Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Peluso, Diletta (2016) Advanced Echocardiographic Evaluation of Right Ventricular Function in Patients with Pulmonary Hypertension. [Ph.D. thesis]

Full text disponibile come:

[img]
Preview
PDF Document
2764Kb

Abstract (italian or english)

Background: the right ventricle (RV) is a complex shaped cardiac chamber, whose pump function is mainly driven by a longitudinal deformation, as showed by anatomical studies. Conventional echocardiography showed several limitations in the analysis of RV size and function. RV systolic dysfunction is an important prognostic factor in several pathological condition, among which pulmonary hypertension (PH). However, the progression of RV mechanical changes that lead to the RV pump function impairment remains to be clarified. The new echocardiographic techniques, two dimensional-speckle tracking (2D-STE) and three-dimensional echocardiography (3DE), allow to investigate volumes, ejection fraction and myocardial mechanics of the RV. Moreover, we developed a custom-made software package that applied to the 3DE beutel of the RV allows to discriminate between the relative contribution of the longitudinal and radial displacement to the global RV pump function.
Purpose: to value the mechanics of RV in healthy condition, in presence of systemic sclerosis (SSc), a condition predisposing to PH, and in presence of PH.
Methods: we enrollled 270 healthy subjects, 75 patients affected by SSc (a pathological condition at high risk of PH), without PH, and 59 patients affected by PH (excluded PH type 2). Some of PH patients underwent to more than one echocardiograms, for a total of 81 exams. 57 age- and gender-matched healthy volunteers have been selected. All subjects underwent a complete echocardiogram, including dedicated 3DE acquisition of the RV. A dedicated software has been applied on apical 2D image of the RV in order to measure the longitudinal strain (LS) and the transversal displacement (TD) of both the free-wall (RVFW) and the interventricular septum (IVS). 3DE data sets of the RV have been analyzed by RV function 2.0 (TomTec) in order to obtain volumes and ejection fraction (RVEF). Then PH have been divided according to RV-EF: preserved (≥45%) or impaired (<45%). Finally, the 3DE RV beutels were analyzed by our custom made software package obtaining the longitudinal EF (LongEF) and radial EF (RadEF) and their relative contribution to RVEF by calculating the ratios LongEF/RVEF and RadEF/RVEF.
Results: the analysis of the healthy volunteers provided reference values of RV volumes, ejection fraction, LS and TD. The 3DE RV beutel analysis showed that in healthy subjects the relative contribution of longitudinal and radial motion is equal. In SSc patients no significant differences about RV size and function have been demonstrated. PH patients showed significantly larger 3DE RV end-diastolic and end-systolic volumes (106±39 ml vs 67 ±14 ml and 65±33 vs 28±7 ml, respectively; p<0.0001), lower 3D RVEF (41±11% vs 58±4%; p<0.0001), lower LS values and impaired TD values than controls. Similarly, both LongEF and RadEF were lower (18±7% vs 27±4% and 15±7% vs 27±5%, respectively; p<0.0001) in PH patients. However, only the RadEF/RVEF appeared impaired (36±11 vs 47±6, p<0.0001), whereas LongEF/RVEF (47±9 vs 47±6, p=NS) was similar between pts and controls. Looking at the subgroup of patients with reduced RVEF, RV pump dysfunction was mainly driven by progressive reduction of the radial component of RV wall displacement.
Conclusions: in healthy condition, the radial component of RV wall displacement is as important as the longitudinal one to determine global RV pump function. In patients with PH, the impairment of RV pump function seems to be mainly driven by the progressive reduction of RV radial displacement.

Abstract (a different language)

Presupposti: il ventricolo destro (VDx) è una cavità cardiaca di forma complessa la cui funzione di pompa in condizioni di normalità sembra essere determinata prevalentemente dall’accorciamento longitudinale. Tale affermazione deriva da studi anatomici che hanno mostrato come nella parete ventricolare destra, lo strato di fibre miocardiche longitudinali sia il più rappresentato. L’ecocardiografia convenzionale dimostra numerosi limiti nello studio delle dimensioni e della funzione del VDx, legati principalmente alla complessità della sua forma e meccanica. Tuttavia, la funzione ventricolare destra ha dimostrato essere un importante fattore prognostico in alcune condizioni patologiche, tra cui l’ipertensione polmonare (PH). E’ tuttora sconosciuta la sequenza di eventi che conducono alla disfunzione di pompa globale del VDx nei soggetti affetti da PH. Due metodiche ecocardiografiche di recente introduzione, lo speckle-tracking bidimensionale e l’ecocardiografia tridimensionale, permettono una più accurata valutazione delle dimensioni e funzione della cavità ventricolare destra. In particolare, consentono di valutare i volumi e la forma del VDx, la funzione di pompa globale e la sua meccanica miocardica, in termini di deformazione longitudinale e trasversale.
Scopo dello studio: valutare la meccanica del ventricolo destro in condizioni di normalità ed in presenza di PH, definendo le alterazioni meccaniche che determinano la progressiva disfunzione di pompa globale del VDx che caratterizza la storia clinica dei pazienti affetti da PH.
Materiali e metodi: sono stati arruolati 270 soggetti sani, 75 pazienti affetti da sclerosi sistemica (in quanto popolazione ad alto rischio di sviluppare PH) senza PH e 59 pazienti affetti da PH (esclusa PH tipo 2). In quest’ultimo gruppo alcuni soggetti sono stati sottoposti a più di un esame ecocardiografico, a distanza di tempo, per un totale di 81 ecocardiogrammi. Dalla popolazione di soggetti sani è stato scelto un campione di 57 soggetti sovrapponibile per età e sesso alle due popolazioni patologiche. Tutti i pazienti sono stati sottoposti ad almeno un ecocardiogramma completo, comprensivo di acquisizioni tridimensionali del VDx. Mediante un software dedicato da un’immagine bidimensionale dedicata per il VDx è stata eseguita l’analisi speckle tracking che ha permesso di valutare lo strain longitudinale e la deformazione trasversale della parete libera e del setto interventricolare. Il data set tridimensionale è stato analizzato mediante un software dedicato che ha permesso di misurare i volumi e la frazione di eiezione del VDx. Il beutel tridimensionale così ottenuto è stato successivamente analizzato con un software ad hoc che ha permesso di stimare separatamente il contributo longitudinale e radiale alla genesi della frazione di eiezione del VDx.
Risultati: dall’analisi del gruppo di soggetti sani sono stati ottenuti i valori di normalità di volume telediastolico e telesistolico, frazione di eiezione, strain longitudinale e displacement trasversale del VDx. Dall’analisi del beutel tridimensionale del VDx è emerso che la deformazione longitudinale e radiale contribuiscono in eguale misura alla funzione di pompa globale del VDx. I soggetti affetti da sclerosi sistemica hanno dimostrato valori leggermente superiori di pressione sistolica in arteria polmonare e resistenze vascolari polmonari totali rispetto ai soggetti sani, seppure senza raggiungere i criteri patologici. Invece, i valori di dimensione e funzione del VDx sono risultati sovrapponbili rispetto ai controlli sani. I pazienti affetti da PH hanno dimostrato volumi del VDx sensibilmente superiori con una ridotta frazione di eiezione. Le componenti longitudinale e radiale della frazione di eiezione sono risultate entrambe ridotte, ma in particolare il contributo relativo radiale ha dimostrato essere quello maggiormente alterato. Per quanto riguarda la meccanica miocardica, lo strain longitudinale della parete libera e del setto interventricolare è risultato ridotto ed anche la deformazione trasversale globale è risultata alterata. In particolare nei soggetti con PH, soprattutto la meccanica del setto interventricolare ha dimostrato di essere alterata, con una minore entotà di spostamento sistolico dello stesso verso il centro della cavità ventricolare sinistra. Dividendo i pazienti con PH in due gruppi (con frazione di eiezione conservata e frazione di eiezione ridotta), è stato possibile dimostrare che tutti i parametri di funzione e deformazione del VDx sono maggiormente alterati nel secondo gruppo. Tuttavia, mentre il contributo longitudinale alla frazione di eiezione è risultato preservato, il contributo radiale ha dimostrato di essere significativamente ridotto.
Conclusioni: in condizioni di normalità la funzione ventricolare destra sembra essere determinata in egual misura dalla deformazione longitudinale e radiale. In presenza di ipertensione polmonare, il progressivo deterioramento della funzione di pompa del VDx è veicolata prevalentemente da una riduzione del contributo radiale.

Statistiche Download
EPrint type:Ph.D. thesis
Tutor:Iliceto, Sabino
Ph.D. course:Ciclo 28 > Scuole 28 > SCIENZE MEDICHE, CLINICHE E SPERIMENTALI > SCIENZE CARDIOVASCOLARI
Data di deposito della tesi:27 June 2016
Anno di Pubblicazione:27 June 2016
Key Words:Pulmonary Hypertension; Echocardiography; Right Ventricle; Right Ventricular Function; Three-dimensional Echocardiography; Two-dimensional Speckle Tracking Echocardiography.
Settori scientifico-disciplinari MIUR:Area 06 - Scienze mediche > MED/11 Malattie dell'apparato cardiovascolare
Struttura di riferimento:Dipartimenti > Dipartimento di Scienze Cardiologiche, Toraciche e Vascolari
Codice ID:9654
Depositato il:03 Nov 2017 09:40
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. Hoeper MM, Bogaard HJ, Condliffe R et al. Definitions and diagnosis of pulmonary hypertension. J Am Coll Cardiol 2013;62(25 Suppl):D42–D50. 
 Cerca con Google

2. Galiè N, Humbert M, Vachiery JL et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Heart J 2016;37(1):67-119. Cerca con Google

3. Simonneau G, Galie` N, Rubin LJ et al. Clinical classification of pulmonary hypertension. J Am Coll Cardiol 2004;43(Suppl 1):S5–S12. Cerca con Google

4. Hatano S, Strasser T. World Health Organization 1975. Primary pulmonary hypertension. Geneva: WHO; 1975. 
 Cerca con Google

5. Humbert M, Maitre S, Capron F, Rain B, Musset D, Simonneau G. Pulmonary edema complicating continuous intravenous prostacyclin in pulmonary capillary hemangiomatosis. Am J Crit Care Med 1998;157:1681–5. 
 Cerca con Google

6. Resten A, Maitre S, Musset D, et al. Pulmonary arterial hypertension; thin-section CT predictors of epoprostenol failure. Radiology 2002; 222:782–8. 
 Cerca con Google

7. Dorfmu ̈ller P, Humbert M, Sanchez O, et al. Significant occlusive lesions of pulmonary veins are in common with pulmonary hypertension (PH) associated to connective tissue (CTD) (abstr). Am J Crit Care Med 2003;167:A694. 
 Cerca con Google

8. Ruchelli ED, Nojadera G, Rutstein RM, Rudy B. Pulmonary veno-occlusive disease: another vascular disorder associated with human immunodeficiency virus infection? Arch Pathol Lab Med 1994;118: 664 –6. Cerca con Google

9. Escamilla R, Hermant C, Berjaud KL, Mazerolles C, Daussy X. Pulmonary veno-occlusive disease in a HIV-infected intravenous drug abuser. Eur Respir J 1995;8:1982–4. 
 Cerca con Google

10. Woordes CG, Kuipers JRG, Elema J. Familial pulmonary venoocclusive disease: a case report. Thorax 1977;32:763–6. 
 Cerca con Google

11. Langleben D, Heneghan JM, Batten AP, et al. Familial pulmonary capillary hemangiomatosis resulting in primary pulmonary hypertension. Ann Intern Med 1988;109 (2):106 –9. Cerca con Google

12. Galiè N, Hoeper MM, Humbert M et al; ESC Committee for Practice Guidelines (CPG). Guidelines for the diagnosis and treatment of pulmonary hypertension: the Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS), endorsed by the International Society of Heart and Lung Transplantation (ISHLT). Eur Heart J 2009;30(20):2493-2537. Cerca con Google

13. Machado RD, Aldred MA, James V et al. Mutations of the TGF-beta type II recep- tor BMPR2 in pulmonary arterial hypertension. Hum Mutat 2006;27:121–132. 
 Cerca con Google

14. Machado R, Eickelberg O, Elliott CG et al. Genetics and genomics of pulmonary arterial hypertension. J Am Coll Cardiol 2009;54:S32–S42. 
 Cerca con Google

15. Galie` N, Manes A, Palazzini M et al. Management of pulmonary arterial hypertension associated with congenital systemic-to-pulmonary shunts and Eisenmenger’s syndrome. Drugs 2008;68:1049–1066 
 Cerca con Google

16. Lapa MS, Ferreira EV, Jardim C, Martins BC, Arakaki JS, Souza R. Clinical characteristics of pulmonary hypertension patients in two reference centers in the city of Sao Paulo. Rev Assoc Med Bras 2006;52:139–143 
 Cerca con Google

17. Dhillon R. The management of neonatal pulmonary hypertension. Arch Dis Child Fetal Neonatal Ed 2012;97:F223–F228. Cerca con Google

18. Porta NF, Steinhorn RH. Pulmonary vasodilator therapy in the NICU: inhaled ni- tric oxide, sildenafil, and other pulmonary vasodilating agents. Clin Perinatol 2012; 39:149 – 164. Cerca con Google

19. Ivy DD, Abman SH, Barst RJ et al. Pediatric pulmonary hypertension. J Am Coll Cardiol 2013;62:D117–D126. Cerca con Google

20. Hoeper MM, Humbert M, Souza R et al. A global view of pulmonary hypertension. Lancet 2016; 4: 306-322. Cerca con Google

21. Peacock AJ, Murphy NF, McMurray JJ, Caballero L, Stewart S. An epidemiological study of pulmonary arterial hypertension. Eur Respir J 2007;30:104-109 Cerca con Google

22. Humbert M, Sitbon O, Chaouat A et al. Pulmonary arterial hypertension in France: results from a national registry. Am J Respir Crit Care Med 2006;173:1023–1030 Cerca con Google

23. Spagnolo P, Cordier JF, Cottin V. Connective tissue diseases, multimorbidity and the ageing lung. Eur Resp J 2016; 47(5):1535-58. Cerca con Google

24. McLaughlin VV, Archer SL, Badesch DB et al; American College of Cardiology Foundation Task Force on Expert Consensus Documents; American Heart Association; American College of Chest Physicians; American Thoracic Society, Inc; Pulmonary Hypertension Association. ACCF/AHA 2009 expert consensus document on pulmonary hypertension a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents and the American Heart Association developed in collaboration with the American College of Chest Physicians; American Thoracic Society, Inc.; and the Pulmonary Hypertension Association.J Am Coll Cardiol. 2009;53(17):1573-1619. Cerca con Google

25. Rich S, Dantzker DR, Ayres SM et al. Primary pulmonary hypertension. A national prospective study. Ann Intern Med. 1987;107:216-223 Cerca con Google

26. Simonneau G, Robbins IM, Beghetti M et al. Updated clinical classification of pulmonary hypertension. JACC 2009;54(Suppl):S43-54 Cerca con Google

27. Vachiéry JL, Adir Y, Barberà JA et al. Pulmonary hypertension due to left heart diseases. JACC 2013;62(25 Suppl):D100-108. Cerca con Google

28. Fang JC, DeMarco T, Givertz MM et al. World Health Organization Pulmonary Hypertension group 2: pulmonary hypertension due to left heart disease in the adult--a summary statement from the Pulmonary Hypertension Council of the International Society for Heart and Lung Transplantation. J Heart Lung Transplant 2012;31:913-933. Cerca con Google

29. Ghio S, Gavazzi A, Campana C et al. Independent and additive prognostic value of right ventricular systolic function and pulmonary artery pressure in patients with chronic heart failure. JACC 2001;37(1):183-188 Cerca con Google

30. Thenappan T, Shah SJ, Gomberg-Maitland M et al. Clinical characteristics of pulmonary hypertension in patients with heart failure and preserved ejection fraction. Circ Heart Fail 2011;4(3):257-265. Cerca con Google

31. Seeger W, Adir Y, Barberà JA et al. Pulmonary hypertension in chronic lung diseases. J Am Coll Cardiol 2013;62(Suppl 25):D109 – D116 Cerca con Google

32. Hurdman J, Condliffe R, Elliot CA et al. Pulmonary hypertension in COPD: results from the ASPIRE registry. Eur Respir J 2013;41(6):1292–1301 Cerca con Google

33. Cottin V, Nunes H, Brillet PY et al; Groupe d'Etude et de Recherche sur les Maladies Orphelines Pulmonaires (GERM O P). Combined pulmonary fibrosis and emphysema: a distinct underrecognised entity. Eur Respir J 2005;26(4):586 –593 Cerca con Google

34. Thabut G, Dauriat G, Stern JB et al. Pulmonary hemodynamics in advanced COPD candidates for lung volume reduction surgery or lung transplantation. Chest 2005;127(5):1531-1536. Cerca con Google

35. Chaouat A, Bugnet AS, Kadaoui N et al. Severe pulmonary hypertension and chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2005;172(2):189-194. Cerca con Google

36. Oswald-Mammosser M, Weitzenblum E, Quoix E et al. Prognostic factors in COPD patients receiving long-term oxygen therapy. Importance of pulmonary artery pressure. Chest 1995;107:1193-98. Cerca con Google

37. Lettieri CJ, Nathan SD, Barnett SD, Ahmad S, Shorr AF. Prevalence and outcomes of pulmonary arterial hypertension in advanced idiopathic pulmonary fibrosis. Chest 2006;129(3):746-752. Cerca con Google

38. Escribano-Subias P, Blanco I, López-Meseguer M et al; REHAP investigators. Survival in pulmonary hypertension in Spain: insights from the Spanish registry. Eur Respir J 2012;40(3):596-603 Cerca con Google

39. Pengo V, Lensing AW, Prins MH et al; Thromboembolic Pulmonary Hypertension Study Group. Incidence of chronic thromboembolic pulmonary hypertension after pulmonary embolism. N Engl J Med. 2004;350(22):2257-2264 Cerca con Google

40. Pepke-Zaba J, Delcroix M, Lang I et al. Chronic thromboembolic pulmonary hypertension (CTEPH): results from an international prospective registry. Circulation 2011;124(18):1973-1981 Cerca con Google

41. Pietra GG, Capron F, Stewart S et al. Pathologic assessment of vasculopathies in pulmonary hypertension. 
J Am Coll Cardiol 2004;43(12 Suppl S):25S–32S. Cerca con Google

42. Tuder RM, Abman SH, Braun T et al. Pulmonary circulation: development and pathology. J Am Coll Cardiol 2009;54(1 Suppl):S3-S9. Cerca con Google

43. Tuder RM, Archer SL, Dorfmüller P et al. Relevant issues in the pathology and pathobiology of pulmonary hypertension. JACC 2013;62(25 Suppl):D4-12. Cerca con Google

44. Heath D, Edwards JE. The pathology of hypertensive pulmonary vascular disease; a description of six grades of structural changes in the pulmonary arteries with special reference to congenital cardiac septal defects. Circulation 1958;18(4 Part 1):533–547. Cerca con Google

45. Heath D, Helmholz HF Jr, Burchell HB, Dushane JW, Edwards JE. Graded pulmonary vascular changes and hemodynamic findings in cases of atrial and ventricular septal defect and patent ductus arteriosus. Circulation 1958;18(6):1155–1166. Cerca con Google

46. Smith, P, Heath D. Electron microscopy of the plexiform lesion. Thorax 1979;34(2):177-186. Cerca con Google

47. de Jesus Perez VA. Molecular pathogenesis and current pathology of pulmonary hypertension. Heart Fail Rev 2016; 21(3): 239-57. Cerca con Google

48. Stacher E, Graham BB, Hunt JM et al. Modern age pathology of pulmonary arterial hypertension. Am J Respir Crit Care Med 2012;186(3):261–272. Cerca con Google

49. Fedullo PF, Auger WR, Kerr KM, Rubin LJ. Chronic thromboembolic pulmonary hypertension. N Engl J Med 2001;345(20):1465–1472. Cerca con Google

50. Galie N, Kim NHS. Pulmonary microvascular disease in chronic thromboembolic pulmonary hypertension. Proc Am Thorac Soc 2006;3(7):571–576. Cerca con Google

51. Humbert M, Morrell NW, Archer SL et al. Cellular and molecular pathobiology of pulmonary arterial hypertension. Am Coll Cardiol 2004;43(12 Suppl S):13S–24S. Cerca con Google

52. Hassoun PM, Mouthon L, Barberà JA et al. Inflammation, growth factors, and pulmonary vascular remodeling. J Am Coll Cardiol 2009;54(1 Suppl):S10–S19. Cerca con Google

53. Morrell NW, Adnot S, Archer SL et al. Cellular and molecular basis of pulmonary arterial hypertension. J Am Coll Cardiol 2009;54(1 Suppl):S20–S31 Cerca con Google

54. Tuder RM, Voelkel NF. Pulmonary hypertension and inflammation. J Lab Clin Med 1998;132:16–24 Cerca con Google

55. Dib H, Tamby MC, Bussone G et al. Targets of anti-endothelial cell antibodies in pulmonary hypertension and scleroderma. Eur Respir J 2012;39(6):1405–1414. Cerca con Google

56. Nicolls MR, Taraseviciene-Stewart L, Rai PR, Badesch DB, Voelkel NF. Autoimmunity and pulmonary hypertension: a perspective. Eur Respir J 2005;26(6):1110–1118 Cerca con Google

57. Delgado JF, Conde E, Sánchez V et al. Pulmonary vascular remodeling in pulmonary hypertension due to chronic heart failure. Eur J Heart Fail 2005;7(6):1011–1016. Cerca con Google

58. Lang IM. Chronic thromboembolic pulmonary hypertension—not so rare after all. N Engl J Med 2004;350(22):2236 –2238 Cerca con Google

59. Deng Z, Morse JH, Slager SL et al. Familial primary pulmonary hypertension (gene PPH1) is caused by mutations in the bone morphogenetic protein receptor-II gene. Am J Hum Genet 2000;67(3):737–744. Cerca con Google

60. Machado RD, Pauciulo MW, Thomson JR et al. BMPR2 haploinsufficiency as the inherited molecular mechanism for primary pulmonary hypertension. Am J Hum Genet 2001;68(1):92–102. Cerca con Google

61. Thomson JR1, Machado RD, Pauciulo MW et al. Sporadic primary pulmonary hyper- tension is associated with germline mutations of the gene encoding BMPR-II, a receptor member of the TGF-beta family. J Med Genet 2000;37(10):741–745. Cerca con Google

62. Soubrier F, Chung WK, Machado R et al. Genetics and genomics of pulmonary arterial hypertension. JACC 2013;62(25 Suppl):D13-D21. Cerca con Google

63. Lane KB, Machado RD, Pauciulo MW et al. Heterozygous germline mutations in BMPR2, encoding a TGF-beta receptor, cause familial primary pulmonary hypertension. Nat Genet 2000;26(1):81–84. Cerca con Google

64. Machado RD, Aldred MA, James V et al. Mutations of the TGF-beta type II receptor BMPR2 in pulmonary arterial hypertension. Hum Mutat 2006;27(2):121–132 Cerca con Google

65. Trembath RC, Thomson JR, Machado RD et al. Clinical and molecular genetic features of pulmonary hypertension in patients with hereditary hemorrhagic telangiectasia. N Engl J Med 2001;345(5):325–334. Cerca con Google

66. Chaouat A, Coulet F, Favre C et al. Endoglin germline mutation in a patient with hereditary haemorrhagic telangiectasia and dexfenfluramine associated pulmonary arterial hypertension. Thorax 2004;59(5):446–448. Cerca con Google

67. Shintani M, Yagi H, Nakayama T, Saji T, Matsuoka R. A new nonsense mutation of SMAD8 associated with pulmonary arterial hypertension. J Med Genet 2009;46(5):331–337. Cerca con Google

68. Austin ED, Ma L, LeDuc C et al. Whole exome sequencing to identify a novel gene (caveolin-1) associated with human pulmonary arterial hypertension. Circ Cardiovasc Genet 2012;5(3):336–343. Cerca con Google

69. Ma L, Roman-Campos D, Austin ED, et al. A novel channelopathy in pulmonary arterial hypertension. N Engl J Med 2013;369(4):351–361. Cerca con Google

70. Girerd B, Montani D, Coulet F et al. Clinical outcomes of pulmonary arterial hypertension in patients carrying an ACVRL1 (ALK1) mutation. Am J Respir Crit Care Med 2010;181(8):851–861. Cerca con Google

71. Sankelo M, Flanagan JA, Machado R et al. BMPR2 mutations have short lifetime expectancy in primary pulmonary hypertension. Hum Mutat 2005 26(2):119–124.
 Cerca con Google

72. Elliott CG1, Glissmeyer EW, Havlena GT et al. Relationship of BMPR2 mutations to vasoreactivity in pulmonary arterial hypertension. Circulation 2006;113(21):2509–2515. Cerca con Google

73. Merklinger SL, Jones PL, Martinez EC, Rabinovitch M. Epidermal growth factor receptor blockade mediates smooth muscle cell apoptosis and improves survival in rats with pulmonary hypertension. Circulation 2005;112(3):423–431. Cerca con Google

74. Cruz JC, Reeves JT, Russell BE, Alexander AF, Will DH. Embryo transplanted calves: the pulmonary hypertensive trait is genetically transmitted. Proc Soc Exp Biol Med 1980;164(2):142–5. Cerca con Google

75. Newman JH, Holt TN, Hedges LK et al. High-altitude pulmonary hypertension in cattle (brisket disease): Candidate genes and gene expression profiling of peripheral blood mononuclear cells. Pulm Circ 2011;1(4):462–469. Cerca con Google

76. Eyries M, Montani D, Girerd B et al. EIF2AK4 mutations cause pulmonary vene-occlusive disease, arecessiove form of pulmonary hypertension. Nat Genet 2014;46(1):65-69. Cerca con Google

77. Oudiz RJ. Pulmonary hypertension associated with left-sided heart disease. Clin Chest Med 2007;28(1):233-241. Cerca con Google

78. Eddahibi S, Chaouat A, Morrell N et al. Polymorphism of the serotonin transporter gene and pulmonary hypertension in chronic obstructive pulmonary disease. Circulation 2003;108(15):1839-1844. Cerca con Google

79. Humbert M, Hoeper MM. Severe pulmonary arterial hypertension: a forme fruste of cancer? Am J Respir Crit Care Med 2008;178(6):551–552. Cerca con Google

80. Lee SD, Shroyer KR, Markham NE, Cool CD, Voelkel NF, Tuder RM. Monoclonal endothelial cell proliferation is present in primary but not secondary pulmonary hypertension. J Clin Invest 1998;101(5):927–934. Cerca con Google

81. Rai PR, Cool CD, King JA, et al. The cancer paradigm of severe pulmonary arterial hypertension. Am J Respir Crit Care Med 2008; 178(6):558–564 Cerca con Google

82. Tuder RM, Radisavljevic Z, Shroyer KR, Polak JM, Voelkel NF. Monoclonal endothelial cells in appetite suppressant-associated pulmonary hypertension. Am J Respir Crit Care Med 1998;158(6):1999–2001 Cerca con Google

83. Archer SL, Gomberg-Maitland M, Maitland ML, Rich S, Garcia JG, Weir EK. Mitochondrial metabolism, redox signaling, and fusion: a mitochondria-ROS-HIF-1alpha-Kv1.5 O2-sensing pathway at the intersection of pulmonary hypertension and cancer. Am J Physiol Heart Circ Physiol 2008;294(2):H570-578. Cerca con Google

84. Bonnet S, Michelakis ED, Porter CJ et al. An abnormal mitochondrial-hypoxia inducible factor-1alpha-Kv channel pathway disrupts oxygen sensing and triggers pulmonary arterial hypertension in fawn hooded rats: similarities to human pulmonary arterial hypertension. Circulation 2006;113(22):2630-2641. Cerca con Google

85. Fijalkowska I, Xu W, Comhair SA et al. Hypoxia inducible-factor1alpha regulates the metabolic shift of pulmonary hypertensive endothelial cells. Am J Pathol 2010;176(3):1130-1138. Cerca con Google

86. Masri FA, Xu W, Comhair SA et al. Hyperproliferative apoptosis-resistant endothelial cells in idiopathic pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 2007;293(3):L548-554. Cerca con Google

87. Semenza GL. Involvement of hypoxia-inducible factor 1 in pulmonary pathophysiology. CHest 2005; 128(6 Suppl):592S-594S. Cerca con Google

88. Tuder RM, Chacon M, Alger L et al. Expression of angiogenesis-related molecules in plexiform lesions in severe pulmonary hypertension: evidence for a process of disordered angiogenesis. J Pathol 2001;195(3):367-374. Cerca con Google

89. Xu W, Koeck T, Lara AR et al. Alterations of cellular bioenergetics in pulmonary artery endothelial cells. Proc Natl Acad Sci USA 2007;104(4):1342-1347. Cerca con Google

90. Yuan K, Orcholski M, Tian X, Liao X, de Jesus Perez VA, Orcholski M. MicroRNAs: promising therapeutic targets for the treatment of pulmonary arterial hypertension. Expert Opin Ther Targets 2013 17(5):557–564. Cerca con Google

91. Bienertova-Vasku J, Novak J, Vasku A. MicroRNAs in pulmonary arterial hypertension: pathogenesis, diagnosis and treatment. J Am Soc Hypertens 2015;(3):221–234. Cerca con Google

92. Kim GH, Ryan JJ, Marsboom G, Archer SL. Epigenetic mechanisms of pulmonary hypertension. Pulm Circ 2011;1(3):347–356. Cerca con Google

93. Bruneau BG. Epigenetic regulation of the cardiovascular system: introduction to a review series. Circ Res 2010;107(3):324–326. Cerca con Google

94. Rajkumar R, Konishi K, Richards TJ et al. Genomewide RNA expression profiling in lung identifies distinct signatures in idiopathic pulmonary arterial hypertension and secondary pulmonary hypertension. Am J Physiol Heart Circ Physiol 2010;298(4):H1235–1248. 
 Cerca con Google

95. Atkinson C, Stewart S, Upton PD et al. Primary pulmonary hypertension is associated with reduced pulmonary vascular expression of type II bone morphogenetic protein receptor. Circulation 2002;105(14):1672–1678. Cerca con Google

96. Voelkel NF, Bogaard HJ, Gomez-Arroyo J. The need to recognize the pulmonary circulation and the right ventricle as an integrated functional unit: facts and hypotheses (2013 Grover Conference series). Pulm Circ 2015; 5(1):81-89. Cerca con Google

97. Bristow MR1, Zisman LS, Lowes BD et al. The pressure-overloaded right ventricle in pulmonary hypertension. Chest 1998;114(1 Suppl):101S–106S. Cerca con Google

98. Vonk-Noordegraaf A, Haddad F, Chin KM et al. Right heart adaptation to pulmonary arterial hypertension: physiology and pathobiology. J Am Coll Cardiol 2013;62(25 Suppl):D22-33. Cerca con Google

99. Urashima T, Zhao M, Wagner R et al. Molecular and physiological characterization of RV remodeling in a murine model of pulmonary stenosis. Am J Physiol Heart Circ Physiol 2008;295(3):H1351-H1368. Cerca con Google

100. Gomez-Arroyo J, Mizuno S, Szczepanek K et al. Metabolic gene remodeling and mitochondrial dysfunction in failing right ventricular hypertrophy secondary to pulmonary arterial hypertension. Circ Heart Fail 2013;6(1):136–144. Cerca con Google

101. Bogaard HJ, Natarajan R, Henderson SC et al. Chronic pulmonary artery pressure elevation is insufficient to explain right heart failure. Circulation 2009;120(20):1951-1960. Cerca con Google

102. May D, Gilon D, Djonov V et al. Transgenic system for conditional induction and rescue of chronic myocardial hibernation provides insights into genomic programs of hibernation. Proc Natl Acad Sci USA 2008;105(1):282-287. Cerca con Google

103. Rain S, Handoko ML, Trip P et al. Right ventricular diastolic impairment in patients with pulmonary arterial hypertension. Circulation 2013;128(18):2016-2025. Cerca con Google

104. Bogaard HJ, Abe K, Vonk Noordegraaf A, Voelkel NF. The right ventricle under pressure: cellular and molecular mechanisms of right-heart failure in pulmonary hypertension. Chest 2009; 135(3):794-804. Cerca con Google

105. Kay JM, Waymire JC, Grover RF. Lung mast cell hyperplasia and pulmonary histamine-forming capacity in hypoxic rats. Am J Physiol 1974;226(1):178–184. Cerca con Google

106. Zhang Q, Raoof M, Chen Y et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 2010;464(7285):104–107. Cerca con Google

107. Bonderman D, Wexberg P, Martischnig AM et al. A noninvasive algorithm to exclude pre-capillary pulmonary hypertension. Eur Respir J 2011;37(5):1096–1103. Cerca con Google

108. Berger M, Haimowitz A, Van Tosh A, Berdoff RL, Goldberg E. Quantitative assessment of pulmonary hypertension in patients with tricuspid regurgitation using continuous wave Doppler ultrasound. J Am Coll Cardiol 1985;6(2):359-365. 
 Cerca con Google

109. Currie PJ, Seward JB, Chan KL et al. Continuous wave Doppler determination of right ventricular pressure: a simultaneous Doppler-catheterization study in 127 patients. J Am Coll Cardiol 1985;6(4):750-756. Cerca con Google

110. Bossone E, D'Andrea A, D'Alto M et al. Echocardiography in pulmonary arterial hypertension: from diagnosis to prognosis. J Am Soc Echocardiogr. 2013;26(1):1-14. Cerca con Google

111. Armstrong WF, Ryan T. Feigenbaum’s Echocardiography. 7th ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2009. 
 Cerca con Google

112. Oh JK, Seward JB, Tajik AJ. The Echo Manual. 2nd ed. Philadelphia: Lippincott Williams & Wilkins; 1999. 222 Cerca con Google

113. Rudski LG, Lai WW, Afilalo J et al. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr 2010;23(7):685–713. Cerca con Google

114. Lang RM, Badano LP, Mor-Avi V et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an up- date from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging 2015;16(3):233–271. Cerca con Google

115. Foale R, Nihoyannopoulos P, McKenna W et al. Echocardiographic measurement of the normal adult right ventricle. Br Heart J 1986;56(1):33–44. Cerca con Google

116. Trip P, Nossent EJ, de Man FS et al. Severely reduced diffusion capacity in idiopathic pulmonary arterial hypertension: patient characteristics and treatment responses. Eur Respir J 2013;42(6):1575-1585. Cerca con Google

117. Sun XG, Hansen JE, Oudiz RJ, Wasserman K. Pulmonary function in primary pulmonary hypertension. J Am Coll Cardiol 2003;41(6):1028–1035. Cerca con Google

118. Pellegrino R, Viegi G, Brusasco V et al. Interpretative strategies for lung function tests. Eur Respir J 2005;26(5):948–968. Cerca con Google

119. Holverda S, Bogaard HJ, Groepenhoff H, Postmus PE, Boonstra A, Vonk-Noordegraaf A. Cardiopulmonary exercise test characteristics in patients with chronic obstructive pulmonary disease and associated pulmonary hypertension. Respiration 2008;76(2):160–167. Cerca con Google

120. Jilwan FN, Escourrou P, Garcia G, Jaïs X, Humbert M, Roisman G. High occurrence of hypoxemic sleep respiratory disorders in precapillary pulmonary hypertension and mechanisms. Chest 2013;143(1):47–55. Cerca con Google

121. Rafanan AL, Golish JA, Dinner DS, Hague LK, Arroliga AC. Nocturnal hypoxemia is common in primary pulmonary hypertension. Chest 2001;120(3):894–899. Cerca con Google

122. Rajaram S, Swift AJ, Condliffe R et al. CT features of pulmonary arterial hypertension and its major subtypes: a systematic CT evaluation of 292 patients from the ASPIRE Registry. Thorax 2015;70(4):382–387. Cerca con Google

123. Resten A, Maitre S, Humbert M et al. Pulmonary hypertension: CT of the chest in pulmonary venoocclusive disease. Am J Roentgenol 2004;183(1):65–70. Cerca con Google

124. Tunariu N, Gibbs SJ, Win Z et al. Ventilation-perfusion scintigraphy is more sensitive than multidetector CTPA in detecting chronic thromboembolic pulmonary disease as a treatable cause of pulmonary hypertension. J Nucl Med 2007;48(5):680–684. Cerca con Google

125. Kim NH, Delcroix M, Jenkins DP et al. Chronic thromboembolic pulmonary hypertension. J Am Coll Cardiol 2013;62(25 Suppl):D92–D99. Cerca con Google

126. Dartevelle P, Fadel E, Mussot S et al. Chronic thromboembolic pulmonary hypertension. Eur Respir J 2004;23(4):637–648. Cerca con Google

127. Reichelt A, Hoeper MM, Galanski M, Keberle M. Chronic thromboembolic pulmonary hypertension: evaluation with 64-detector row CT versus digital substraction angiography. Eur J Radiol 2008;71(1):49–54. Cerca con Google

128. He J, Fang W, Lv B et al. Diagnosis of chronic thromboembolic pulmonary hypertension: comparison of ventilation/perfusion scanning and multidetector computed tomography pulmonary angiography with pulmonary angiography. Nucl Med Commun 2012;33(5):459–463. Cerca con Google

129. Tunariu N, Gibbs SJ, Win Z et al. Ventilation-perfusion scintigraphy is more sensitive than multidetector CTPA in detecting chronic thromboembolic pulmonary disease as a treatable cause of pulmonary hypertension. J Nucl Med 2007;48(5):680 – 684. Cerca con Google

130. Fedullo PF, Auger WR, Kerr KM, Rubin LJ. Chronic thromboembolic pulmonary hypertension. N Engl J Med 2001;345(20):1465–1472. 
 Cerca con Google

131. Fukui S, Ogo T, Morita Y et al. Right ventricular reverse remodelling after balloon pulmonary angioplasty. Eur Respir J 2014;43(5):1394–1402. Cerca con Google

132. Hoeper MM, Lee SH, Voswinckel R et al. Complications of right heart catheterization procedures in patients with pulmonary hypertension in experienced centers. JACC 2006;48(12):2546-2552. Cerca con Google

133. Frost AE, Farber HW, Barst RJ, Miller DP, Elliott CG, McGoon MD. Demographics and outcomes of patients diagnosed with pulmonary hypertension with pulmonary capillary wedge pressures 16 to 18 mm Hg: insights from the REVEAL Registry. Chest 2013;143(1):185–195. Cerca con Google

134. Abraham WT, Adamson PB, Bourge RC et al; CHAMPION Trial Study Group. Wireless pulmonary artery haemodynamic monitoring in chronic heart failure: a randomised controlled trial. Lancet 2011;377(9766):658–666. Cerca con Google

135. Prasad A, Hastings JL, Shibata S et al. Characterization of static and dynamic left ventricular diastolic function in patients with heart failure with a preserved ejection fraction. Circ Heart Fail 2010;3(5):617–626. Cerca con Google

136. Fujimoto N, Borlaug BA, Lewis GD et al. Hemodynamic responses to rapid saline loading: the impact of age, sex, and heart failure. Circuation 2013;127(1):55-62. Cerca con Google

137. Peacock AJ, Vonk Noordegraaf A. Cardiac magnetic resonance imaging in pulmonary arterial hypertension. Eur Respir Rev 2013;22(130):526–534. Cerca con Google

138. Swift AJ, Rajaram S, Condliffe R et al. Diagnostic accuracy of cardiovascular magnetic resonance imaging of right ventricular morphology and function in the assessment of suspected pulmonary hypertension results from the ASPIRE registry. J Cardiovasc Magn Reson 2012;14:40. 
 Cerca con Google

139. Swift AJ, Rajaram S, Hurdman J et al. Noninvasive estimation of PA pressure, flow, and resistance with CMR imaging: derivation and prospective validation study from the ASPIRE registry. JACC Cardiovasc Imaging 2013;6(10):1036–1047. Cerca con Google

140. van Wolferen SA, Marcus JT, Boonstra A et al. Prognostic value of right ventricular mass, volume, and function in idiopathic pulmonary arterial hypertension. Eur Heart J 2007;28(10):1250–1257. 
 Cerca con Google

141. Peacock AJ, Crawley S, McLure L et al. Changes in right ventricular function measured by cardiac magnetic resonance imaging in patients receiving pulmonary arterial hypertension–targeted therapy: the EURO-MR Study. Circ Cardiovasc Imaging 2014;7(1):107–114. 
 Cerca con Google

142. van de Veerdonk MC, Kind T, Marcus JT et al. Progressive right ventricular dysfunction in patients with pulmonary arterial hypertension responding to therapy. J Am Coll Cardiol 2011;58(24):251–259. Cerca con Google

143. Sitbon O, Humbert M, Nunes H et al. Long-term intravenous epoprostenol infusion in primary pulmonary hypertension: prognostic factors and survival. J Am Coll Cardiol 2002;40(4):780–788. 
 Cerca con Google

144. Nickel N, Golpon H, Greer M et al. The prognostic impact of follow-up assessments in patients with idiopathic pulmonary arterial hypertension. Eur Respir J 2012;39(3):589–596. 
 Cerca con Google

145. Barst RJ, Chung L, Zamanian RT, Turner M, McGoon MD. Functional class improvement and 3-year survival outcomes in patients with pulmonary arterial hypertension in the REVEAL Registry. Chest 2013;144(1):160–168. 
 Cerca con Google

146. Benza RL, Miller DP, Gomberg-Maitland M et al. Predicting survival in pulmonary arterial hypertension: insights from the Registry to Evaluate Early and Long-Term Pulmonary Arterial Hypertension Disease Management (REVEAL). Circulation 2010;122(2):164-172. Cerca con Google

147. Savarese G, Paolillo S, Costanzo P et al. Do changes of 6-minute walk distance predict clinical events in patients with pulmonary arterial hypertension? A meta-analysis of 22 randomized trials. J Am Coll Cardiol 2012;60(13):1192-1201. Cerca con Google

148. Fritz JS, Blair C, Oudiz RJ et al. Baseline and follow-up 6-min walk distance and brain natriuretic peptide predict 2-year mortality in pulmonary arterial hypertension. Chest 2013;143(2):315-323. Cerca con Google

149. Paciocco G, Martinez FJ, Bossone E, Pielsticker E, Gillespie B, Rubenfire M. Oxygen desaturation on the six-minute walk test and mortality in untreated primary pulmonary hypertension. Eur Resp J 2001;17(4):647-652. Cerca con Google

150. Provencher S, Chemla D, Hervé P, Sitbon O, Humbert M, Simonneau G. Heart rate responses during the 6-minute walk test in pulmonary arterial hypertension. Eur Resp J 2006;27(1):114-120. Cerca con Google

151. Wensel R, Opitz CF, Anker SD et al. Assessment of survival in patients with primary pulmonary hypertension: importance of cardiopulmonary exercise testing. Circulation 2002;106(3):319-324. Cerca con Google

152. Arena R, Lavie CJ, Milani RV, Myers J, Guazzi M. Cardiopulmonary exercise testing in patients with pulmonary arterial hypertension: an evidence-based review. J Heart Lung Transplant 2010;29(2):159-173. Cerca con Google

153. Warwick G, Thomas PS, Yates DH. Biomarkers in pulmonary hypertension. Eur Resp J 2008;32(2):503-512. Cerca con Google

154. Zafrir N, Zingerman B, Solodky A et al. Use of noninvasive tools in primary pulmonary hypertension to assess the correlation of right ventricular function with functional capacity and to predict outcome. Int J Cardiovasc Imaging 2007;23(2):209–215. Cerca con Google

155. Kawut SM, Horn EM, Berekashvili KK et al. New predictors of outcome in idiopathic pulmonary arterial hypertension. Am J Cardiol 2005;95(2):199-203. Cerca con Google

156. Voelkel NF, Quaife RA, Leinwand LA et al; National Heart, Lung, and Blood Institute Working Group on Cellular and Molecular Mechanisms of Right Heart Failure. Right ventricular function and failure: report of a National Heart, Lung, and Blood Institute working group on cellular and molecular mechanisms of right heart failure. Circulation 2006;114(17):1883-1891. Cerca con Google

157. Raymond RJ, Hinderliter AL, Willis PW et al. Echocardiographic predictors of adverse outcomes in primary pulmonary hypertension. J Am Coll Cardiol 2002;39(7):1214–1219. Cerca con Google

158. Ghio S, Klersy C, Magrini G et al. Prognostic relevance of the echocardiographic assessment of right ventricular function in patients with idiopathic pulmonary arterial hypertension. Int J Cardiol 2010;140(3):272-278. Cerca con Google

159. Badesch DB, Champion HC, Sanchez MA et al. Diagnosis and assessment of pulmonary arterial hypertension. J Am Coll Cardiol 2009;54(1 Suppl):S55-S66. Cerca con Google

160. Thenappan T, Shah SJ, Rich S, Tian L, Archer SL, Gomberg-Maitland M. Survival in pulmonary arterial hypertension: a reappraisal of the NIH risk stratification equation. Eur Respir J 2010;35(5):1079-1087. Cerca con Google

161. Peluso D, Tona F, Muraru D et al. Right ventricular geometry and function in pulmonary hypertension: non-invasive evaluation. Diseases 2014;2:274-295 Cerca con Google

162. Swift AJ, Rajaram S, Marshall H et al. Black blood MRI has diagnostic and prognostic value in the assessment of patients with pulmonary hypertension. Eur Radiol 2012;22(3):695-702. Cerca con Google

163. Swift AJ, Rajaram S, Campbell MJ et al. Prognostic value of cardiovascular magnetic resonance imaging measurements corrected for age and sex in idiopathic pulmonary arterial hypertension. Circ Cardiovasc Imag 2014;7(1):100-106. Cerca con Google

164. Galiè N, Corris PA, Frost A et al. Updated treatment algorithm of pulmonary arterial hypertension. J Am Coll Cardiol 2013;62(25 Suppl):D60-D72. Cerca con Google

165. Jaïs X, Olsson KM, Barbera JA et al. Pregnancy outcomes in pulmonary arterial hypertension in the modern management era. Eur Resp J 2012;40(4):881-885. Cerca con Google

166. Guillevin L, Armstrong I, Aldrighetti R et al. Understanding the impact of pulmonary arterial hypertension on patients' and carers' lives. Eur Respir Rev 2013;22(130):535-542. Cerca con Google

167. Mereles D, Ehlken N, Kreuscher S et al. Exercise and respiratory training improve exercise capacity and quality of life in patients with severe chronic pulmonary hypertension. Circulation 2006;114(14):1482-1489. Cerca con Google

168. de Man FS, Handoko ML, Groepenhoff H et al. Effects of exercise training in patients with idiopathic pulmonary arterial hypertension. Eur Respir J 2009;34(3):669-675. Cerca con Google

169. Grünig E, Ehlken N, Ghofrani A et al. Effect of exercise and respiratory training on clinical progression and survival in patients with severe chronic pulmonary hypertension. Respiration 2011:81(5):394-401. Cerca con Google

170. Becker-Grünig T, Klose H, Ehlken N et al. Efficacy of exercise training in pulmonary arterial hypertension associated with congenital heart disease. Int J Cardiol 2013;168(1):375-381. Cerca con Google

171. Grünig E, Lichtblau M, Ehlken N et al. Safety and efficacy of exercise training in various forms of pulmonary hypertension. Eur Respir J 2012;40(1):84-92. Cerca con Google

172. Meyer S, McLaughlin VV, Seyfarth HJ et al. Outcomes of noncardiac, nonobstetric surgery in patients with PAH: an international prospective survey. Eur Respir J 2013;41(6):1302–1307. Cerca con Google

173. Olofsson C1, Bremme K, Forssell G, Ohqvist G. Cesarean section under epidural ropivacaine 0.75% in a parturient with severe pulmonary hypertension. Acta Anaesthesiol Scand 2001;45(2):258–260. Cerca con Google

174. Raines DE, Liberthson RR, Murray JR. Anesthetic management and outcome following noncardiac surgery in nonparturients with Eisenmenger's physiology. J Clin Anesth 1996;8(5):341–347 Cerca con Google

175. Olsson KM, Delcroix M, Ghofrani HA et al. Anticoagulation and survival in pulmonary arterial hypertension: results from the Comparative, Prospective Registry of Newly Initiated Therapies for Pulmonary Hypertension (COMPERA). Circulation 2014;129(1):57-65. Cerca con Google

176. Galie` N, Delcroix M, Ghofrani A et al. Anticoagulant therapy does not influence long-term outcomes in patients wih pulmonary arterial hypretension (PAH): insights from the randomised controlled SERAPHIN trial of macitentan. Eur Heart J 2014;35:10. 
 Cerca con Google

177. Preston RJ, Roberts KE, Miller DP, Hill NS, Farber HW. Effect of warfarin treatment on survival of patients with pulmonary arterial hypertension (PAH) in the Registry to Evaluate Early and Long-Term PAH Disease Management (REVEAL). Am J Respir Crit Care Med 2014;189:A2464 Cerca con Google

178. Rich S, Kaufmann E, Levy PS. The effect of high doses of calcium-channel blockers on survival in primary pulmonary hypertension. N Engl J Med 1992;327(2):76–81. Cerca con Google

179. Sitbon O, Humbert M, Jaïs X et al. Long-term response to calcium channel blockers in idiopathic pulmonary arterial hypertension. Circulation 2005;111(23):3105–3111. Cerca con Google

180. Mukerjee D, St George D, Coleiro B et al. Prevalence and outcome in systemic sclerosis associated pulmonary arterial hypertension: application of a registry approach. Ann Rheum Dis 2003;62(11): 1088 –1093. 
 Cerca con Google

181. Montani D, Savale L, Natali D et al. Long-term response to calcium-channel blockers in non-idiopathic pulmonary arterial hypertension. Eur Heart J 2010;31(15):1898–1907. Cerca con Google

182. Giaid A, Yanagisawa M, Langleben D et al. Expression of endothelin-1 in the lungs of patients with pulmonary hypertension. N Engl J Med 1993;328(24):1732–1739. Cerca con Google

183. Galie ́ N, Manes A, Branzi A. The endothelin system in pulmonary arterial hypertension. Cardiovasc Res 2004;61(2):227–237. Cerca con Google

184. Wharton J, Strange JW, Møller GM et al. Antiproliferative effects of phosphodiesterase type 5 inhibition in human pulmonary artery cells. Am J Respir Crit Care Med 2005;172(1):105–113. Cerca con Google

185. Tantini B, Manes A, Fiumana E et al. Antiproliferative effect of sildenafil on human pulmonary artery smooth muscle cells. Basic Res Cardiol 2005;100(2):131–138 Cerca con Google

186. Jones DA, Benjamin CW, Linseman DA. Activation of thromboxane and prostacyclin receptors elicits opposing effects on vascular smooth muscle cell growth and mitogen-activated protein kinase signaling cascades. Mol Pharmacol 1995;48(5):890–896. Cerca con Google

187. Galiè N, Manes A, Branzi A. Prostanoids for pulmonary arterial hypertension. Am J Respir Med 2003;2(2):123-137 Cerca con Google

188. Mayer E, Jenkins D, Lindner J et al. Surgical management and outcome of patients with chronic thromboembolic pulmonary hypertension: results from an international prospective registry. J Thorac Cardiovasc Surg 2011;141(3):702–710. 
 Cerca con Google

189. Madani MM, Auger WR, Pretorius V et al. Pulmonary endarterectomy: recent changes in a single institution's experience of more than 2,700 patients. Ann Thorac Surg 2012;94(1):97–103. 
 Cerca con Google

190. Jenkins D, Mayer E, Screaton N, Madani M. State-of-the-art chronic thromboembolic pulmonary hypertension diagnosis and management. Eur Respir Rev 2012;21(123):32–39. Cerca con Google

191. Jiang L. Right ventricle. In: Weyman AE, ed. Principle and Practice of Echocardiography. Baltimore, Md: Lippincott Williams & Wilkins; 1994:901–921. Cerca con Google

192. Ho SY, Nihoyannopoulos P. Anatomy, echocardiography, and normal right ventricular dimensions. Heart 2006;92(Suppl1):i2-13 Cerca con Google

193. Valsangiacomo Buechel ER, Mertens LL. Imaging the right heart: the use of integrated multimodality imaging. Eur Heart J 2012;33(8):949-960. Cerca con Google

194. Kukulski T, Hübbert L, Arnold M, Wranne B, Hatle L, Sutherland GR. Normal regional right ventricular function and its change with age: a Doppler myocardial imaging study. J Am Soc Echocardiogr 2000;13(3):194-204 Cerca con Google

195. Haber I, Metaxas DN, Geva T, Axel L. Three-dimensional systolic kinematics of the right ventricle. Am J Physiol Heart Circ Physiol 2005;289(5):H1826-1826. Cerca con Google

196. Selton-Suty C1, Juillière Y. Non-invasive investigations of the right heart: how and why? Arch Cardiovasc Dis 2009;102(3):219-232 Cerca con Google

197. Geva T, Powell AJ, Crawford EC, Chung T, Colan SD. Evaluation of regional differences in right ventricular systolic function by acoustic quantification echocardiography and cine magnetic resonance imaging. Circul 1998;98(4):339-345. Cerca con Google

198. McConnell MV, Solomon SD, Rayan ME, Come PC, Goldhaber SZ, Lee RT. Regional right ventricular dysfunction detected by echocardiography in acute pulmonary embolism. Am J Cardiol 1996;78(4):469-473. Cerca con Google

199. Sanchez-Quintana D, Anderson RH, Ho SY. Ventricular myoarchitecture in tetralogy of Fallot. Heart 1996;76(3):280-286. Cerca con Google

200. Pettersen E, Helle-Valle T, Edvardsen T et al. Contraction pattern of the systemic right ventricle shift from longitudinal to circumferential shortening and absent global ventricular torsion. JACC 2007;49(25):2450-2456. Cerca con Google

201. Davidson C, Bonow R. Cardiac catheterization. In: Zipes D, Libby P, Bonow R, Braunwald E, eds. Braunwald’s Heart Disease: A Textbook of Cardiovascular Medicine. 7th ed. Philadelphia, Pa: Elsevier; 2005: chap ll Cerca con Google

202. MacNee W. Pathophysiology of cor pulmonale in chronic obstructive pulmonary disease. Part One. Am J Respir Crit Care Med 1994;150(4):833-852. Cerca con Google

203. Chin KM, Kim NH, Rubin LJ. The right ventricle in pulmonary hypertension. Coron Artery Dis 2005;16(1):13-18. Cerca con Google

204. Santamore WP, Dell'Italia LJ. Ventricular interdependence: significant left ventricular contributions to right ventricular systolic function. Prog Cardiovasc Dis 1998;40(4):289-308. Cerca con Google

205. Hoffman D, Sisto D, Frater RW, Nikolic SD. Left-to-right ventricular interaction with a noncontracting right ventricle. J Thorac Cardiovasc Surg 1994;107(6):1496-1502. Cerca con Google

206. Haddad F, Doyle R, Murphy DJ, Hunt SA. Right ventricular function in Cardiovascular disease. Part II. Pathophysiology, clinical importance, and management of right ventricular failure. Circulation 2008; 117: 1717-31 Cerca con Google

207. Hoeper MM, Barberà JA, Channick RN et al. Diagnosis, assessment, and treatment of non-pulmonary arterial hypertension pulmonary hypertension. JACC 2009;54(1 Suppl):S85-S96. Cerca con Google

208. Hopkins WE, Ochoa LL, Richardson GW, Trulock EP. Comparison of the hemodynamics and survival of adults with severe primary pulmonary hypertension or Eisenmenger syndrome. J Heart Lung Transplant 1996;15(1 Pt 1):100-105. Cerca con Google

209. Ruiter G, van de Veerdonk MC, Bogaard HJ et al. The interventricular septum in pulmonary hypertension does not show features of right ventricular failure. Int J Cardiol 2014;173(3):509-512. Cerca con Google

210. Mauritz GJ, Kind T, Marcus JT et al. Progressive changes in right ventricular geometric shortening and long-term survival in pulmonary arterial hypertension. Chest 2012; 141(4):935:943. Cerca con Google

211. Vitarelli A, Mangieri E, Terzano C et al. Three-dimensional echocardiography and 2D-3D speckle-tracking imaging in chronic pulmonary hypertension: diagnostic accuracy in detecting hemodynamic signs of right ventricular (RV) failure. JAHA 2015;4(3):1584. Cerca con Google

212. Vitarelli A, Barillà F, Capotosto L et al. Right ventricular function in acute pulmonary embolism: a combined assessment by three-dimensional and speckle-tracking echocardiography. J Am Soc Echocardiogr 2014;27(3):329–338. Cerca con Google

213. Ichikawa K, Dohi K, Sugiura E et al. Ventricular function and dyssynchrony quantified by speckle-tracking echocardiography in patients with acute and chronic right ventricular pressure overload. J Am Soc Echocardiogr 2013;26(5):483–492. Cerca con Google

214. Unlu S, Farsalinos K, Ameloot K et al. Apical traction: a novel visual echocardiographic parameter to predict survival in patients with pulmonary hypertension. Eur Heart J CV Imag 2016;17(2):177-183. Cerca con Google

215. Forfia PR, Fisher MR, Mathai SC et al. Tricuspid annular displacement predicts survival in pulmonary hypertension. Am J Respir Crit Care Med 2006;174(9):1034-1041. Cerca con Google

216. Giusca S, Dambrauskaite V, Scheurwegs C et al. Deformation imaging describes right ventricular function better than longitudinal displacement of the tricuspid ring. Heart 2010;96(4):281-288. Cerca con Google

217. Teske AJ, De Boeck BW, Olimulder M, Prakken NH, Doevendans PA, Cramer MJ. Echocardiographic assessment of regional right ventricular function: A head-to-head comparison between 2-dimensional and tissue Doppler-derived strain analysis. J Am Soc Echocardiogr 2008;21(3):275–283. 
 Cerca con Google

218. Scherptong RW, Mollema SA, Blom NA et al. Right ventricular peak systolic longitudinal strain is a sensitive marker for right ventricular deterioration in adult patients with tetralogy of Fallot. Int J Cardiovasc Imaging 2009;25(7):669–676. 
 Cerca con Google

219. Dragulescu A, Mertens LL. Developments in echocardiographic techniques for the evaluation of ventricular function in children. Arch Cardiovasc Dis 2010;103(11-12):603-614. Cerca con Google

220. Mertens LL, Friedberg MK. Imaging the right ventricle-Current state of the art. Nat Rev Cardiol 2010;7(10), 551–563. 
 Cerca con Google

221. Pirat B, McCulloch ML, Zoghbi WA. Evaluation of global and regional right ventricular systolic function in patients with pulmonary hypertension using a novel speckle tracking method. Am J Cardiol 2006;98(5):699-704. Cerca con Google

222. Fukuda Y, Tanaka H, Sugiyama D et al. Utility of right ventricular free wall speckle-tracking strain for evaluation of right ventricular performance in patients with pulmonary hypertension. J Am Soc Echocardiogr 2011;24(10):1101-1108. Cerca con Google

223. Sachdev A, Villarraga HR, Frantz RP et al. Right ventricular strain for prediction of survival in patients with pulmonary arterial hypertension. Chest 2011;139(6):1299-309. Cerca con Google

224. Haeck ML, Scherptong RW, Antoni ML et al. Right ventricular longitudinal peak systolic strain measurements from the subcostal view in patients with suspected pulmonary hypertension: A feasibility study. J Am Soc Echocardiogr 2012;25(6):674-681.
 Cerca con Google

225. Haeck ML, Scherptong RW, Marsan NA et al. Prognostic value of right ventricular longitudinal peak systolic strain in patients with pulmonary hypertension. Circ Cardiovasc Imaging 2012;5(5):628-636. Cerca con Google

226. Meris A, Faletra F, Conca C et al. Timing and magnitude of regional right ventricular function: a speckle tracking-derived strain study of normal subjects and patients with right ventricular dysfunction. J Am Soc Echocardiogr 2010;23(8):823-31. Cerca con Google

227. Leong DP, Grover S, Molaee P et al. Nonvolumetric echocardiographic indices of right ventricular systolic function: validation with cardiovascular magnetic resonance and relationship with functional capacity. Echocardiography 2012;29(4):455-463. Cerca con Google

228. Muraru D, Onciul S, Peluso D. Sex- and Method-specific reference values for right ventricular strain by 2-dimensional speckle-tracking echocardiography. Circ CV Imag 2016; 9(2):e003866. Cerca con Google

229. Giusca S, Popa E, Amzulescu MS et al. Is Right Ventricular Remodeling in Pulmonary Hypertension Dependent on Etiology? An Echocardiographic Study. Echocardiography 2015;33(4):546-554. Cerca con Google

230. Morris DA, Gailani M, Vaz Pérez A et al. Right ventricular myocardial systolic and diastolic dysfunction in heart failure with normal left ventricular ejection fraction. J Am Soc Echocardiogr 2011;24(8):886-897. Cerca con Google

231. Focardi M, Cameli M, Carbone SF et al. Traditional and innovative echocardiographic parameters for the analysis of right ventricular performance in comparison with cardiac magnetic resonance. Eur Heart J Cardiovasc Imaging 2015;16(1):47-52. Cerca con Google

232. Puwanant S1, Park M, Popović ZB et al. Ventricular geometry, strain, and rotational mechanics in pulmonary hypertension. Circulation 2010;121(2):259-266. Cerca con Google

233. Dambrauskaite V, Delcroix M, Claus P et al. Regional right ventricular dysfunction in chronic pulmonary hypertension. JASE 2007;20(10):1172-1180. Cerca con Google

234. Li Y, Wie M, Wang X, Lu Q, Fu M. Right ventricular regional and global systolic function is diminished in patients with pulmonary arterial hypertension: a 2-dimensional ultrasound speckle tracking echocardiography study. Int J Cardiovasc Imag 2013;29(3):545-51. Cerca con Google

235. Freed BH, Tsang W, Bhave NM et al. Right ventricular strain in pulmonary arterial hypertension: a 2D echocardiography and cardiac magnetic resonance study. Echocardiography 2015;32(2):257-263. Cerca con Google

236. Motoji Y, Tanaka H, Fukuda Y et al. Efficacy of right ventricular free-wall longitudinal speckle-tracking strain for predicting long-term outcome in patients with pulmonary hypertension. Circ J 2013;77(3):756-763. Cerca con Google

237. Fine NM, Chen L, Bastiansen PM et al. Outcome prediction by quantitative right ventricular function assessment in 575 subjects evaluated for pulmonary hypertension. Circ Cardiovasc Imag 2013;6(5):711-721. Cerca con Google

238. Simon MA, Rajagopalan N, Mathier MA, Shroff SG, Pinsky MR, López-Candales A. Tissue Doppler imaging of right ventricular decompensation in pulmonary hypertension. Congest Heart Fail 2009;15(6):271-276. Cerca con Google

239. Reichek N. Right ventricular strain in pulmonary hypertension: flavor du jour or enduring prognostic index? Circul CV Imag 2013;6(5):609-611. Cerca con Google

240. La Gerche A, Jurcut R, Voigt JU. Right ventricular function by strain echocardiography. Curr Opin Cardiol 2010;25(5):430-436. Cerca con Google

241. Hardegree EL, Sachdev A, Villarraga HR et al. Role of serial quantitative assessment of right ventricular function by strain in pulmonary arterial hypertension. Am J Cardiol 2013;111(1):143-148. Cerca con Google

242. López-Candales A, Dohi K, Bazaz R, Edelman K. Relation of right ventricular free wall mechanical delay to right ventricular dysfunction as determined by tissue Doppler imaging. Am J Cardiol 2005;96(4):602-606. Cerca con Google

243. Kalogeropoulos AP, Georgiopoulou VV, Howell S et al. Evaluation of right intraventricular dyssynchrony by two-dimensional strain echocardiography in patients with pulmonary arterial hypertension. J Am Soc Echocardiogr 2008;21(9):1028-1034. Cerca con Google

244. Marcus JT, Gan CT, Zwanenburg JJ et al. Interventricular mechanical asynchrony in pulmonary arterial hypertension: left-to-right delay in peak shortening is related to right ventricular overload and left ventricular underfilling. J Am Coll Cardiol 2008;51(7):750-757. Cerca con Google

245. Hill AC, Maxey DM, Rosenthal DN et al. Electrical and mechanical dyssynchrony in pediatric pulmonary hypertension. Heart Lung Transplant 2012;31(8):825-30. Cerca con Google

246. Badagliacca R, Reali M, Poscia R et al. Right Intraventricular Dyssynchrony in Idiopathic, Heritable, and Anorexigen-Induced Pulmonary Arterial Hypertension: Clinical Impact and Reversibility. JACC Cardiovasc Imaging 2015;8(6):642-652. Cerca con Google

247. Badagliacca R, Poscia R, Pezzuto B et al. Right ventricular dyssynchrony in idiopathic pulmonary arterial hypertension: determinants and impact on pump function. J Heart Lung Transplant 2015;34(3):381-389. Cerca con Google

248. Schindera ST, Mehwald PS, Sahn DJ, Kececioglu D. Accuracy of real-time three-dimensional echocardiography for quantifying right ventricular volume: static and pulsatile flow studies in an anatomic in vitro model. J. Ultrasound Med 2002;21(10): 1069–1075. 
 Cerca con Google

249. Nesser HJ, Tkalec W, Patel AR et al. Quantitation of right ventricular volumes and ejection fraction by three-dimensional echocardiography in patients: comparison with magnetic resonance imaging and radionuclide ventriculography. Echocardiography 2006;23(8):666-680. Cerca con Google

250. Chen G, Sun K, Huang G. In vitro validation of right ventricular volume and mass measurement by real-time three-dimensional echocardiography. Echocardiography 2006;23(5):395-399. Cerca con Google

251. Angelini ED, Homma S, Pearson G, Holmes JW, Laine AF. Segmentation of real-time three-dimensional ultrasound for quantification of ventricular function: a clinical study on right and left ventricles. Ultrasound Med Biol 2005;31(9):1143-1158. Cerca con Google

252. Jenkins C, Chan J, Bricknell K, Strudwick M, Marwick TH. Reproducibility of right ventricular volumes and ejection fraction using real-time three-dimensional echocardiography: comparison with cardiac MRI. Chest 2007;131(6):1844-51. Cerca con Google

253. Maffessanti F, Muraru D, Esposito R et al. Age-, body size-, and sex-specific reference values for right ventricular volumes and ejection fraction by three-dimensional echocardiography: a multicenter echocardiographic study in 507 healthy volunteers. Circ Cardiovasc Imag 2013;6(5):700–710. 
 Cerca con Google

254. Chua S, Levine RA, Yosefy C et al. Assessment of right ventricular function by real-time three-dimensional echocardiography improves accuracy and decreases interobserver variability compared with conventional two-dimensional views. Eur J Echocardiogr 2009;10(5):619-624. Cerca con Google

255. Niemann PS, Pinho L, Balbach T et al. Anatomically oriented right ventricular volume measurements with dynamic three-dimensional echocardiography validated by 3-Tesla magnetic resonance imaging. J Am Coll Cardiol. 2007;50(17):1668-1676 Cerca con Google

256. Badano LP, Boccalini F, Muraru D et al. Current clinical applications of transthoracic three-dimensional echocardiography. J Cardiovasc Ultrasound 2012;20(1):1-22. Cerca con Google

257. Lu X, Nadvoretskiy V, Bu L et al. Accuracy and reproducibility of real-time three-dimensional echocardiography for assessment of right ventricular volumes and ejection fraction in children. J Am Soc Echocardiogr 2008;21(1):84-89. Cerca con Google

258. Grison A, Maschietto N, Reffo E et al. Three-dimensional echocardiographic evaluation of right ventricular volume and function in pediatric patients: validation of the technique. J Am Soc Echocardiogr 2007;20(8):921-9. Cerca con Google

259. Grewal J, Majdalany D, Syed I, Pellikka P, Warnes CA. Three-dimensional echocardiographic assessment of right ventricular volume and function in adult patients with congenital heart disease: comparison with magnetic resonance imaging. J Am Soc Echocardiogr 2010;23(2):127-133. Cerca con Google

260. Leibundgut G, Rohner A, Grize L et al. Dynamic assessment of right ventricular volumes and function by real-time three-dimensional echocardiography: a comparison study with magnetic resonance imaging in 100 adult patients. J Am Soc Echocardiogr 2010;23(2):116-126. Cerca con Google

261. Shimada YJ, Shiota M, Siegel RJ, Shiota T. Accuracy of right ventricular volumes and function determined by three-dimensional echocardiography in comparison with magnetic resonance imaging: a meta-analysis study. JASE 2010;23(9):943-953. Cerca con Google

262. Li Y, Wang Y, Zhai Z, Guo X, Yang Y, Lu X. Real-time three-dimensional echocardiography to assess right ventricle function in patients with pulmonary arterial hypertension. PLOS ONE|DOI:10.1371/journal.pone.0129557 Cerca con Google

263. Tamborini G, Marsan NA, Gripari P et al. Reference values for right ventricular volumes and ejection fraction with real-time three-dimensional echocardiography: evaluation in a large series of normal subjects. JASE 2010;23(2):109-115. Cerca con Google

264. Kawut SM, Lima JA, Barr RG et al. Sex and race differences in right ventricular structure and function: the multi-ethnic study of atherosclerosis-right ventricle study. Circulation 2011;123(22):2542-2551. Cerca con Google

265. Calcutteea A, Chung R, Lindqvist P, Hodson M, Henein MY. Differential right ventricular regional function and the effect of pulmonary hypertension: three-dimensional echo study. Heart 2011;97(12):1004-1011. Cerca con Google

266. Kong D, Shu X, Pan C et al. Evaluation of right ventricular regional volume and systolic function in patients with pulmonary arterial hypertension using three-dimensional echocardiography. Echocardiography 2012;29(6):706-712. Cerca con Google

267. Addetia K, Maffesanti F, Yamat M et al. Three-dimensional echocardiography-based analysis pf right ventricular shape in pulmonary arterial hyperptension. Eur Heart J Cardiovasc Imaging 2016;17(5):564-75. Cerca con Google

268. Zhang QB, Sun JP, Gao RF et al. Feasibility of single-beat full-volume capture real-time three-dimensional echocardiography for quantification of right ventricular volume: validation by cardiac magnetic resonance imaging. Int J Cardiol 2013;168(4):3991-5. Cerca con Google

269. Sugeng L, Mor-Avi V, Weinert L et al. Multimodality comparison of quantitative volumetric analysis of the right ventricle. JACC Cardiovasc Imag 2010;3(1):10-18. Cerca con Google

270. Pickett CA, Cheezum MK, Kassop D, Villines TC, Hulten EA. Accuracy of cardiac CT, radionucleotide and invasive ventriculography, two- and three-dimensional echocardiography, and SPECT for left and right ventricular ejection fraction compared with cardiac MRI: a meta-analysis. Eur Heart J CV Imaging 2015;16(8):848-852. Cerca con Google

271. Di Bello V, Conte L, Delle Donne MG et al. Advantages of real time three-dimensional echocardiography in the assessment of right ventricular volumes and function in patients with pulmonary hypertension compared with conventional two-dimensional echocardiography. Echocardiography 2013;30(7):820-828. Cerca con Google

272. van den Hoogen F, Khanna D, Fransen J, Johnson SR, Baron M, Tyndall A et al. 2013 classification criteria for systemic sclerosis: an American college of rheumatology/European league against rheumatism collaborative initiative. Ann Rheum Dis 2013;72:1747–1755 Cerca con Google

273. Abbas AE, Franey LM, Marwick T et al. Noninvasive assessment of pulmonary vascular resistance by Doppler echocardiography. JASE 2013;26(10):1170-7 Cerca con Google

274. Du Bois D and Du Bois EF. A formula to estimate the approximate surface area if height and weight be known. Arch Intern Med 1916; 17: 863-871 Cerca con Google

275. Sengupta PP, Korinek J, Belohlavek M et al. Left ventricular structure and function: basic science for cardiac imaging. J Am Coll Cardiol 2006;48:1988–2001. 
 Cerca con Google

276. Sengupta PP, Krishnamoorthy VK, Korinek J et al. Left ventricular form and function revisited: applied translational science to cardiovascular ultrasound imaging. J Am Soc Echocardiogr 2007;20:539 – 551 Cerca con Google

277. Mendez C, Soler R, Rodriguez E et al. Magnetic resonance imaging of abnormal ventricular septal motion in heart disease: a pictorial review. Insig Imag 2011;2:483-492 Cerca con Google

278. De Azevedo AB, Sampaio-Barros PD, Torres RM, Moreira C. Prevalence of pulmonary hypertension in systemic sclerosis. Clin Exp Rheumatol 2005; 23: 447-54 Cerca con Google

279. Bewley AP, Cooper JP, Levell NJ, Walker JM, Dowd PM: Systemic sclerosis associated with right ventricular cardiomyopathy. Br J Dermatol 1996; 134: 1141-3. Cerca con Google

280. Meune C, Allanore Y, Devaux JY et al. High prevalence of right ventricular systolic dysfunction in early systemic sclerosis. J Rheumatol 2004; 31: 1941-5. Cerca con Google

281. Meune C, Allanore Y, Vignaux O, Merceron O, Assous N, Legmann P, Kahan A. Predominant primitive right ventricular involvement in systemic sclerosis. Cin Exp Rheumatol 2007; 25 (4): 658 Cerca con Google

282. Allanore Y, Meune C. Primary myocardial involvement in systemic sclerosis: evidence for a microvascular origin. Clin Exp Rheumatol 2010;28(Suppl 61):S48-53 Cerca con Google

283. Matias C, Perez de Isla L, Vasconcelos M et al. Speckle-tracking-derived strain and strain-rate analysis: a technique for the evaluation of early alterations in right ventricle systolic function in patients with systemic sclerosis and normal pulmonary artery pressure. J Cardiovasc Med 2009;10:129-34 Cerca con Google

284. Schattke S, Knebel F, Grohmann A et al. Early right ventricular systolic dysfunction in patients with systemic sclerosis without pulmonary hypertension: a Doppler Tissue and speckle tracking echocardiography study. Cardiovasc Ultras 2010;8:3 Cerca con Google

285. Durmus E, Sunbul M, Tigen K et al. Right ventricular and atrial functions in systemic sclerosis patients without pulmonary hypertension. Speckle-tracking echocardiographic study. Hearz 2015;40:709-15 Cerca con Google

286. Pigatto E, Peluso D, Zanatta E et al. Evaluation of right ventricular function performed by 3D-echocardiography in scleroderma patients. Reumatismo 2014;66(4):259-263. Cerca con Google

287. Muraru D, Spadotto V, Cecchetto A et al. New speckle-tracking algorithm for right ventricular volume analysis from three-dimensional echocardiographic data sets: validation with cardiac magnetic resonance and comparison with the previous analysis tool. Eur Heart J Cardiovasc Imaging. 2015 Dec 8. pii: jev309. [Epub ahead of print]. Cerca con Google

288. Mori S, Nakatani S, Kanzaki H et al. Patterns of the interventricular septal motion can predict conditions of patients with pulmonary hypertension. JASE 2008;21(4):386-393 Cerca con Google

289. Sato T, Tsujino I, Ohira H et al. Paradoxical interventricular septal motion as a major determinant of late gadolinium enhancement in ventricular insertion points in pulmonary hypertension. PLOS ONE 2013;8(6):e66724 Cerca con Google

290. Freed BH, Gomberg-Maitland M, Chandra, S et al. Late gadolinium enhancement cardiovascular magnetic resonance predicts clinical worsening in patients with pulmonary hypertension. J Cardiovasc Magn Res. 2012, 14, doi:10.1186/1532-429X-14-11 Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record