Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Mandanici, Marcellina (2016) Interactive Spaces: Model for Motion-based Music Applications. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF - Versione sottomessa
5Mb

Abstract (inglese)

With the extensive utilization of touch screens, smartphones and various reactive surfaces, reality- based and intuitive interaction styles have now become customary. The employment of larger interactive areas, like floors or peripersonal three-dimensional spaces, further increase the reality- based interaction affordances, allowing full-body involvement and the development of a co- located, shared user experience. Embodied and spatial cognition play a fundamental role for the interaction in this kind of spaces, where users act in the reality with no device in the hands and obtain an audio and graphical output depending on their movements. Starting from the early experiments of Myron Krueger in 1971, responsive floors have been developed through various technologies including sensorized tiles and computer vision systems, to be employed in learn- ing environments, entertainment, games and rehabilitation. Responsive floors allow the spatial representation of concepts and for this reason are suitable for immediate communication and engagement. As many musical features have meaningful spatial representations, they can easily be reproduced in the physical space through a conceptual blending approach and be made available to a great number of users. This is the key idea for the design of the original music applications presented in this thesis. The applications, devoted to music learning, production and active listening, introduce a novel creative approach to music, which can be further assumed as a general paradigm for the design of motion-based learning environments. Application assessment with upper elementary and high school students has proved that users engagement and bodily inter- action have a high learning power, which can be a valid resource for deeper music knowledge and more creative learning processes. Although further interface tests showed that touch screen interaction performs better than full-body interaction, some important guidelines for the design of reactive floors applications have been obtained on the basis of these test results. Moreover, the conceptual framework developed for the design of music applications can represent a valid paradigm also in the general field of human-computer interaction.

Abstract (italiano)

Con l’utilizzo intensivo di touch screen, smartphones e varie superfici sensibili al tocco, stili di interazione intuitivi e ispirati alla realtà sono ormai diventati di uso comune. L’utilizzo di più estese superfici interattive quali pavimenti o spazi peripersonali tridimensionali, aumenta ulteriormente le possibilità offerte dall’interazione basata sulla realtà, coinvolgendo l’intero corpo e consentendo la condivisione dell’esperienza da parte di più utenti. La cognizione legata al corpo e allo spazio gioca un ruolo fondamentale per l’interazione in questi tipi di ambienti, dove l’utente agisce nella realtà senza dover tenere in mano alcun sensore, producendo un risultato sonoro e visivo in dipendenza dei suoi movimenti. Partendo dai primi esperimenti di Myron Krueger nel 1971, i pavimenti interattivi si sono sviluppati utilizzando varie tecnologie, dalle mattonelle sensorizzate a vari sistemi di computer vision, al fine di essere impiegati come ambienti per l’apprendimento e l’intrattenimento, per i giochi e per la riabilitazione. I pavimenti interattivi consentono la rappresentazione spaziale dei concetti e per questo motivo si prestano ad una comunicazione immediata e coinvolgente. Poiché molti elementi del linguaggio musicale sono espressi attraverso significative rappresentazioni spaziali, essi possono essere facilmente riprodotti nello spazio fisico utilizzando la teoria del “conceptual blending”, ed essere cos`ı resi disponibili ad un numero assai esteso di utenti. Questo concetto e` alla base della progettazione delle applicazioni musicali originali presentate in questa tesi. Le applicazioni, finalizzate all’apprendimento musicale, alla produzione e all’ascolto attivo, introducono un nuovo approccio creativo alla musica, che può essere considerato paradigmatico per la progettazione di ambienti educativi basati sul movimento. I test effettuati con alunni del secondo ciclo della scuola elementare e con studenti della scuola superiore hanno dimostrato che il coinvolgimento degli utenti e l’interazione “full-body” hanno una grande capacita` di influenzare l’apprendimento, e che possono essere efficacemente utilizzati per un approfondimento della cultura musicale e per un approccio creativo nei processi formativi. Sebbene ulteriori test sull’interfaccia abbiano di- mostrato che gli utenti preferiscono il touch screen all’interazione “full-body”, in base a questi risultati sono state delineate alcune importanti linee guida per la futura progettazione di applicazioni su pavimenti interattivi. Inoltre, la struttura concettuale sviluppata per la progettazione di applicazioni musicali può rappresentare anche un valido paradigma nel campo dell’interazione uomo-macchina.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Canazza, Sergio
Dottorato (corsi e scuole):Ciclo 28 > Scuole 28 > INGEGNERIA DELL'INFORMAZIONE > SCIENZA E TECNOLOGIA DELL'INFORMAZIONE
Data di deposito della tesi:26 Luglio 2016
Anno di Pubblicazione:26 Luglio 2016
Parole chiave (italiano / inglese):interactive spaces, full-body interaction, music learning interactive applications
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-INF/05 Sistemi di elaborazione delle informazioni
Struttura di riferimento:Dipartimenti > Dipartimento di Ingegneria dell'Informazione
Codice ID:9683
Depositato il:02 Nov 2017 17:19
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Giovanni Agosta, Luca Borghese, Carlo Brandolese, Francesco Clasadonte, William Fornaciari, Franca Garzotto, Mirko Gelsomini, Matteo Grotto, Cristina Fra, Danny Noferi, et al. Playful Supervised Smart Spaces (P3S)–A Framework for Designing, Implementing and Deploying Multisensory Play Experiences for Children with Special Needs. In Digital System Design (DSD), 2015 Euromicro Conference, pages 158–164. IEEE, 2015. Cerca con Google

Leonardo Amico. La Stanza Logo-Motoria. Un Ambiente multimodale interattivo per l’insegnamento a bambini in situazione di multi-disabilita`. Master’s thesis, Dipartimento di Ingegneria dell’Informazione, Universita` di Padova, 2012. Cerca con Google

Adam Baimel, Rachel L. Severson, Andrew S. Baron, and Susan AJ Birch. Enhancing “theory of mind” through behavioral synchrony. Frontiers in psychology, 6, 2015. Cerca con Google

R. Behringer and J. Elliott. Linking Physical Space with the Riemann Tonnetz for Exploration of Western Tonality. Music Education, 2009. Cerca con Google

Victoria Bellotti, Maribeth Back, W. Keith Edwards, Rebecca E. Grinter, Austin Henderson, and Cristina Lopes. Making sense of sensing systems: five questions for designers and researchers. In Proceedings of the SIGCHI conference on Human factors in computing systems, pages 415– 422. ACM, 2002. Cerca con Google

David Benyon. Presence in blended spaces. Interacting with Computers, 24(4):219–226, Jul. 2012. doi: 10.1016/j.intcom.2012.04.005. URL http://dx.doi.org/10.1016/j. intcom.2012.04.005. Vai! Cerca con Google

Tony Bergstrom, Karrie Karahalios, and John C Hart. Isochords: visualizing structure in music. In Proceedings of Graphics Interface 2007, pages 297–304. ACM, 2007. Cerca con Google

Jonathan W. Bernard. Voice leading as a spatial function in the music of Ligeti. Music Analysis, 13(2/3):227–253, 1994. Cerca con Google

Jamshed Bharucha and Carol L. Krumhansl. The representation of harmonic structure in music: Hierarchies of stability as a function of context. Cognition, 13(1):63–102, 1983. Cerca con Google

M. Bick and T-F. Kummer. Ambient intelligence and ubiquitous computing. In Handbook on Information Technologies for Education and Training, pages 79–100. Springer, 2008. Cerca con Google

Louis Bigo, Jeremie Garcia, Antoine Spicher, Wendy E. Mackay, et al. Papertonnetz: Music composition with interactive paper. In Sound and Music Computing, 2012. Cerca con Google

Mark Billinghurst and Bill Buxton. Gesture based interaction. Haptic input, 24, 2011. Cerca con Google

Sara A. Bly, Steve R. Harrison, and Susan Irwin. Media spaces: Bringing people together in a video, audio, and computing environment. Commun. ACM, 36(1):28–46, January 1993. ISSN 0001-0782. doi: 10.1145/151233.151235. URL http://doi.acm.org/10.1145/ 151233.151235. Vai! Cerca con Google

Aaron F. Bobick, Stephen S. Intille, James W. Davis, Freedom Baird, Claudio S. Pinhanez, Lee W. Campbell, Yuri A. Ivanov, Arjan Schu ̈tte, and Andrew Wilson. The kidsroom: A perceptually-based interactive and immersive story environment. Presence: Teleoperators and Virtual Environments, 8(4):369–393, 1999. Cerca con Google

Ju ̈rgen Bohn, Vlad Coroama, Marc Langheinrich, Friedemann Mattern, and Michael Rohs. Social, economic, and ethical implications of ambient intelligence and ubiquitous computing. In Ambient intelligence, pages 5–29. Springer, 2005. Cerca con Google

Richard A. Bolt. Spatial data management system. Technical report, DTIC Document, 1978. Cerca con Google

Jan Borchers, Eric Lee, Wolfgang Samminger, and Max Mu ̈hlha ̈user. Personal orchestra: a real-time audio/video system for interactive conducting. Multimedia Systems, 9(5):458–465, 2004. Cerca con Google

Alan Bra ̈nzel, Christian Holz, Daniel Hoffmann, Dominik Schmidt, Marius Knaust, Patrick Lu ̈hne, Rene ́ Meusel, Stephan Richter, and Patrick Baudisch. Gravityspace: tracking users and their poses in a smart room using a pressure-sensing floor. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pages 725–734. ACM, 2013. Cerca con Google

Albert S. Bregman. Auditory scene analysis: The perceptual organization of sound. MIT press, 1994. Cerca con Google

Candace Brower. A cognitive theory of musical meaning. Journal of Music Theory, pages 323– 379, 2000. Cerca con Google

William Buxton. Living in augmented reality: Ubiquitous media and reactive environments. Video Mediated Communication. Hillsdale, NJ: Erlbaum, pages 363–384, 1997. Cerca con Google

Claude Cadoz, Marcelo M. Wanderley, et al. Gesture-music. In Trends in gestural control of music, volume 12, page 101. Paris: Ircam, 2000. Cerca con Google

A. Camurri, S. Canazza, C. Canepa, G. L. Foresti, A. Roda`, G. Volpe, and S. Zanolla. The stanza logo-motoria: an interactive environment for learning and communication. In Proceedings of SMC Conference 2010, Barcelona, 2010. Cerca con Google

Antonio Camurri, Barbara Mazzarino, Matteo Ricchetti, Renee Timmers, and Gualtiero Volpe. Multimodal analysis of expressive gesture in music and dance performances. In International Gesture Workshop, pages 20–39. Springer, 2003. Cerca con Google

Antonio Camurri, Barbara Mazzarino, and Gualtiero Volpe. Analysis of expressive gesture: The eyesweb expressive gesture processing library. In Gesture-Based Communication in Human- Computer Interaction, pages 460–467. Springer Science, 2004. Cerca con Google

Antonio Camurri, Corrado Canepa, and Gualtiero Volpe. Active listening to a virtual orchestra through an expressive gestural interface: The orchestra explorer. In Proceedings of the 7th international conference on new interfaces for musical expression, pages 56–61. ACM, 2007. Cerca con Google

Antonio Camurri, Corrado Canepa, Paolo Coletta, Barbara Mazzarino, and Gualtiero Volpe. Mappe per affetti erranti: a multimodal system for social active listening and expressive per- formance. In Proceedings of the 8th Intl. Conference on New Interfaces for Musical Expression (NIME’08), pages 134–139, 2008. Cerca con Google

J. C. Chung and C. K. Lai. Snoezelen for dementia. Reviews., doi:10.1002/14651858.cd003152, 2002. Cerca con Google

Andy Clark. Being there: Putting brain, body, and world together again. MIT press, 1998. Cerca con Google

Martin Clayton, Rebecca Sager, and Udo Will. In time with the music: the concept of entrain- ment and its significance for ethnomusicology. In European meetings in ethnomusicology., volume 11, pages 1–82. Romanian Society for Ethnomusicology, 2005. Cerca con Google

Kathleen A. Corrigall and Laurel J. Trainor. Musical enculturation in preschool children: Acqui- sition of key and harmonic knowledge. Music Perception, 28(2):195–200, 2010. Cerca con Google

Yvonne AW. De Kort and Wijnand A. Ijsselsteijn. People, places, and play: player experience in a socio-spatial context. Computers in Entertainment (CIE), 6(2):18, 2008. Cerca con Google

W. Jay Dowling, Kitty Mei-Tak Lung, and Susan Herrbold. Aiming attention in pitch and time in the perception of interleaved melodies. Perception & Psychophysics, 41(6):642–656, 1987. ISSN 1532-5962. doi: 10.3758/BF03210496. URL http://dx.doi.org/10.3758/ BF03210496. Vai! Cerca con Google

Douglas C. Engelbart. Nls teleconferencing features: The journal, and shared-screen telephon- ing. Fall COMPCON 75 Digest of Papers, pages 173–177, 1975. Cerca con Google

Douglas C. Engelbart. Augmenting human intellect: a conceptual framework (1962). PACKER, Randall and JORDAN, Ken. Multimedia. From Wagner to Virtual Reality. New York: WW Norton & Company, pages 64–90, 2001. Cerca con Google

Noel Enyedy, Joshua A. Danish, Girlie Delacruz, and Melissa Kumar. Learning physics through play in an augmented reality environment. International Journal of Computer-Supported Col- laborative Learning, 7(3):347–378, 2012. Cerca con Google

Noel Enyedy, Joshua A. Danish, and David DeLiema. Constructing liminal blends in a collabo- rative augmented-reality learning environment. Intern. J. Comput.-Support. Collab. Learn., 10 (1):7–34, feb 2015. doi: 10.1007/s11412-015-9207-1. URL http://dx.doi.org/10. 1007/s11412-015-9207-1. Vai! Cerca con Google

Cumhur Erkut, Antti Jylha ̈, and Davide Rocchesso. 17 Heigh Ho: Rhythmicity in Sonic Interac- tion. Sonic Interaction Design, page 341, 2013. Cerca con Google

Gilles Fauconnier and Mark Turner. The way we think: Conceptual blending and the mind’s hidden complexities. Basic Books, 2008. Cerca con Google

Jerry A. Fodor. The modularity of mind: An essay on faculty psychology. MIT press, 1983. Cerca con Google

Anders Friberg and Johan Sundberg. Does music performance allude to locomotion? A model of final ritardandi derived from measurements of stopping runners. The Journal of the Acoustical Society of America, 105(3):1469–1484, 1999. Cerca con Google

Masataka Goto. Smartmusickiosk: Music listening station with chorus-search function. In Pro- ceedings of the 16th annual ACM symposium on User interface software and technology, pages 31–40. ACM, 2003. Cerca con Google

Masataka Goto. Active music listening interfaces based on signal processing. In 2007 IEEE International Conference on Acoustics, Speech and Signal Processing-ICASSP’07, volume 4, pages IV–1441. IEEE, 2007. Cerca con Google

Masataka Goto, Kazuyoshi Yoshii, Hiromasa Fujihara, Matthias Mauch, and Tomoyasu Nakano. Songle: A web service for active music listening improved by user contributions. In ISMIR, pages 311–316, 2011. Cerca con Google

Niall Griffith and Mikael Fernstro ̈m. Litefoot: A floor space for recording dance and controlling media. In Proceedings of the 1998 International Computer Music Conference, pages 475–481, 1998. Cerca con Google

Mark Grimshaw and Gareth Schott. Situating gaming as a sonic experience: the acoustic ecology of first person shooters. In Digital Games Research Association (DiGRA), 2007. Cerca con Google

Kaj Grønbæk, Ole Sejer Iversen, Karen Johanne Kortbek, Kaspar Rosengreen Nielsen, and Louise Aagaard. Interactive floor support for kinesthetic interaction in children learning en- vironments. In Human-Computer Interaction–INTERACT 2007, pages 361–375. Springer, 2007. Cerca con Google

Simone Gumtau, Paul Newland, Chris Creed, and Simon Kunath. Mediate: A responsive envi- ronment designed for children with autism. In Proceedings of the 2005 International Confer- ence on Accessible Design in the Digital World, Accessible Design’05, pages 14–14, Swin- ton, UK, UK, 2005. British Computer Society. URL http://dl.acm.org/citation. cfm?id=2227734.2227754. Vai! Cerca con Google

Masatoshi Hamanaka and Seunghee Lee. Sound scope headphones: Controlling an audio mixer through natural movement. In Proceedings of the International Computer Music Conference, pages 155–158, 2007. Cerca con Google

Thomas W. Hedges and Andrew P. McPherson. 3D Gestural Interaction with Harmonic Pitch Space. Proceedings of ICMC-SMC Conference, 2013. Cerca con Google

Simon Holland. Learning about harmony with Harmony Space: an overview. Springer 1994, 1994. Cerca con Google

Simon Holland, Paul Marshall, Jon Bird, and al. Running up Blueberry Hill: Prototyping whole body interaction in harmony space. Proceedings of the 3rd international Conference on Tan- gible and Embedded interaction, 2009. Cerca con Google

Eva Hornecker and Jacob Buur. Getting a grip on tangible interaction: a framework on physical space and social interaction. In Proceedings of the SIGCHI conference on Human Factors in computing systems, pages 437–446. ACM, 2006. Cerca con Google

Johanna Hoysniemi. International survey on the dance dance revolution game. Comput. Entertain., 4(2), April 2006. ISSN 1544-3574. doi: 10.1145/1129006.1129019. URL http://doi.acm.org/10.1145/1129006.1129019. Vai! Cerca con Google

Mu Hsen Hsu, Timothy K. Shih, and Jen Shiun Chiang. Real-time finger tracking for virtual instruments. In Ubi-Media Computing and Workshops (UMEDIA), 2014 7th International Conference on, pages 133–138. IEEE, 2014. Cerca con Google

Lee Humphries. What to think about when you conduct: perception, language, and musical communication. ThinkingApplied.com, 1968. Cerca con Google

Horace HS Ip, Ken CK Law, and Belton Kwong. Cyber composer: Hand gesture-driven intel- ligent music composition and generation. In Multimedia Modelling Conference, 2005. MMM 2005. Proceedings of the 11th International, pages 46–52. IEEE, 2005. Cerca con Google

Ole Sejer Iversen, Karen Johanne Kortbek, Kaspar Rosengreen Nielsen, and Louise Aagaard. Stepstone: an interactive floor application for hearing impaired children with a cochlear im- plant. In Proceedings of the 6th international conference on Interaction design and children, pages 117–124. ACM, 2007. Cerca con Google

S. Jabri, Z. Duric, H. Wechsler, and A. Rosenfeld. Detection and location of people in video images using adaptive fusion of color and edge information. In In Pattern Recognition, Proc. of the 15th International Conference on, volume 4, pages 627–630, 2000. Cerca con Google

Robert JK. Jacob, Audrey Girouard, Leanne M. Hirshfield, Michael S. Horn, Orit Shaer, Erin Treacy Solovey, and Jamie Zigelbaum. Reality-based interaction: a framework for post- wimp interfaces. In Proceedings of the SIGCHI conference on Human factors in computing systems, pages 201–210. ACM, 2008. Cerca con Google

Jan Jarvlepp. Pitch and Texture Analysis of Ligeti’s Lux Aeterna, January 1982. URL http: //www.ex-tempore.org/jarvlepp/jarvlepp.htm. Vai! Cerca con Google

Kristoffer Jensen. Pitch gestures in generative modeling of music. In Proceedings of the 7th In- ternational Conference on Exploring Music Contents, CMMR’10, pages 51–59, Berlin, Hei- delberg, 2011. Springer-Verlag. ISBN 978-3-642-23125-4. URL http://dl.acm.org/ citation.cfm?id=2040789.2040794. Vai! Cerca con Google

Hans-Christian Jetter, Florian Geyer, Tobias Schwarz, and Harald Reiterer. Blended Interaction– Toward a Framework for the Design of Interactive Spaces. In Workshop DCIS, volume 12, 2012. Cerca con Google

Hans-Christian Jetter, Harald Reiterer, and Florian Geyer. Blended interaction: understanding natural human–computer interaction in post-wimp interactive spaces. Personal and Ubiquitous Computing, 18(5):1139–1158, 2014. Cerca con Google

Mina C. Johnson-Glenberg, David Birchfield, Philippos Savvides, and Colleen Megowan- Romanowicz. Semi-virtual embodied learning-real world stem assessment. In Serious Ed- ucational Game Assessment, pages 241–257. Springer, 2011. Cerca con Google

Mari R. Jones and Marilyn Boltz. Dynamic attending and responses to time. Psychological review, 96(3):459, 1989. Cerca con Google

Sergi Jorda`, Gu ̈nter Geiger, Marcos Alonso, and Martin Kaltenbrunner. The reactable: exploring the synergy between live music performance and tabletop tangible interfaces. In Proceedings of the 1st international conference on Tangible and embedded interaction, pages 139–146. ACM, 2007. Cerca con Google

Patrik N. Juslin and Petri Laukka. Expression, perception, and induction of musical emotions: A review and a questionnaire study of everyday listening. Journal of New Music Research, 33 (3):217–238, 2004. Cerca con Google

J. Juul. Half-Real: Video Games Between Real Rules and Fictional Worlds. MIT Press, 2011. ISBN 9780262516518. URL https://books.google.it/books?id= mZP6AQAAQBAJ. Vai! Cerca con Google

Gunild Keetman and Carl Orff. Music for Children, volume Voll. 1 -5 of Orff-Schulwerk - Music for Children. Schott Music Ltd., London, score for voice and/or instruments edition, 1950 - 1954. Cerca con Google

Peter Krogh, Martin Ludvigsen, and Andreas Lykke-Olesen. ” Help Me Pull That Cursor” A Collaborative Interactive Floor Enhancing Community Interaction. Australasian Journal of Information Systems, 11(2), 2004. Cerca con Google

Myron W. Krueger. Responsive environments. In Proceedings of the June 13-16, 1977, national computer conference, pages 423–433. ACM, 1977. Cerca con Google

Myron W. Krueger. Environmental technology: making the real world virtual. Communications of the ACM, 36(7):36–37, 1993. Cerca con Google

Myron W. Krueger, Thomas Gionfriddo, and Katrin Hinrichsen. Videoplace—an artificial reality. In ACM SIGCHI Bulletin, volume 16, pages 35–40. ACM, 1985. Cerca con Google

George Lakoff and Mark Johnson. Metaphors we live by. University of Chicago press, 2008. Cerca con Google

Marc Leman. Embodied music cognition and mediation technology. Mit Press, 2008. Cerca con Google

Marc Leman, Michiel Demey, Micheline Lesaffre, Leon Van Noorden, and Dirk Moelants. Con- cepts, Technology, and Assessment of the Social Music Game” Sync-in-Team”. In Computa- tional Science and Engineering, 2009. CSE’09. International Conference on, volume 4, pages 837–842. IEEE, 2009. Cerca con Google

Fred Lerdahl and Ray Jackendoff. A generative theory of tonal music. MIT Press, Cambridge, 1985. Cerca con Google

Henrik Hautop Lund, Thomas Klitbo, and Carsten Jessen. Playware technology for physically activating play. Artificial life and Robotics, 9(4):165–174, 2005. Cerca con Google

Pattie Maes. Artificial life meets entertainment: lifelike autonomous agents. Communications of the ACM, 38(11):108–114, 1995. Cerca con Google

Pieter-Jan Maes, Denis Amelynck, Micheline Lesaffre, Marc Leman, and DK Arvind. The “con- ducting master”: an interactive, real-time gesture monitoring system based on spatiotemporal motion templates. International Journal of Human-Computer Interaction, 29(7):471–487, 2013. Cerca con Google

Prodromos Makris, Dimitrios N. Skoutas, and Charalabos Skianis. A survey on context-aware mobile and wireless networking: on networking and computing environments’ integration. Communications Surveys & Tutorials, IEEE, 15(1):362–386, 2013. Cerca con Google

Bill Manaris, David Johnson, and Yiorgos Vassilandonakis. Harmonic navigator: A gesture- driven, corpus-based approach to music analysis, composition, and performance. In Ninth Artificial Intelligence and Interactive Digital Entertainment Conference, 2013. Cerca con Google

Teresa Marrin and Joseph Paradiso. The digital baton: a versatile performance instrument. In Proceedings of the International Computer Music Conference, pages 313–316, 1997. Cerca con Google

Teresa Marrin and Rosalind Picard. The ‘conductor’s jacket’: A device for recording expressive musical gestures. In Proc. International Computer Music Conference, pages 215–219, 1998. Cerca con Google

Max V. Mathews. The radio baton and conductor program, or: Pitch, the most important and least expressive part of music. Computer Music Journal, 15(4):37–46, 1991. ISSN 01489267, 15315169. URLhttp://www.jstor.org/stable/3681070. Vai! Cerca con Google

mDecks Music. Mapping tonal harmony, November 2012. URL http://mdecks.com/ mapharmony.html. Vai! Cerca con Google

D. R. Montello. International Encyclopedia of the Social and Behavioral Sciences. Oxford, Pergamon Press, 2001. Cerca con Google

Axel G. E. Mulder. Towards a choice of gestural constraints for instrumental performers. Trends in Gestural Control of Music, pages 315–335, 2000. Cerca con Google

Matteo Munaro, Filippo Basso, and Emanuele Menegatti. Openptrack: Open source multi- camera calibration and people tracking for rgb-d camera networks. Robotics and Au- tonomous Systems, 75, Part B:525–538, 1 2016. doi: http://dx.doi.org/10.1016/j.robot. 2015.10.004. URLhttp://www.sciencedirect.com/science/article/pii/ S0921889015002304. Vai! Cerca con Google

Teresa Marrin Nakra, Yuri Ivanov, Paris Smaragdis, and Christopher Ault. The ubs virtual mae- stro: an interactive conducting system. In NIME, pages 250–255, 2009. Cerca con Google

F. Pachet. Music listening: What is in the air? Technical report, Sony Computer Science Laboratory internal Report, 1999. Cerca con Google

Franc ̧ois Pachet, Olivier Delerue, and Peter Hanappe. Dynamic audio mixing. In Proceedings of ICMC, 2000. Cerca con Google

Haris Papagiannakis, Margherita Antona, Stavroula Ntoa, and Constantine Stephanidis. A mul- timodal ambient intelligence environment for playful learning. J. UCS, 19(17):2617–2636, 2013. Cerca con Google

Joseph Paradiso, Craig Abler, Kai-yuh Hsiao, and Matthew Reynolds. The magic carpet: physi- cal sensing for immersive environments. In CHI’97 Extended Abstracts on Human Factors in Computing Systems, pages 277–278. ACM, 1997. Cerca con Google

Joseph A. Paradiso and Neil Gershenfeld. Musical Applications of Electric Field Sensing. Com- puter Music Journal, (April):1–28, 1996. Cerca con Google

Marianne Graves Petersen. Interactive spaces: towards a better everyday? interactions, 12(4): 44–45, 2005. Cerca con Google

Jessica Phillips-Silver, C. Athena Aktipis, and Gregory A. Bryant. The ecology of entrainment: Foundations of coordinated rhythmic movement. Music Perception: An Interdisciplinary Jour- nal, 28(1):3–14, 2010. Cerca con Google

Jean Piaget, Margaret Cook, and W.W. Norton. The origins of intelligence in children, volume 8. International Universities Press New York, 1952. Cerca con Google

Martin Pichlmair and Fares Kayali. Levels of sound: On the principles of interactivity in music video games. In Proceedings of the Digital Games Research Association 2007 Conference” Situated play. Citeseer, 2007. Cerca con Google

Bogdan Pietraszewski, Slawomir Winiarski, and Sebastian Jaroszczuk. Three-dimensional hu- man gait pattern–reference data for normal men. Acta of Bioengineering and Biomechanics, 14(3):9–16, 2012. Cerca con Google

Dirk-Jan Povel and Erik Jansen. Harmonic factors in the perception of tonal melodies. Music Perception, 20(1):51–85, 2002. Cerca con Google

Arthur S. Reber. Implicit learning and tacit knowledge. Journal of experimental psychology: General, 118(3):219, 1989. Cerca con Google

Bruce Richardson, Krispin Leydon, Mikael Fernstrom, and Joseph A. Paradiso. Z-tiles: building blocks for modular, pressure-sensing floorspaces. In CHI’04 extended abstracts on Human factors in computing systems, pages 1529–1532. ACM, 2004. Cerca con Google

Martin Rohrmeier and Patrick Rebuschat. Implicit learning and acquisition of music. Topics in cognitive science, 4(4):525–553, 2012. Cerca con Google

Joseph Rovan and Vincent Hayward. Typology of tactile sounds and their synthesis in gesture- driven computer music performance. Trends in gestural control of music, pages 297–320, 2000. Cerca con Google

M. Rudolf and M. Stern. The grammar of conducting: a comprehensive guide to baton tech- nique and interpretation. [David Lewis Crosby collection]. Schirmer Books, 1994. ISBN 9780028722214. URLhttp://books.google.it/books?id=qr8YAQAAIAAJ. Vai! Cerca con Google

Teppo Sa ̈rka ̈mo ̈, Mari Tervaniemi, Sari Laitinen, Anita Forsblom, Seppo Soinila, Mikko Mikko- nen, Taina Autti, Heli M. Silvennoinen, Jaakko Erkkila ̈, Matti Laine, et al. Music listening enhances cognitive recovery and mood after middle cerebral artery stroke. Brain, 131(3): 866–876, 2008. Cerca con Google

Donald A. Scho ̈n. The theory of inquiry: Dewey’s legacy to education. Curriculum Inquiry, 22 (2):119–139, 1992. doi: 10.1080/03626784.1992.11076093. URL http://dx.doi.org/ 10.1080/03626784.1992.11076093. Vai! Cerca con Google

Sertan S ̧entu ̈rk, Sang Won Lee, Avinash Sastry, Anosh Daruwalla, and G. Weinberg. Crossole: A gestural interface for composition, improvisation and performance using kinect. In G. Essl, B. Gillespie, M. Gurevich, and S. O’Modhrain, editors, Proceedings of the International Con- ference on New Interfaces for Musical Expression (NIME), pages 449–502, Ann Arbor, Michi- gan, May 21-23 2012. University of Michigan, University of Michigan. Cerca con Google

John A. Sloboda. The musical mind: The cognitive psychology of music. Oxford University Press, 1985. Cerca con Google

Sundeep Teki, Maria Chait, Sukhbinder Kumar, Katharina von Kriegstein, and Timothy D. Grif- fiths. Brain bases for auditory stimulus-driven figure–ground segregation. The Journal of Neuroscience, 31(1):164–171, 2011. Cerca con Google

Florian Thalmann and Guerino Mazzola. The bigbang rubette: Gestural music composition with rubato composer. In Proceedings of the 2008 International Computer Music Conference, 2008. Cerca con Google

Michael H. Thaut, Gerald C. McIntosh, and Volker Hoemberg. Neurobiological foundations of neurologic music therapy: rhythmic entrainment and the motor system. Frontiers in psychol- ogy, 5, 2014. Cerca con Google

Barbara Tillmann, Jamshed J. Bharucha, and Emmanuel Bigand. Implicit learning of tonality: a self-organizing approach. Psychological review, 107(4):885, 2000. Cerca con Google

Leng-Wee Toh, Wilber Chao, and Yi-Shin Chen. An interactive conducting system using kinect. In Multimedia and Expo (ICME), 2013 IEEE International Conference on, pages 1–6. IEEE, 2013. Cerca con Google

Andries van Dam. Post-wimp user interfaces. Commun. ACM, 40(2):63–67, February 1997. ISSN 0001-0782. doi: 10.1145/253671.253708. URL http://doi.acm.org/10. 1145/253671.253708. Vai! Cerca con Google

Giovanna Varni, Gae ̈l Dubus, Sami Oksanen, Gualtiero Volpe, Marco Fabiani, Roberto Bresin, Jari Kleimola, Vesa Va ̈lima ̈ki, and Antonio Camurri. Interactive sonification of synchronisa- tion of motoric behaviour in social active listening to music with mobile devices. Journal on Multimodal User Interfaces, 5(3-4):157–173, 2012. Cerca con Google

Bill Verplank. Interaction design sketchbook, 2003. URL https://ccrma.stanford. edu/courses/250a/lectures/. Vai! Cerca con Google

Luc Vincent. Morphological area openings and closings for grey-scale images. In Ying-Lie O, Alexander Toet, David Foster, HenkJ.A.M. Heijmans, and Peter Meer, editors, Shape in Picture, volume 126 of NATO ASI Series, pages 197–208. Springer Berlin Heidelberg, Berlin, 1994. Cerca con Google

Yon Visell, Severin Smith, Alvin Law, Rishi Rajalingham, and Jeremy R Cooperstock. Contact sensing and interaction techniques for a distributed, multimodal floor display. In 3D User Interfaces (3DUI), 2010 IEEE Symposium on, pages 75–78. IEEE, 2010. Cerca con Google

Gualtiero Volpe and Antonio Camurri. A system for embodied social active listening to sound and music content. Journal on Computing and Cultural Heritage (JOCCH), 4(1):2, 2011. Cerca con Google

Peter Vorderer and Jennings Bryant. Playing video games: Motives, responses, and conse- quences. Routledge, 2012. Cerca con Google

Mark Weiser. The computer for the 21st century. Scientific american, 265(3):94–104, 1991. Cerca con Google

Daniel Wigdor, Chia Shen, Clifton Forlines, and Ravin Balakrishnan. Table-centric interactive spaces for real-time collaboration. In Proceedings of the working conference on Advanced visual interfaces, pages 103–107. ACM, 2006. Cerca con Google

Matthew Wright. Open sound control-a new protocol for communicationg with sound synthesiz- ers. In Proceedings of the 1997 International Computer Music Conference, pages 101–104, 1997. Cerca con Google

Tomoyoshi Yoshida, Shoichi Takeda, and Sayoko Yamamoto. The application of entrainment to musical ensembles, 2002. Cerca con Google

S. Zanolla, S. Canazza, A. Roda`, A. Camurri, and G. Volpe. Entertaining listening by means of the Stanza Logo-Motoria: an Interactive Multimodal Environment. Entertainment Computing, 2013(4):213–220, 2013. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record