gelo/disgelo il materiale testato in laboratorio raggiunge un nuovo stato di equilibrio con la sollecitazione subita, caratterizzato da un diverso stato deformativo, migliori caratteristiche meccaniche (maggior rigidezza e maggiore resistenza al taglio), diversa organizzazione della microstruttura interna riorganizzata con una maggiore interconnessione tra i vuoti, maggiore permeabilità verticale, migliori prestazioni termiche.

I risultati hanno dimostrato che, nel caso il sedimento sia normal-consolidato, il cedimento indotto si dimostra essere significativo (dell’ordine del 7% nei sedimenti testati); l’entità della deformazione risulta direttamente proporzionale all’Indice Plastico del sedimento (par. 3.8), che assume un ruolo di indicatore della sensibilità del materiale coesivo alle alterazioni termiche, essendo proporzionale alla quantità di acqua interstiziale appartenente al shell water structure ‘disponibile’ a partecipare ai processi di congelamento). I test condotti su materiale sovraconsolidato (par. 3.6), rappresentativo del livello coesivo presente nella sequenza stratigrafica del caso studio conosciuto come caranto, hanno evidenziato una deformazione di dilatazione di debole intensità, tale da far supporre che questo livello, anche se sottoposto a cicli di congelamento e scongelamento mantenga pressoché inalterato il suo assetto strutturale.

Essendo il caso studio rappresentato da una città inserita in ambiente lagunare salmastro, e con parte dei depositi con origine marina (par.1.3.1), è stata verificata anche l’influenza della salinità del fluido interstiziale sulla deformazione indotta nei materiali coesivi dai cicli di gelo e disgelo. Dai risultati sperimentali si può concludere che la presenza di sali disciolti nel fluido interstiziale aumenta il valore del cedimento irreversibile indotto, portandolo, nel caso del materiale testato, dal 7% a circa il 9% (par.3.9). D’altro canto, la presenza di sali abbassa la temperatura di congelamento del sedimento, fornendo a quest’ultimo una sorta di protezione contro l’instaurarsi di cicli di congelamento, che si rafforza al procedere dei cicli termici (par.3.9.3).

Si è inoltre verificato che l’entità della deformazione indotta decresce progressivamente all’aumentare della profondità del livello considerato in modo più che lineare, per effetto del maggiore grado di compattazione naturale, patrimonio dell’effetto litostatico, che contrasta la formazione dei cristalli di ghiaccio e le variazioni inducibili nella tessitura del sedimento (par.3.5). L’effetto deformativo sarà quindi maggiore per i depositi più superficiali (nei materiali testati pari a 9% a 4m, 5,5% a 20m), sempre più contenuto all’aumentare della profondità lungo la sonda. Anche alla massima profondità investigata (circa 80 m - rappresentata nel test sperimentale da un carico applicato di 800kPa), la deformazione indotta nei sedimenti limo-argillosi risulta comunque non trascurabile (pari a circa il 3,5% dell’altezza iniziale del provino) (par. 3.5). I test di laboratorio condotti, confortati dal dato bibliografico, hanno evidenziato che la diminuzione della deformazione indotta all’aumentare della profondità del livello considerato (e quindi del carico applicato) sia più contenuta nel caso di sedimenti ad elevata plasticità (par.3.7.3).
Cap.7 – Discussione dei risultati

Figura 197: Profilo verticale qualitativo della deformazione di compressione che si realizza unicamente in corrispondenza dei livelli limoso-argillosi, dovuta ai fenomeni ciclici di gelo/disgelo lungo la sonda, come emerge dai risultati sperimentali.

Il processo deformativo indotto dai cicli di gelo/disgelo nei depositi di materiale fine si combina anche con variazioni irreversibili nella texture del sedimento, portando da una parte alla formazione di aggregati di maggiori dimensioni e più poveri d’acqua e dall’altro all’allargamento dei macropori, sede dei nuclei di congelamento e alla formazione di fessure verticali perché sviluppate lungo la direzione di drenaggio e quindi di azione del carico litostatico. Di conseguenza, nonostante i processi di consolidazione inducano un incremento dello stato di compattazione del sedimento, la permeabilità verticale subisce un incremento importante anche superiore ad un ordine di grandezza, indotto dall’aumento del grado di interconnessione tra i pori. Le variazioni della microstruttura e in particolare la formazione delle fessure verticali e del grado di interconnessione tra i pori, sono state riscontrate anche grazie ad innovative analisi effettuate mediante l’impiego della tecnica micro-tomografica a raggi X su provini di materiale naturale a confronto con il medesimo materiale dopo essere stato sottoposto a 10 cicli di gelo/disgelo (par. 3.1.5).

I risultati sperimentali (par. 3.14) dimostrano che l’aumento di permeabilità verticale è molto importante nei livelli superficiali, in corrispondenza dei quali si raggiunge un aumento di un ordine di grandezza, decrescendo rapidamente con la profondità (per l’effetto di opposizione esercitato dall’aumento del carico litostatico). L’effetto di destrutturazione e riorganizzazione tessuturale è incrementato nei sedimenti sovraconsolidati: si può quindi ipotizzare che il livello noto come ‘caranto’, ubicato generalmente a modeste profondità (intorno ai 5-10m), subirà un incremento di permeabilità più accentuato rispetto agli altri livelli coesivi normal-consolidati.
Figura 198: Profilo verticale qualitativo della variazione di permeabilità che si realizza unicamente in corrispondenza dei livelli limoso-argillosi, dovuta ai fenomeni ciclici di gelo/disgelo lungo la sonda, come emerge dai risultati sperimentali.

L’aumento di permeabilità verticale nell’intorno della sonda potrebbe essere localmente incrementato da effetti circoscritti in corrispondenza dell’interfaccia sonda-terreno (Banks, 2012), in conseguenza delle deformazioni indotte dalle variazioni termiche sia in corrispondenza dei livelli a matrice prevalentemente limosa o coesiva, sia nel materiale di riempimento. A causa di queste deformazioni locali, infatti, la continuità fisica tra i materiali degrada poiché si formano vuoti e distacchi che vanno a costituire vettori preferenziali di migrazione delle acque di falda.

Dai risultati sperimentali si è inoltre potuto constatare che la variazione generata nella tessitura del sedimento induce, oltre ad una deformazione irreversibile, anche un aumento della rigidezza (par. 3.11).

Per quanto riguarda le caratteristiche di resistenza meccanica dei sedimenti, la sperimentazione è stata effettuata per un solo valore di carico applicato (80kPa), riconducibile quindi ad una sola profondità di giacitura nella sequenza stratigráfica. Nel confronto tra i risultati ottenuti dal materiale ‘naturale’ e quello che ha subito dieci cicli di gelo/disgelo, le prove di laboratorio svolte hanno mostrato un aumento significativo della resistenza al taglio dovuta ad un aumento importante della coesione, e quindi della capacità portante laterale lungo tutta la superficie della sonda in corrispondenza dei livelli di materiale limoso-argilloso. Questo elemento è da tenere in considerazione nel caso si voglia valutare la capacità portante laterale offerta dal terreno per la realizzazione di pali energetici: la capacità portante laterale è, infatti, calcolata a breve termine in funzione della resistenza al taglio drenata. Questo aspetto, tuttavia, non è stato sufficientemente approfondito e rimane un risultato preliminare che richiederebbe ulteriori studi dedicati all’aspetto specifico. Sarebbe, infatti, necessario valutare attentamente anche la variazione del coefficiente di adesione sonda-terreno per poter stabilire con esattezza l’influenza di cicli di gelo/disgelo sulla capacità portante complessiva dell’elemento fondazionale attivato termicamente. Infatti, le variazioni volumetriche, la formazione di vuoti e le variazioni nell’organizzazione del sedimento provocate dai cicli termici di gelo-disgelo e concentrate nei soli livelli coesivi, potrebbero causare distacchi locali del terreno stesso dalla superficie dello scambiatore geotermico, riducendo di conseguenza il valore del coefficiente di adesione, influenzando quindi sia la capacità portante dell’elemento di fondazione sia l’efficienza di scambio termico tra sonda e terreno circostante.

L’interazione tra i diversi processi individuati (di deformazione, variazione della struttura, formazione di vuoti, impoverimento di acqua, alternanza di stati di congelamento e riscaldamento) può avere conseguenze sull’integrità della sonda, sulla staticità del terreno circostante, e probabilmente anche sull’efficienza dello scambio termico e sulle performance energetiche del sistema sonda-terreno.

Ad esempio, la migrazione delle molecole d’acqua lungo i gradienti termico e idraulico, vincendo la forza di legame elettrico con le particelle solide, genera una disomogeneità della distribuzione e complessiva diminuzione dell’umidità presente nel sedimento, dovuta alla migrazione delle molecole d’acqua verso i punti di formazione e accrescimento delle ice lenses (par. 2.2), e ai processi di consolidamento indotti dalle variazioni termiche cicliche e favoriti dalle condizioni di drenaggio garantite dall’alternanza dei depositi fini con quelli più grossolani. Nel corso delle prove sperimentali si è osservato, infatti, che il contenuto d’acqua del sedimento diminuisce dalla condizione iniziale a quella finale, in corrispondenza della quale assume valori di poco superiori al Limite Plastico (par. 3.8.1). La perdita di contenuto d’acqua nei sedimenti nei pressi nella sonda e la sua disomogeneità potrebbero peggiorare le performance di scambio termico del sistema sonda-terreno, principalmente dipendenti, in mancanza di moto di falda, dalla conducibilità termica dei materiali, che diminuisce fortemente nel caso in cui il contenuto d’acqua scenda al di sotto di un valore limite (par. 4.1.4). Inoltre, questo effetto di impoverimento di contenuto d’acqua, può avere conseguenze sulle performance energetiche della sonda anche influenzando negativamente lo
scambio termico di tipo convettivo (legato alla migrazione della fase vapore) in prossimità della sonda, che assume rilevanza però solo a temperature superiori a circa 40°C (par. 4.1.4). D’altra parte, le misure dei parametri termici condotte a diverse temperature su campioni delle due tipologie di materiali hanno evidenziato che in condizioni di congelamento la conducibilità termica subisce un aumento significativo sia nei materiali fini che in quelli sabbiosi (par. 4.2), elemento che potrebbe migliorare le performance energetiche del sistema quando i sedimenti circostanti la sonda permangono a temperature inferiori a quella critica. Gli aspetti riguardanti la resa energetica del sistema geotermico nelle condizioni di esercizio che inducono congelamento dei sedimenti circostanti la sonda, non sono stati tuttavia approfonditi in questa trattazione e richiederebbero una fase della ricerca dedicata.

Grazie alla modellazione matematica 3D agli elementi finiti di un sistema sonda-terreno, effettuata con il software FEFLOW®, è stata indagata l’estensione spaziale dell’anomalia termica indotta nel sottosuolo e la sua evoluzione nel tempo (cap. 5). Sono stati realizzati due modelli: il primo riproduce un sistema completo sonda-terreno, caratterizzando il regime di funzionamento e le condizioni al contorno in modo da riprodurre una situazione geologica ed energetica tipica e rappresentativa del caso studio considerato del centro storico di Venezia (par. 5.3); il secondo rappresenta un focus di elevato dettaglio a diverse profondità considerando fasce orizzontali del complesso sonda-terreno di spessore pari a 50 cm (par. 5.4). I due modelli sono in un certo senso ‘innestati’: dal primo infatti sono stati ricavati i valori da utilizzare come condizioni al contorno per il secondo (dati di portata e temperatura del fluido termovettore e temperatura indisturbata del terreno nel campo lontano alle varie profondità indagate).

I risultati forniti dal modello a sonda completa, considerando il terreno omogeneo costituito da materiale limoso-argilloso e un regime di funzionamento dell’impianto che prevede tassi di estrazione di calore medi massimi di 26 W/m, indicano che il volume di terreno con temperature al di sotto dello zero celsius è estremamente ristretto attorno alla sonda: nel momento considerato più critico (fine inverno del decimo anno di funzionamento dell’impianto) la isoterma che rappresenta i punti a temperatura uguale a 0°C nel terreno a 4 m di profondità ha un raggio di 8 cm dal perimetro della sonda (in questo caso rappresentata in modo puntuale). Solo leggermente maggiore (raggio pari a 8 cm) è il volume di terreno interessato da temperature inferiori allo zero, nel caso la sonda venga ulteriormente stressata termicamente, portando il tasso di estrazione di calore medio massimo dell’ordine dei 30 W/m.

L’implementazione del secondo modello FEM, in cui la sonda è stata rappresentata in modo completamente discretizzato, ha permesso di aumentare la raffinatezza della griglia di calcolo in prossimità della sonda per adeguarla alla dimensione reale del fenomeno indagato, aumentando quindi anche il grado di affidabilità del risultato (par. 5.4). Inoltre, nel modello completamente discretizzato è stato possibile anche una migliore rappresentazione dei fenomeni di congelamento e scongelamento ciclico, tramite l’applicazione di uno specifico plug-in sviluppato in collaborazione con il Technische Universität di Darmstadt (Germania), capace di tener conto del rilascio del calore latente nel passaggio di fase e di cambiare le proprietà termiche del materiale in relazione allo stato termico dinamico, differenziandolo se a temperature inferiori a quella critica. Nella caratterizzazione delle diverse fasce di profondità è stata definita in modo differenziato anche la temperatura critica di congelamento, che diminuisce al crescere della profondità.
I risultati ottenuti rappresentando l’estensione dell’anomalia termica alle varie profondità (4, 20, 50 e 80m) attraverso una diversa caratterizzazione del modello completamente discretizzato, suggeriscono che, all’aumentare della profondità, l’anomalia termica indotta nei diversi livelli deposizionali lungo la sonda diminuisce in intensità ed estensione e le condizioni critiche vengono raggiunte in un volume sempre più ristretto (5.4.3).

Le analisi modellistiche sono state svolte rappresentando il terreno come omogeneo in tutto il dominio di calcolo, per la maggior parte come materiale limoso-argilloso poiché sono questi i depositi maggiormente sensibili alle conseguenze indotte nelle proprietà meccaniche ed idrauliche da cicli di gelo e disgelo. Il contesto geologico dell’area di studio, rappresentativo delle zone di bassa pianura alluvionale, presenta invece una sequenza stratigrafica con fita alternanza verticale e numerose interdigitazioni tra sedimenti a matrice sabbiosa e argillosa.

Le variazioni termiche indotte nella continua successione di depositi di varia tipologia saranno quindi differenziate per ciascun livello deposizionale, a seconda delle proprietà termiche peculiari e delle condizioni fisiche in cui si trova, che a loro volta influenzano il regime di funzionamento della sonda stessa, come ha evidenziato l’analisi di sensitività condotta mediante confronto tra i risultati ottenuti dal modello a sonda completa imponendo diversi valori dei parametri termici. La simulazione effettuata caratterizzando il terreno come sabbioso dimostra che una maggiore capacità di scambio termico del sedimento fa sì che lo scambio termico sia sufficiente anche senza la necessità di abbassare la temperatura del fluido termovettore al di sotto dello zero, riducendo l’anomalia termica indotta nel terreno, a parità di richiesta termo-frigorifera dell’impianto asservito (par. 5.1.4.3).

La distribuzione della temperatura che ne risulta si configura come estremamente varia e differenziata sui vari livelli, innestando di conseguenza anche processi di scambio termico ‘verticali’ tra un deposito e l’altro. Inoltre, essa è ovviamente variabile nel tempo con la temperatura del fluido termovettore interno alla sonda, risentendo ad ogni step della storia termica precedente. Un possibile sviluppo a completamento dell’attività di modellazione eseguita potrebbe consistere nella realizzazione di un modello a sonda intera in cui diversificare le condizioni stratigrafiche, caratterizzandole secondo una sequenza differenziata, per studiare il comportamento dell’anomalia termica indotta in situazioni più complesse.

Una volta simulata l’anomalia termica indotta nel terreno, risulta comunque difficile determinare quando le effettive condizioni di innesto del cambiamento di fase vengono raggiunte lungo la sequenza stratigrafica considerata, poiché la temperatura critica di congelamento sarà diversa nei vari livelli deposizionali. Il freezing point dipende infatti dalla composizione del sedimento, dalla granulometria e tessitura, dal contenuto d’acqua e dai sali presenti nel fluido interstiziale: i sedimenti coesivi presentano una temperatura di congelamento inferiore a quelli più grossolani, a parità di contenuto d’acqua e di sale. Inoltre, esso varia anche in dipendenza dello stato di compattazione e quindi anche dalla profondità di giacitura del livello stesso: a parità di altre condizioni, al crescere della profondità la temperatura di congelamento si abbassa, e quindi sarà più difficile raggiungere le condizioni termiche critiche.

Per stimare l’estensione della porzione di sottosuolo dove effettivamente si instaurano fenomeni ciclici di congelamento e scongelamento, generando le conseguenti variazioni nelle proprietà meccaniche, idrauliche e termiche evidenziate nel corso della fase sperimentale, sarebbe necessario
quindi individuare, conoscendo l’anomalia termica indotta, l’isoterma critica per ciascun livello deposizionale.
In ogni caso, le condizioni di congelamento possono effettivamente essere raggiunte anche alla massima profondità, in situazioni di richiesta termica invernale elevata, progressivo raffreddamento del terreno indotto dal funzionamento pluriannuale con richieste termo-frigorifere sbilanciate e condizioni critiche di esercizio: le simulazioni a sonda intera hanno dimostrato che il fluido termovettore (miscela acqua-glicole al 20%) mantiene una temperatura media intorno ai -5°C per tutta la lunghezza della sonda, dato che l’aumento complessivo di temperatura guadagnato nello scambio con il terreno lungo l’intero percorso del fluido termovettore è in media di 3°-5°C.

I risultati ottenuti dalle simulazioni svolte forniscono indicazioni interessanti, ma sono comunque affetti dai limiti insiti nell’attività modellistica (semplificazione, scala, condizioni al contorno imposte ecc).
E’ purtroppo mancata la possibilità di validare i risultati ottenuti tramite confronto con set di misure effettuate su modelli fisici o in situ in condizioni rappresentative, o tramite confronto con risultati ottenuti con altri codici di calcolo paragonabili a quello usato a causa della difficoltà di reperimento di impianti monitorati e di studi dedicati allo specifico problema qui analizzato.
Un altro aspetto da evidenziare è il fatto che il codice utilizzato non è in grado di tenere in considerazione variazioni di volume dei sedimenti, elemento invece molto importante nei processi di congelamento: ciò ha costretto a considerare, nelle simulazioni svolte, unicamente i processi di trasporto termico disaccoppiandoli dai fenomeni di evoluzione delle condizioni meccaniche e di variazione di volume, con i quali invece sussistono continui feedback di intercorrelazione di importanza variabile a seconda della situazione studiata. Ad esempio, se si volesse considerare l’effetto della presenza di moto di falda sull’estensione dell’anomalia termica indotta nel terreno, non si potrebbe trascurare l’importanza di poter far variare la permeabilità del mezzo poroso in condizioni di temperatura inferiore a quella critica, quando nel terreno congelato parte dei pori viene riempita da ghiaccio, cambiando considerevolmente le condizioni di trasporto all’interno del mezzo poroso.
Inoltre, non è stato possibile rappresentare adeguatamente nel modello la caratterizzazione del sedimento nelle varie fasi che esso attraversa nel corso del processo ciclico di gelo/disgelo, tramite assegnazione di proprietà differenziate considerando la situazione iniziale, quando non ha mai subito temperature inferiori a quella critica, la condizione di parziale o quasi completo congelamento a temperatura inferiore a quella critica, o infine quando si trova nella successiva fase di equilibrio, raggiunta progressivamente, ciclo dopo ciclo.
Infine, un codice capace di rappresentare le variazioni di volume degli elementi, sarebbe fondamentale per coronare le informazioni acquisite dalle esperienze di laboratorio sulle deformazioni indotte a scala di provino, e ricavare delle stime riguardo alla deformazione che può realmente avvenire sulla superficie del terreno nell’intorno della sonda, generata dall’accumulo delle deformazioni acquisite nei vari livelli a matrice limoso-argillosa presenti nella sequenza stratigrafica lungo tutta la lunghezza della sonda.
Sebbene il volume stimato nell’intorno della sonda soggetto ai cicli di gelo e disgelo risulti, nel caso studiato, estremamente contenuto (dell’ordine di una decina di centimetri nei livelli più superficiali, e inferiore nei livelli più profondi), gli effetti delle variazioni indotte nel sedimenti fini nell’intorno della sonda non vanno comunque trascurate. Innanzitutto, la deformazione accumulata che si realizza a livello superficiale può essere importante nel caso in cui il campo sonde sia realizzato sotto pavimentazioni rigide o in prossimità di elementi fondazionali, andando quindi a generare un potenziale rischio di cedimenti o alterazioni delle proprietà di resistenza degli stessi materiali interessati dal bulbo di pressione, ad esempio in contesti urbani ad alta densità, come il caso studio considerato. Inoltre, il cedimento superficiale è risultato proporzionale all’abbondanza di sedimenti coesivi potrebbe portare ad un cedimento complessivo con effetti totale in superficie anche importanti. A tal proposito si riporta un caso reale avvenuto in Canada di formazione di un avvallamento di circa 2m di diametro ed 1,5m di profondità, nell’intorno di una sonda dopo solo tre anni di funzionamento di un impianto che utilizza gas come fluido termovettore, impiegando temperature di esercizio che scendono fino a -20°C, in un’area con un deposito argilloso dello spessore di 12m. Inoltre, poiché comunque il volume interessato dai cicli di congelamento e scongelamento è lo stesso che garantisce il sostegno alla sonda e la continuità fisica sistema sonda-terreno, necessaria per un efficiente scambio termico, l’interazione tra deformazioni indotte, variazione della struttura, formazione di vuoti e impoverimento di acqua, può avere conseguenze sull’integrità della sonda, generando ad esempio effetti di attrito negativo, e peggiorando le performance energetiche del sistema sonda-terreno. Ancora, degno di particolare nota, è il possibile rischio idraulico di aumento di permeabilità verticale all’interfaccia sonda-terreno, che può causare moti di filtrazione preferenziali di acqua di falda soprattutto se in condizioni di pressione significativa e/o nel caso in cui il fenomeno interessi un impianto formato da un numero elevato di sonde.

Per questo motivo è stato proposto il concetto di mappatura della sensibilità geologica del territorio alle sollecitazioni termiche: le aree che, nella sequenza stratigrafica, presentano abbondanza di livelli coesivi, sono ritenute più sensibili alle sollecitazioni termiche e quindi più soggette ai rischi presentati, nel caso in cui l’anomalia termica indotta porti i sedimenti circostanti a temperature inferiori a quella di congelamento.
8 CONCLUSIONI

Concludendo, il lavoro svolto:

1. Rappresenta un contributo originale alla conoscenza dei rischi connessi all’anomalia termica indotta nel sottosuolo dall’uso di sonde geotermiche verticali a circuito chiuso in condizioni di esercizio che implicano l’utilizzo di additivi anticongelanti nel fluido termovettore, riconducibile a difetti di progettazione, condizioni climatiche critiche, riduzione forzata della caratura del campo sonde (spazi, accessibilità, etc…).

2. Presenta un approccio multidisciplinare, che ha visto considerare molteplici aspetti, spesso interconnessi tra loro: dalla valutazione delle possibili implicazioni geotecniche, a quelle degli effetti sulle proprietà termiche dei sedimenti, alla predizione dell’intensità di perturbazione termica indotta e dei volumi nel sottosuolo interessati dai fenomeni sperimentati.

3. Utilizza le informazioni ricavate dagli studi esistenti riguardanti gli effetti termomeccanici in sedimenti di vario tipo sviluppati in altri ambiti, combinati con approfondimenti ad hoc in contesti connessi a sistemi BHE, con conduzione di un vasto programma di indagini di laboratorio, considerando un test site rappresentativo di contesti geologici frequentemente (pianure alluvionali distali) interessati dalla presenza di aree densamente urbanizzate. Tale studio ha consentito di utilizzare concetti di pericolosità connessa ai processi di congelamento e scongelamento di terreni, importandoli e contestualizzandoli con approccio innovativo, nella valutazione della pericolosità ambientale di sonde geotermiche.

4. Sviluppa, tramite la modellazione matematica agli elementi finiti, una stima del volume di terreno soggetto alle condizioni critiche di congelamento, considerando diverse condizioni ambientali e di esercizio, fornendo quindi anche una stima del rischio connesso con le variazioni indotte nelle proprietà geotecniche ed idrauliche dei sedimenti coinvolti.

5. Propone la generazione di una mappa della sensibilità del territorio all’alterazione delle condizioni termiche naturali del sottosuolo, che rappresenta un contributo innovativo a
livello scientifico, oltre a costituire un possibile strumento di ausilio alla gestione del territorio per quanto attiene i processi autorizzativi da parte degli enti competenti.

6. Evidenzia gli aspetti competenti agli scambi termici sonda-terreno, individuando i parametri significativi e la loro influenza, non solo nei processi di modificaizione delle proprietà microstrutturali dovute alle variazioni dello stato termico, ma anche in quelli competenti all’ambito energetico, fornendo indicazioni utili a possibili studi di efficienza energetica.

7. Produce una serie di conoscenze dei rischi connessi con la realizzazione e l’utilizzo di sistemi geotermici a circuito chiuso, fornendo un background culturale utile nelle varie fasi di fattibilità e progettazione di impianti, di autorizzazione alla realizzazione e di buona conduzione degli stessi.

Gabrielsson, A., Lehtmets, M., Moritz, L, Bergdahl, U, 1997. Heat storage in soft clay - Field tests with heating (70°C) and freezing of the soil. Swedish Geotechnical Institute, Report 53.

Johansson T (2009) Artificial ground freezing in clayey soils: laboratory and field studies of deformations during thawing at the Bothnia line.

Provincia di Venezia (AA.VV.), Sistemi idrologici della Provincia di Venezia, 2013

Provincia di Venezia (AA.VV.), Le unità geologiche della Provincia di Venezia, 2013
Bibliografia

APPENDICE
Un primo, speciale, ringraziamento ad Antonio, che mi ha permesso di ricominciare.

Per il lavoro svolto assieme, integrando competenze diverse, ringrazio:
Andrea Mazzuccato e Valentina Bassan del Servizio Geologico della Provincia di Venezia,
Hauke Anbergen e Wolfram Rühaak della Technische Universität di Darmstadt (Germania)
Eloisa Di Sipio del CNR-IGG
Michele Secco dell’Università di Padova

Un ringraziamento speciale a Zeno Farina per il lavoro ed il tempo passato a pensare,
a Simonetta Cola e a Fabio Tateo per tutte le conoscenze che mi avete trasmesso

Ad Antonio Galgaro, Fabio Tateo, Simonetta Cola, Mattia Donà, Eloisa Di Sipio, Zeno Farina, Laura
Agostini, Elisa Destro, Matteo Cultrera,
grazie grazie grazie
perché la cosa più appassionante del lavoro di questi tre anni
è stato ragionare e scoprire cose nuove insieme a voi!

Il ringraziamento maggiore a tutta la mia famiglia che mi sostiene sempre con amore e pazienza