Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Cudia, Paola (2016) Nuove metodiche riabilitative nelle malattie neuromuscolari e neurodegenerative. [Tesi di dottorato]

Full text disponibile come:

[img]Documento PDF - Versione sottomessa
Tesi non accessible fino a 22 Marzo 2019 per motivi correlati alla proprietà intellettuale.
Visibile a: nessuno

10Mb

Abstract (inglese)

Introduction Myotonic Dystrophy type I (DM1) and Hereditary Spastic Paraparesis (HSP) are inherited rare disorders characterized by severe muscular impairment. At present, no effective pharmacological treatment is available. To date, only a limited number of clinical studies on rehabilitation in DM1 and HSP patients have been conducted. Moreover there is an increasing need to identify innovative rehabilitation approaches, especially for those patients who are more severely compromised and therefore at a greater risk of adverse events. Functional Electrical Stimulation (FES) is a rehabilitative approach that combines electrical stimulation with a functional task. Several studies performed on patients with cerebrovascular disease or spinal cord lesions evidenced the positive effects of this approach in improving muscle mass, and cardiovascular performances. So far, no studies have been conducted on FES in rare diseases.
Objective The main objective of the study is to evaluate the safety and efficacy of FES-cycling in DM1 and HSP.

Design We conducted two controlled pilot studies. In the first we assessed patients with DM1 while in the second subjects with HSP. In each study, participants were divided in two groups matched for clinical variables, who performed two types of treatment: FES cycling training and conventional stretching, resistance and aerobic training. The modified MRC scale, Ashworth scale and functional assessments were performed before and after treatment. Cohen d effect size was used for statistical analysis.

Results FES induced lower extremity training was well tolerated and resulted in a greater improvement of tibialis anterior muscle strength (d= 1,583 DM1; d= 0.840 HSP), overall muscle strength (d=1,723 DM1; d= 0.582 HSP), spasticity (d= 1.334 HSP), walking speed (d= 0.820 HSP) and endurance (d=0,626 DM1) than conventional training

Conclusions FES might be considered a safe and valid tool to improve muscle function, also in muscles severely compromised in which no other restorative options are available. Confirmation of FES efficacy through further clinical trials is strongly advised.

Abstract (italiano)

Introduzione La Distrofia Miotonica di tipo 1 (DM1) e le Paraparesi Spastiche Ereditarie (HSP) sono malattie rare geneticamente determinate, caratterizzate da severo impairment motorio, per le quali non sono ancora disponibili trattamenti farmacologici risolutivi. Le opportunità riabilitative attualmente presenti in ambito neuromotorio, non sono ancora sufficientemente studiate. E’ crescente inoltre l’esigenza di individuare e ricorrere a metodiche riabilitative innovative, soprattutto per i pazienti con deficit neurologico più severo per i quali non è possibile attualmente alcun recupero motorio. L’Elettrostimolazione Funzionale (FES) è una metodica riabilitativa caratterizzata dalla somministrazione di correnti eccitatorie a livello neuromuscolare in associazione ad un task funzionale (es. cammino, pedalata). Gli studi finora condotti sulle malattie cerebrovascolari e sulle lesioni midollari, hanno dimostrato il ruolo di tale metodica nel contrastare l’atrofia ed aumentare la massa muscolare migliorando nel contempo le prestazioni cardiovascolari. Il suo impiego nelle malattie rare è innovativo e non è mai stata studiato.
Obiettivi L’obiettivo generale dello studio è quello di valutare la sicurezza e l’efficacia della FES-cycling nei pazienti affetti da DM1 e da HSP.
Disegno Sono stati condotti due studi pilota controllati. Nel primo sono stati considerati pazienti con diagnosi di DM1, nel secondo soggetti con diagnosi di HSP. In ciascuno studio i partecipanti sono stati suddivisi in due gruppi, omogenei per variabili cliniche, che hanno eseguito due tipi di trattamento : FES-cycling e training convenzionale comprendente esercizi di rinforzo, attività aerobica e stretching. La scala MRC modificata, la scala di Ashworth e le valutazioni funzionali sono state effettuate all’inizio ed al termine del trattamento riabilitativo. L’analisi statistica è stata condotta mediante l’indice d di Cohen.
Risultati Il trattamento con FES è stato ben tollerato ed è risultato più efficace del trattamento convenzionale nel migliorare la forza del muscolo tibiale anteriore (d= 1,583 DM1; d= 0.840 HSP), la forza muscolare globale (d= 1,723 DM1; d= 0.582 HSP), la spasticità, (d= 1.334 HSP), la velocità del cammino (d= 0.820 HSP), e la resistenza alla fatica (d= 0,626 DM1).
Conclusioni La FES può essere considerata una metodica sicura ed efficace nel migliorare le performances motorie, anche in muscoli severamente compromessi nei quali non sono possibili altri interventi terapeutici. La conferma dell’efficacia delle FES attraverso ulteriori trials clinici su vasta scala è auspicabile.

Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Angelini, Corrado
Dottorato (corsi e scuole):Ciclo 26 > Scuole 26 > SCIENZE MEDICHE, CLINICHE E SPERIMENTALI > NEUROSCIENZE
Data di deposito della tesi:22 Marzo 2016
Anno di Pubblicazione:22 Marzo 2016
Parole chiave (italiano / inglese):Distrofia Miotonica; Paraparesi Spastiche Ereditarie; riabilitazione; FES
Settori scientifico-disciplinari MIUR:Area 06 - Scienze mediche > MED/26 Neurologia
Struttura di riferimento:Dipartimenti > Dipartimento di Scienze Cardiologiche, Toraciche e Vascolari
Codice ID:9609
Depositato il:17 Ott 2016 12:19
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. Thornton CA. Myotonic dystrophy. Neurol Clin. 2014 Aug;32(3):705-19 Cerca con Google

2. Meola G, Cardani R. Myotonic dystrophies: An update on clinical aspects, genetic, pathology, and molecular pathomechanisms. Biochim Biophys Acta. 2015 Apr;1852(4):594-606 Cerca con Google

3. Chau A, Kalsotra A Developmental insights into the pathology of and therapeutic strategies for DM1: Back to the basics. Dev Dyn. 2015 Mar;244(3):377-90. Cerca con Google

4. Pettersson OJ, Aagaard L, Jensen TG, Damgaard CK. Molecular mechanisms in DM1 - a focus on foci. Nucleic Acids Res. 2015 Feb 27;43(4):2433-41. Cerca con Google

5. Hammaren E, Kjellby-Wendt G, Lindberg C. Muscle force, balance and falls in prospective cohort study. Neuromuscul Disord. Feb 2015;25(2):141-148. Cerca con Google

6. Hammaren E, Kjellby-Wendt G, Kowalski J, Lindberg C. Factors of importance for dynamic balance impairment and frequency of falls in individuals with myotonic dystrophy type 1 - a cross-sectional study - including reference values of Timed Up & Go, 10m walk and step test. Neuromuscul Disord. Mar 2014;24(3):207-215. Cerca con Google

7. Cudia P, Bernasconi P, Chiodelli R, Mangiola F, Bellocci F, Dello Russo A, Angelini C, Romeo V, Melacini P, Politano L, Palladino A, Nigro G, Siciliano G, Falorni M, Bongiorni MG, Falcone C, Mantegazza R, Morandi L. Risk of arrhythmia in type I myotonic dystrophy: the role of clinical and genetic variables. J Neurol Neurosurg Psychiatry 2009; 80(7): 790-793. Cerca con Google

8. Finsterer J, Stöllberger C, Maeztu C. Sudden cardiac death in neuromuscular disorders. Int J Cardiol. 2016 Jan 15;203:508-15. Cerca con Google

9. Russo V, Di Meo F, Rago A, Papa AA, Molino A, Mosella M, Politano L, Russo MG, Nigro G. Paroxysmal atrial fibrillation in myotonic dystrophy type 1 patients: P wave duration and dispersion analysis. Eur Rev Med Pharmacol Sci. 2015 Apr;19(7):1241-8. Cerca con Google

10. Lau JK, Sy RW, Corbett A, Kritharides L. Myotonic dystrophy and the heart: A systematic review of evaluation and management. Int J Cardiol. 2015 Apr 1;184:600-8. Cerca con Google

11. Dhand UK, Raja F, Aggarwal K. Structural myocardial involvement in adult patients with type 1 myotonic dystrophy. Neurol Int. 2013 Mar 21;5(1):e5. Cerca con Google

12. Laberge L, Gagnon C, Dauvilliers Y. Daytime sleepiness and myotonic dystrophy. Cerca con Google

Curr Neurol Neurosci Rep. 2013 Apr;13(4):340. Cerca con Google

13. Hilton-Jones D, Bowler M, Lochmueller H, Longman C, Petty R, Roberts M, Rogers M, Turner C, Wilcox D. Modafinil for excessive daytime sleepiness in myotonic dystrophy type 1--the patients' perspective.Neuromuscul Disord. 2012 Jul;22(7):597-603. Cerca con Google

14. Schneider-Gold C, Bellenberg B, Prehn C, Krogias C, Schneider R, Klein J, Gold R, Lukas C. Cortical and Subcortical Grey and White Matter Atrophy in Myotonic Dystrophies Type 1 and 2 Is Associated with Cognitive Impairment, Depression and Daytime Sleepiness. PLoS One. 2015 Jun 26;10(6):e0130352. Cerca con Google

15. Bertrand JA, Jean S, Laberge L, Gagnon C, Mathieu J, Gagnon JF, Richer L Psychological characteristics of patients with myotonic dystrophy type 1. Acta Neurol Scand. 2015 ; 132(1):49-58. Cerca con Google

16. Rakocevic-Stojanovic V, Peric S, Madzarevic R, Dobricic V, Ralic V, Ilic V, Basta I, Nikolic A, Stefanova E Significant impact of behavioral and cognitive impairment on quality of life in patients withmyotonic dystrophy type 1. Clin Neurol Neurosurg. 2014 Nov;126:76-81. Cerca con Google

17. Caso F, Agosta F, Peric S, Rakočević-Stojanović V, Copetti M, Kostic VS, Filippi M. Cognitive impairment in myotonic dystrophy type 1 is associated with white matter damage. PLoS One. 2014 Aug 12;9(8): Cerca con Google

18. Conforti R, de Cristofaro M, Cristofano A, Brogna B, Sardaro A, Tedeschi G, Cirillo S, Di Costanzo A. Brain MRI abnormalities in the adult form of myotonic dystrophy type 1: A longitudinal case series study. Neuroradiol J. 2016 Feb;29(1):36-45 Cerca con Google

19. Bianchi ML, Leoncini E, Masciullo M, Modoni A, Gadalla SM, Massa R, Rastelli E, Terracciano C, Antonini G, Bucci E, Petrucci A, Costanzi S, Santoro M, Boccia S, Silvestri G. Increased risk of tumor in DM1 is not related to exposure to common lifestyle risk factors.J Neurol. 2016 Mar;263(3):492-8. Cerca con Google

20. Tesson C, Koht J, Stevanin G. Delving into the complexity of hereditary spastic paraplegias: how unexpected phenotypes and inheritance modes are revolutionizing their nosology. Hum Genet. 2015 Jun; 134(6):511-38. Cerca con Google

21. Finsterer J, Löscher W, Quasthoff S, Wanschitz J, Auer-Grumbach M, Stevanin G. Hereditary spastic paraplegias with autosomal dominant, recessive, X-linked, or maternal trait of inheritance. J Neurol Sci. 2012 Jul 15;318(1-2):1-18 Cerca con Google

22. Lance JW. The control of muscle tone, reflexes, and movement: Robert Wartenberg Lecture. Neurology. 1980 Dec;30(12):1303-13 Cerca con Google

23. Harding AE. Hereditary spastic paraplegias. Semin Neurol. 1993 Dec;13:333-6. Cerca con Google

24. R, Wiethoff S, Martus P, Karle KN, Otto S, Klebe S, Klimpe S, Gallenmüller C, Kurzwelly D, Henkel D, Rimmele F, Stolze H, Kohl Z, Kassubek J, Klockgether T, Vielhaber S, Kamm C, Klopstock T, Bauer P, Züchner S, Liepelt-Scarfone I, Schöls L. Hereditary Spastic Paraplegia -clinico-genetic lessons from 608 patients. Ann Neurol. 2016 Feb 9. Cerca con Google

25. Lo Giudice T1, Lombardi F2, Santorelli FM3, Kawarai T4, Orlacchio A.Hereditary spastic paraplegia: clinical-genetic characteristics and evolving molecular mechanisms. Exp Neurol. 2014 Nov;261:518-39 Cerca con Google

26. Hekman KE, Gomez CM The autosomal dominant spinocerebellar ataxias: emerging mechanistic themes suggest pervasive Purkinje cell vulnerability. J Neurol Neurosurg Psychiatry. 2015 May;86(5):554-61 Cerca con Google

27. Shakkottai VG, Fogel BL Clinical neurogenetics: autosomal dominant spinocerebellar ataxia. Neurol Clin. 2013 Nov;31(4):987-1007 Cerca con Google

28. Rossi M, Perez-Lloret S, Doldan L, Cerquetti D, Balej J, Millar Vernetti P, Hawkes H, Cammarota A, Merello M Autosomal dominant cerebellar ataxias: a systematic review of clinical features. Eur J Neurol. 2014 Apr;21(4):607-15. Cerca con Google

29. Harding AE Classification of the hereditary ataxias and paraplegias. Lancet. 1983 May 21;1(8334):1151-5. Cerca con Google

30. Whaley NR, Fujioka S, Wszolek ZK. Autosomal dominant cerebellar ataxia type I: a review of the phenotypic and genotypic characteristics. Orphanet J Rare Dis. 2011 May 28;6:33. Cerca con Google

31. Rüb U, Schöls L, Paulson H, Auburger G, Kermer P, Jen JC, Seidel K, Korf HW, Deller T. Clinical features, neurogenetics and neuropathology of the polyglutamine spinocerebellar ataxias type 1, 2, 3, 6 and 7. Prog Neurobiol. 2013 May;104:38-66. Cerca con Google

32. Ju H, Kokubu H, Lim J Beyond the glutamine expansion: influence of posttranslational modifications of ataxin-1 in the pathogenesis of spinocerebellar ataxia type 1. Mol Neurobiol. 2014 Dec;50(3):866-74. Cerca con Google

33. Klinke I, Minnerop M, Schmitz-Hübsch T, Hendriks M, Klockgether T, Wüllner U, Helmstaedter C. Neuropsychological features of patients with spinocerebellar ataxia (SCA) types 1, 2, 3, and 6. Cerebellum. 2010 Sep;9(3):433-42. Cerca con Google

34. Seidel K, Siswanto S, Brunt ER, den Dunnen W, Korf HW, Rüb U. Brain pathology of spinocerebellar ataxias. Acta Neuropathol. 2012 Jul;124(1):1-21 Cerca con Google

35. Doucet BM, Lam A, Griffin L. Neuromuscular electrical stimulation for skeletal muscle function. Yale J Biol Med. Jun 2012;85(2):201-215. Cerca con Google

36. Hunt KJ, Fang J, Saengsuwan J, Grob M, Laubacher M.On the efficiency of FES cycling: a framework and systematic review. Technol Health Care. 2012;20(5):395-422. Cerca con Google

37. Davis GM, Hamzaid NA, Fornusek C. Cardiorespiratory, metabolic, and biomechanical responses during functional electrical stimulation leg exercise: health and fitness benefits. Artif Organs. 2008 Aug;32(8):625-9. Cerca con Google

38. Barber L, Scicchitano BM, Musaro A. Molecular and Cellular Mechanisms of Muscle Aging and Sarcopenia and Effects of Electrical Stimulation in Seniors. Eur J Transl Myol. 2015 Aug 25;25(4):231-6 Cerca con Google

39. Johnston TE, Marino RJ, Oleson CV, et al. Musculoskeletal Effects of Two Functional Electrical Stimulation Cycling Paradigms Conducted at Different Cadences for People with Spinal Cord Injury: a Pilot Study. Arch Phys Med Rehabil. Dec 16 2015. Cerca con Google

40. Ambrosini E, Ferrante S, Pedrocchi A, Ferrigno G, Molteni F. Cycling induced by electrical stimulation improves motor recovery in postacute hemiparetic patients: a randomized controlled trial. Stroke. Apr 2011;42(4):1068-1073. Cerca con Google

41. Sadowsky CL, Hammond ER, Strohl AB, et al. Lower extremity functional electrical stimulation cycling promotes physical and functional recovery in chronic spinal cord injury. J Spinal Cord Med. Nov 2013;36(6):623-631. Cerca con Google

42. Berry HR, Perret C, Saunders BA, et al. Cardiorespiratory and power adaptations to stimulated cycle training in paraplegia. Med Sci Sports Exerc. Sep 2008;40(9):1573-1580. Cerca con Google

43. Karavidas A, Parissis JT, Matzaraki V, et al. Functional electrical stimulation is more effective in severe symptomatic heart failure patients and improves their adherence to rehabilitation programs. J Card Fail. Mar 2010;16(3):244-249. Cerca con Google

44. Woods AJ, Antal A, Bikson M, Boggio PS, Brunoni AR, Celnik P, Cohen LG, Fregni F, Herrmann CS, Kappenman ES, Knotkova H, Liebetanz D, Miniussi C, Miranda PC, Paulus W, Priori A, Reato D, Stagg C, Wenderoth N, Nitsche MA. A technical guide to tDCS, and related non-invasive brain stimulation tools. Clin Neurophysiol. 2016 Feb;127(2):1031-48. Cerca con Google

45. Braun R, Klein R, Walter HL, Ohren M, Freudenmacher L, Getachew K, Ladwig A, Luelling J, Neumaier B, Endepols H, Graf R, Hoehn M, Fink GR, Schroeter M, Rueger MA. Transcranial direct current stimulation accelerates recovery of function, induces neurogenesis and recruits oligodendrocyte precursors in a rat model of stroke.Exp Neurol. 2016 Feb 26;279:127-136 Cerca con Google

46. Meinzer M, Darkow R, Lindenberg R, Flöel A.Electrical stimulation of the motor cortex enhances treatment outcome in post-stroke aphasia. Brain. 2016 Feb 16. pii: aww002. [Epub ahead of print] Cerca con Google

47. Grimaldi G, Argyropoulos GP, Bastian A, Cortes M, Davis NJ, Edwards DJ, Ferrucci R, Fregni F, Galea JM, Hamada M, Manto M, Miall RC, Morales-Quezada L, Pope PA, Priori A, Rothwell J, Tomlinson SP, Celnik P. Cerebellar Transcranial Direct Current Stimulation (ctDCS): A Novel Approach to Understanding Cerebellar Function in Health and Disease. Neuroscientist. 2016 Feb;22(1):83-97 Cerca con Google

48. Ferrucci R, Cortese F, Priori A. Cerebellar tDCS: how to do it.Cerebellum. 2015 Feb;14(1):27-30. Cerca con Google

49. Priori A, Ciocca M, Parazzini M, Vergari M, Ferrucci R. Transcranial cerebellar direct current stimulation and transcutaneous spinal cord direct current stimulation as innovative tools for neuroscientists. J Physiol. 2014 Aug 15;592(16):3345-69. Cerca con Google

50. Galea JM, Jayaram G, Ajagbe L, Celnik P. Modulation of cerebellar excitability by polarity- specific noninvasive direct current stimulation.J Neurosci. 2009 Jul 15;29(28):9115-22. Cerca con Google

51. Keshner E. A. Virtual reality and physical rehabilitation: a new toy or a new research and rehabilitation tool? Journal of NeuroEngineering and Rehabilitation. 2004;1, article 8 Cerca con Google

52. Holden M. K. Virtual environments for motor rehabilitation: review. Cyberpsychology & Behavior. 2005;8(3):187–211. Cerca con Google

53. Udd B, Krahe R. The myotonic dystrophies: molecular, clinical, and therapeutic challenges. Lancet Neurol. Oct 2012;11(10):891-905. Cerca con Google

54. Theadom A, Rodrigues M, Roxburgh R, et al. Prevalence of muscular dystrophies: a systematic literature review. Neuroepidemiology. 2014;43(3-4):259-268. Cerca con Google

55. Voet NB, van der Kooi EL, Riphagen, II, Lindeman E, van Engelen BG, Geurts A. Strength training and aerobic exercise training for muscle disease. Cochrane Database Syst Rev. 2010(1):CD003907. Cerca con Google

56. Kierkegaard M, Harms-Ringdahl K, Edstrom L, Widen Holmqvist L, Tollback A. Feasibility and effects of a physical exercise programme in adults with myotonic dystrophy type 1: a randomized controlled pilot study. J Rehabil Med. Jul 2011;43(8):695-702. Cerca con Google

57. Lindeman E, Leffers P, Spaans F, et al. Strength training in patients with myotonic dystrophy and hereditary motor and sensory neuropathy: a randomized clinical trial. Arch Phys Med Rehabil. Jul 1995;76(7):612-620. Cerca con Google

58. Orngreen MC, Olsen DB, Vissing J. Aerobic training in patients with myotonic dystrophy type 1. Ann Neurol. May 2005;57(5):754-757. Cerca con Google

59. Tollback A, Eriksson S, Wredenberg A, et al. Effects of high resistance training in patients with myotonic dystrophy. Scand J Rehabil Med. Mar 1999;31(1):9-16. Cerca con Google

60. Sackley CM, Disler PB, Turner-Stokes L, Wade DT, Brittle N, Hoppitt T. WITHDRAWN: Rehabilitation interventions for foot drop in neuromuscular disease. Cochrane Database Syst Rev. 2015;2:CD003908. Cerca con Google

61. Chisari C, Bertolucci F, Dalise S, Rossi B. Chronic muscle stimulation improves muscle function and reverts the abnormal surface EMG pattern in myotonic dystrophy: a pilot study. J Neuroeng Rehabil. 2013;10:94. Cerca con Google

62. Mathieu J, Boivin H, Meunier D, Gaudreault M, Begin P. Assessment of a disease-specific muscular impairment rating scale in myotonic dystrophy. Neurology. Feb 13 2001;56(3):336-340. Cerca con Google

63. Florence JM, Van Der Ploeg A, Clemens PR, Escolar DM, P. L. Use of the 6 min walk test as an endpoint in clinical trials for neuromuscular diseases. Neuromuscular Disorders 2008;18:738-739. Cerca con Google

64. Kierkegaard M, Tollback A. Reliability and feasibility of the six minute walk test in subjects with myotonic dystrophy. Neuromuscul Disord. Dec 2007;17(11-12):943-949. Cerca con Google

65. Mercuri E, Bushby K, Ricci E, et al. Muscle MRI findings in patients with limb girdle muscular dystrophy with calpain 3 deficiency (LGMD2A) and early contractures. Neuromuscul Disord. Feb 2005;15(2):164-171. Cerca con Google

66. Cohen J. Statistical power analysis for the behavioural sciences. Second ed. Hillsdale, New Jersey: Lawrence Erlbaum Associates 1988. Cerca con Google

67. Marini M, Veicsteinas A. The exercised skeletal muscle: a review. European Journal Translational Myology - Myology reviews 2010;20(3):15. Cerca con Google

68. Baskin KK, Winders BR, Olson EN. Muscle as a "mediator" of systemic metabolism. Cell Metab. Feb 3 2015;21(2):237-248. Cerca con Google

69. Dubowitz V, Sewry CA. Muscle biopsy : a practical approach. 3rd. ed. Philadelphia: Saunders Elsevier; 2007. Cerca con Google

70. Ciciliot S, Rossi AC, Dyar KA, Blaauw B, Schiaffino S. Muscle type and fiber type specificity in muscle wasting. Int J Biochem Cell Biol. Oct 2013;45(10):2191-2199. Cerca con Google

71. Gondin J, Brocca L, Bellinzona E, et al. Neuromuscular electrical stimulation training induces atypical adaptations of the human skeletal muscle phenotype: a functional and proteomic analysis. J Appl Physiol (1985). Feb 2011;110(2):433-450. Cerca con Google

72. Hollingsworth KG, de Sousa PL, Straub V, Carlier PG. Towards harmonization of protocols for MRI outcome measures in skeletal muscle studies: consensus recommendations from two TREAT-NMD NMR workshops, 2 May 2010, Stockholm, Sweden, 1-2 October 2009, Paris, France. Neuromuscul Disord. Oct 1 2012;22 Suppl 2:S54-67. Cerca con Google

73. Willis TA, Hollingsworth KG, Coombs A, et al. Quantitative magnetic resonance imaging in limb-girdle muscular dystrophy 2I: a multinational cross-sectional study. PLoS One. 2014;9(2):e90377. Cerca con Google

74. Iwatsu K, Yamada S, Iida Y, et al. Feasibility of neuromuscular electrical stimulation immediately after cardiovascular surgery. Arch Phys Med Rehabil. Jan 2015;96(1):63-68. Cerca con Google

75. Wang YH, Meng F, Zhang Y, Xu MY, Yue SW. Full-movement neuromuscular electrical stimulation improves plantar flexor spasticity and ankle active dorsiflexion in stroke patients: A randomized controlled study. Clin Rehabil. 2015 Aug 20. pii: 0269215515597048. [Epub ahead of print] Cerca con Google

76. Yaşar E, Yılmaz B, Göktepe S, Kesikburun S The effect of functional electrical stimulation cycling on late functional improvement in patients with chronic incomplete spinal cord injury. Spinal Cord. 2015 Dec;53(12):866-9. Cerca con Google

77. Hultborn H, Illert M, Nielsen J, Paul A, Ballegaard M, Wiese H. On the mechanism of the post-activation depression of the H-reflex in human subjects. Exp Brain Res. 1996 Mar;108(3):450-62. Cerca con Google

78. Grey MJ, Klinge K, Crone C, Lorentzen J, Biering-Sørensen F, Ravnborg M, Nielsen JB. Post-activation depression of soleus stretch reflexes in healthy and spastic humans. Exp Brain Res. 2008 Feb;185(2):189-97. Cerca con Google

79. Trompetto C, Marinelli L, Mori L, Cossu E, Zilioli R, Simonini M, Abbruzzese G, Baratto L. Postactivation depression changes after robotic-assisted gait training in hemiplegic stroke patients.Gait Posture. 2013 Sep;38(4):729-33. Cerca con Google

80. Marsden J, Stevenson V, McFadden C, Swain I, Taylor P. The effects of functional electrical stimulation on walking in hereditary and spontaneous spastic paraparesis. Neuromodulation. 2013 May-Jun;16(3):256-60 Cerca con Google

81. Pozzi NG, Minafra B, Zangaglia R, De Marzi R, Sandrini G, Priori A, Pacchetti C. Transcranial direct current stimulation (tDCS) of the cortical motor areas in three cases of cerebellar ataxia. Cerebellum. 2014 Feb;13(1):109-12 Cerca con Google

82. Benussi A, Koch G, Cotelli M, Padovani A, Borroni B. Cerebellar transcranial direct current stimulation in patients with ataxia: A double-blind, randomized, sham-controlled study. Mov Disord. 2015 Oct;30(12):1701-5. Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record