Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Brezzi, Lorenzo (2016) Calibration strategies of a depth-integrated numerical model for the propagation of flow-like landslides. [Ph.D. thesis]

Full text disponibile come:

[img]
Preview
PDF Document (PhD Thesis) - Updated Version
21Mb

Abstract (english)

Nowadays, the numerical models are important allies for the study of physical and natural phenomena. They become progressively more complicated because various differential equations are included to consider the different processes involved in a singular phenomenon. The number of parameters used to adapt the numerical results to the real measurements increase consequently.
Among the huge quantity of natural phenomena studied, the landslides are definitely important and, among them, the flow-slides are a type, which actually have an increasing occurrence frequency because of the climate change. When the velocity of the flowing material is high, this type of natural hazard becomes even more worrying. The risk and the damage, which may result, are significant, especially when the landslide is located in close proximity to residential areas. The catastrophic effects range from the destruction of buildings and infrastructures, to the most tragic loss of human lives.
Three processes of a flow-slide could be individuated: the trigger mechanism, the propagation and the final deposit. Topic of this thesis is the study of the last two phases that occur after the mass collapse has already happened. The propagation and the deposit phases will be here analyzed using a model which integrates the Saint Venant‘s equations developed for the flow of an equivalent homogeneous material according to the shallow water hypothesis. The model is applied before to the simulation of several laboratory experiments and, then, for reproducing a debris flow really occurred in 2010 in Italy.
The calibration phase is the basic operation for using a numerical model. The parameters considered have to be smartly defined to reproduce the phenomenon with a satisfactory likelihood. When the parameters have a physical meaning, it is necessary to check if they allow the model to produce reliable results, even when the model necessarily introduces strong approximations. Sometimes, anyway, the parameters to include in the calculation have just a mathematical significance. In this case, it is even more important to calibrate the model paying attention to all the complexities of the phenomenon, because if the calibration strategy does not take into account the various aspects of the case study, the parameters obtained by the back-analysis may be senseless.
This thesis wants to show the complexity that may characterize the calibration procedure. Once the numerical model has been adopted and its possibilities and limitations have been evaluated, the analysis of different cases will help to evidence the difficulties that the back-analysis can present. To this aim, in this work, three main case studies are presented: the spreading of a column of cohesive material on a horizontal plane, numerous flume tests performed using three-phases mixtures and, finally, a real debris flow occurred in 2010 along the Rotolon stream, in North-Western sector of Veneto region (Italy). It is important to underline that all the laboratory tests are performed on purpose to apply the back-analysis, paying therefore particular attention to the data acquisition conditions.
For all the case studies, many calibration procedures are applied in order to individuate the most suitable to reduce the uncertainty in the determination of the fitting parameters.

Abstract (italian)

Oggigiorno, i modelli numerici ricoprono un ruolo di fondamentale importanza per lo studio di fenomeni fisici e naturali. Essi diventano via via sempre più complessi grazie all’aumento del numero di equazioni differenziali implementate in ciascun modello al fine di tener conto dei differenti aspetti che caratterizzano il fenomeno oggetto studio. Conseguentemente cresce anche il numero dei parametri da valutare per adattare i risultati ottenuti dal modello numerico alle misure reali.
Tra tutti i fenomeni naturali che si possono considerare, i frane sono indiscutibilmente molto importanti. Tra i diversi tipi di frane, le colate sono una tipologia che si presenta sempre con maggior frequenza a causa dei cambiamenti climatici in atto e con effetti molto dannosi. Quando, poi, la velocità raggiunta in questi fenomeni diventa elevata, aumenta il loro potere distruttivo. I rischi e i danni che ne possono nascere non sono trascurabili, in modo particolare quando le colate avviene in prossimità di aree residenziali. Gli effetti catastrofici che ne possono scaturire spaziano dalla distruzione di edifici e infrastrutture, fino ad arrivare alla ancor più tragica perdita di vite umane.
Quando si studia un movimento di colata, tre processi devono essere presi in considerazione: il meccanismo di innesco, la fase di propagazione ed infine il deposito. Questa tesi riguarda principalmente lo studio degli ultimi due processi che si verificano, cioè, quando il materiale ha già iniziato il suo movimento. Le fasi di propagazione e di arresto sono qui analizzate utilizzando un modello numerico sviluppato integrando le equazioni di Saint Venant per il flusso di un materiale monofase omogeneo in acque basse. Il modello è stato applicato sia per la simulazione di esperimenti di laboratorio sia per riprodurre un debris flow avvenuto nel nord Italia nel 2010.
Quando si utilizza un modello numerico, la fase di calibrazione rappresenta un’operazione essenziale affinché si possano ottenere buoni risultati. I parametri utilizzati dal codice devono essere attentamente definiti in modo che il modello possa riprodurre il fenomeno fisico con elevata accuratezza. Quando i parametri hanno un significato fisico, risulta necessario controllare se il loro utilizzo, considerando le approssimazioni che il modello inevitabilmente comporta, permette di produrre risultati affidabili.
A volte, tuttavia, i parametri che devono essere inseriti nel modello prescindono dalla natura fisica del caso in esame, ed hanno solamente un significato in termini matematici. Quando questo avviene, risulta ancor più importante calibrare il modello, cercando di cogliere l’intera complessità del fenomeno. Se la strategia di calibrazione non tiene conto dei vari aspetti che caratterizzano il caso di studio, infatti, i parametri ottenuti tramite back-analysis potrebbe non aver alcun senso.
Questa tesi si pone l’obiettivo di sottolineare la complessità che può contraddistinguere il processo di calibrazione. Dopo aver deciso quale modello numerico utilizzare ed averne comprese possibilità e limitazioni, lo studio di casi di studio differenti permette di evidenziare le criticità e le problematiche che la back-analysis può presentare. A tale scopo, in questo lavoro vengono considerati principalmente tre casi di studio. Il primo riguarda il collasso di una colonna di materiale coesivo su di un piano orizzontale. Successivamente la procedura è applicata ad un gruppo di prove in canaletta condotte con diverse miscele di argilla e sabbia. Infine, viene analizzata la colata detritica avvenuta nel 2010 lungo il torrente Rotolon, situato in nella parte nord-occidentale del Veneto. È importante sottolineare che tutti i test di laboratorio sono stati eseguiti appositamente per la successiva applicazione della back-analysis, prestando quindi particolare attenzione alle modalità di acquisizione dei dati.
Per tutti e tre i casi, è stata ricercata ed applicata una strategia di calibrazione per ridurre l’incertezza nell’identificazione dei parametri ottimali.

Statistiche Download - Aggiungi a RefWorks
EPrint type:Ph.D. thesis
Tutor:Cola, Simonetta
Supervisor:Pirulli, Marina
Ph.D. course:Ciclo 28 > Scuole 28 > SCIENZE DELL'INGEGNERIA CIVILE E AMBIENTALE
Data di deposito della tesi:29 July 2016
Anno di Pubblicazione:29 July 2016
Key Words:SPH / SPH, debris flow / colate di detriti, calibration / calibrazione, numerical model / modello numerico, laboratory test / test sperimentali di laboratorio, material collapse /collasso di materiale, propagation / propagazione, deposit / deposito, Voellmy / Voellmy, Bingham / Bingham, flow-like landslides / colate rapide
Settori scientifico-disciplinari MIUR:Area 08 - Ingegneria civile e Architettura > ICAR/07 Geotecnica
Struttura di riferimento:Dipartimenti > Dipartimento di Ingegneria Civile, Edile e Ambientale
Codice ID:9707
Depositato il:03 Nov 2017 10:13
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Ancey, C., 2007. Plasticity and geophysical flows: a review. Journal of Non-Newtonian Fluid Mechanics, 142(1), pp.4-35. Cerca con Google

Armanini, A., Fraccarollo, L. & Rosatti, G., 2009. Two-dimensional simulation of debris flows in erodible channels. Computers & Geosciences, 35(5), pp.993-1006. Cerca con Google

Artoni, R. et al., 2013. Collapse of quasi-two-dimensional wet granular columns. Physical Review E, 87(3). Cerca con Google

Ayotte, D. & Hungr, O., 2000. Calibration of a runout prediction model for debris-flows and avalanches. In Proceedings of the 2nd International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, Taipei, Taiwan. AA Balkema, Rotterdam, 2000. Edited by GF Wieczorek and ND Naeser. Cerca con Google

Azimi, A.H., 2016. Free surface flow characteristics of multi-phase viscoplastic fluids on inclined flumes and planes. International Journal of Multiphase Flow, 78, pp.59-69. Cerca con Google

Bagnold, R.A., 1954. Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 225(1160), pp.49-63. Cerca con Google

Baltzer, A., 1875. Über bergstürze in den Alpen. Verlag der Schabelitz’schen buchhandlung. Zurich: C. Schmidt. Cerca con Google

Barbieri, G. et al., 1980. Carta geologica dell'area di Recoaro. Padova, 1980. Mem. Sc. Geol. XXXIV. [in Italian]. Cerca con Google

Barbolini, M. et al., 2004. Laboratory study of erosion processes in snow avalanches. Cold Regions Science and Technology, 43(1), pp.1-9. Cerca con Google

Bates, R.L. & Jackson, J.A., 1984. Glossary of geology. Falls Church, Virginia. Cerca con Google

Baù, D., Ferronato, M., Teatini, P. & Gambolati, G., 2014. Ensemble Smoothing of Land Subsidence Measurements for Reservoir Geomechanical Characterization. International Journal of Numerical and Analytical Methods in Geomechanics, DOI: 10.1002/nag.2309. Cerca con Google

Benz, W., 1990. Smooth particle hydrodynamics: a review. In The numerical modelling of nonlinear stellar pulsations. The Netherlands: Springer Netherlands. pp.269-88. Cerca con Google

Bertolo, P. & Wieczorek, F., 2005. Calibration of numerical models for small debris flows in Yosemite Valley, California, USA. Natural Hazard and Earth System Sciences, 5, pp.993-1001. DOI: 10.5194/nhess-5-993-2005. Cerca con Google

Bettella, F., Bisantino, T., D'Agostino, V. & Gentile, F., 2012. Debris-flow runout distance: laboratory experiments on the role of Bagnold, Savage and friction numbers. In Monitoring, Simulation, Prevention and Remediation of Dense and Debris Flows IV. WIT Transactions on Engineering Science., 2012. D. de Wrachien, C.A. Brebbia & S. Mambretti. Cerca con Google

Bingham, E.C. & Green, H., 1919. Paint, a plastic material and not a viscous liquid; the measurement of its mobility and yield value. Proc. Am. Soc. Test. Mater, 19, pp.640-64. Cerca con Google

Bossi, G. et al., 2014. Multi temporal LiDAR-DTMs as a tool for modelling a complex landslide: a case study in the Rotolon catchment (Eastern Italian Alps). Natural Hazards and Earth System Sciences Discussions, 2(10), pp.6453-74. DOI: 10.5194/nhessd-2-6453-2014. Cerca con Google

Bossi, G. et al., 2015. The Rotolon Catchment Early-Warning System. Engineering Geology for Society and Territory, 3, DOI: 10.1007/978-3-319-09054-2. Cerca con Google

Bull, W.B., 1964. Alluvial fans and near-surface subsidence in Western Fresno County, California. U.S. Geological Survey Professional Paper 437-A. Denver, CO: U.S. Geological Survey. Cerca con Google

Canelli, L., Ferrero, A.M., Migliazza, M. & Segalini, A., 2012. Debris flow risk mitigation by the means of rigid and flexible barriers – experimental tests and impact analysis. Natural Hazards and Earth System Sciences, 12(5), pp.1693-99. Cerca con Google

Capparelli, G. & Versace, P., 2011. FLaIR and SUSHI: two mathematical models for early warning of landslides induced by rainfal. Landslides, 8, pp.67-79. DOI: 10.1007/s10346-010-0228-6. Cerca con Google

Cascini, L. et al., 2012. Modeling of propagation and entrainment phenomena for landslides of the flow type: the May 1998 case study. Landslides and Engineered Slopes: Protecting Society through Improved Understanding. Proceedings of the 11th International & 2nd North American Symposium on Landslides, 38. Cerca con Google

Cavalli, M. & Tarolli, P., 2011. Application of lidar technology for rivers analysis. Italian Journal of Engineering Geology and Environment, Special Issue(1), pp.33-44. DOI: 10.4408/IJEGE.2011-01.S-03. Cerca con Google

Chambon, G., Ghemmour, A. & Naaim, M., 2014. Experimental investigation of viscoplastic free-surface flows in a steady uniform regime. Journal of Fluid Mechanics, 754, pp.332-64. Cerca con Google

Chen, C.-L., 1988. Generalized viscoplastic modeling of debris flow. Journal of hydraulic engineering, 114(3), pp.237-58. Cerca con Google

Chen, C.L., 1988. Generalized viscoplastic modeling of debris flow. Journal of hydraulic engineering, 114(3), pp.237-58. Cerca con Google

Chen, H.G., Crosta, G.B. & Lee, C.F., 2006. Erosional Effects on runout of fast landslides, debris flows and avalanches: a numerical investigation. Geotechnique, 56(5), pp.305-22. Cerca con Google

Chen, H. & Lee, C.F., 2002. Runout analysis of slurry flows with Bingham model. Journal of Geotechnical and Geoenvironmental Engineering, 128(12), pp.1032-42. Cerca con Google

Chen, H. & Lee, F., 2003. A dynamic model for rainfall-induced landslides on natural slopes. Geomorphology , 51(4), pp.269-88. Cerca con Google

Chen, C.-l. & Ling, C.-H., 1996. Granular-flow rheology: role of shear-rate number in transition regime. Journal of engineering mechanics, 122(5), pp.469-80. Cerca con Google

Christen, M., Kowalski, J. & Bartelt, P., 2010. RAMMS: numerical simulation of dense snow avalanches in three-dimensional terrain. Cold Regions Science and Technology, 63(1), pp.1-14. Cerca con Google

Cleary, P.W. & Prakash, M., 2004. Discrete-element modelling and smoothed particle hydrodynamics: potential in the environmental sciences. The Royal Society, 362, pp.2003–30. DOI: 10.1098/rsta.2004.1428. Cerca con Google

Cochard, S. & Ancey, C., 2009. Experimental investigation of the spreading of viscoplastic fluids on inclined planes. Journal of Non-Newtonian Fluid Mechanics, 158(1-3), pp.73-84. Cerca con Google

Cola, S. et al., 2015. Applicability of two propagation models to simulate the Rotolon earth-flow occurred in November 2010. In Engineering Geology for Society and Territory-Volume 2., 2015. Springer International Publishing. Cerca con Google

Cola, S., Calabrò, N., Simonini, P. & Pastor, M., 2011. Effects of Grain-Size Composition Examined in Laboratory and Numerical Tests on Artificial Mud-Flows. In The Second World Landslide Forum., 2011. Springer-Verlag Berlin Heidelberg 2013. Cerca con Google

Costa, J., 1984. Physical geomorphology of debris flows. In Developments and applications of geomorphology. Springer Berlin Heidelberg. pp.268-317. Cerca con Google

Coussot, P. et al., 1998. Direct determination of rheological characteristics of debris flow. Journal of hydraulic engineering, 124(8), pp.865-68. Cerca con Google

Coussot, P. & Meunier, M., 1996. Recognition, classification and mechanical description of debris flows. Earth-Science Reviews, 40(3), pp.209-27. Cerca con Google

Coussot, P. & Piau, J.M., 1994. On the behavior of fine mud suspensions. Rheologica acta, 33(3), pp.175-84. Cerca con Google

Coussot, P. & Piau, J.M., 1995. A large‐scale field coaxial cylinder rheometer for the study of the rheology of natural coarse suspensions. Journal of Rheology, 39(1), pp.105-24. Cerca con Google

Coussot, P., Raynaud, J.S. & Ancey, C., 2003. Combined MRI-rheometry determination of the behavior of mud suspensions. Debris Flow Mechanics and Mitigation Conference, Mills Press, Davos, pp.291-301. Cerca con Google

Crosta, G.B., Chen, H. & Frattini, P., 2006. Forecasting hazard scenarios and implications for the evaluation of countermeasure efficiency for large debris avalanches. Engineering Geology, 83(1), pp.236-53. Cerca con Google

Cruden, D.M. & Vernes, D.J., 1996. Landslides: investigation and mitigation. Chapter 3-Landslide types and processes. Transportation research board special report 247, pp.36-75. Cerca con Google

D'Agostino, V., Cesca, M. & Marchi, L., 2010. Field and laboratory investigations of runout distances of debris flows in the Dolomites (Eastern Italian Alps). Geomorphology, 115(3), pp.294-304. Cerca con Google

Davidson, M.R., Hasan Khan, N. & Leong Yeow, Y., 2000. Collapse of a cylinder of Bingham fluid. ANZIAM Journal, 42, pp.499-517. Cerca con Google

De Zanche, V. & Mietto, P., 1981. Review of the Triassic sequence of Recoaro (Italy) and related problems. Padova, 1981. Rend. Soc. Geol. It. Cerca con Google

DeNatale, J.S. et al., 1999. Experimental testing of flexible barriers for containment of debris flows. US Geolological Survey - Open File Report 99-205, pp.1-38. Cerca con Google

Dzuy, N.Q. & Boger, D.V., 1983. Yield stress measurement for concentrated suspensions. Journal of Rheology, 27(4), pp.321-49. Cerca con Google

Egashira, S., Honda, N. & Itoh, T., 2001. Experimental Study on the Entrainment of Bed Material into Debris Flow. Phys. Chem. Earth, 26(9), pp.645-50. Cerca con Google

Einstein, A., 1956. Investigations on the Theory of the Brownian Movement. Dover, New York: Courier Corporation. Cerca con Google

Evensen, G., 2003. The Ensemble Kalman Filter: theoretical formulation and practical implementation. Ocean Dynamics, 53(4), pp.343-67. DOI: 10.1007/s10236-003-0036-9. Cerca con Google

Frigerio, S. et al., 2014. A web-based platform for automatic and continuous landslide monitoring: The Rotolon (Eastern Italian Alps) case study. Computers & Geosciences, 63, pp.96-105. DOI: 10.1016/j.cageo.2013.10.015. Cerca con Google

Gabrieli, F., 2009. L'approccio particellare per la modellazione numerica dell'innesco di instabilità di versante in terreni granulari. Università degli Studi di Padova. Cerca con Google

Gabrieli, F., Artoni, R., Santomaso, A. & Cola, S., 2013. Discrete particle simulations and experiments on the collapse of wet granular columns. Physics of fluids 25 103303. Cerca con Google

Gingold, R. & Monaghan, J.J., 1977. Smoothed particle hydrodynamics: theory and application to non-spherical stars. Monthly notices of the royal astronomical society, 181(3), pp.375-89. Cerca con Google

Govier, G.W. & Aziz, K., 2008. The flow of complex mixtures in pipes. New Orleans: Society of Petroleum Engineers. Cerca con Google

Guzzetti, F., Peruccacci, S., Rossi, M. & Stark , C.P., 2008. The rainfall intensity-duration control of shallow landslides and debris-flow: an update. Landslides, 5(1), pp.3-17. DOI: 10.1007/s10346-007-0112-1. Cerca con Google

Haas, T. et al., 2015. Effects of debris flow composition on runout, depositional mechanisms, and deposit morphology in laboratory experiments. Journal of Geophysical Research: Earth Surface, 120(9), pp.1949-72. Cerca con Google

Herschel, W.H. & Bulkley, R., 1926. Measurement of consistency as applied to rubber-benzene solutions. Am. Soc. Test Proc., 26(2), pp.621-33. Cerca con Google

Huang, X. & Garcia, M.H., 1998. A Herschel-Bulkley model for mud flow down a slope. Journal of fluid mechanics, 374, pp.305-33. Cerca con Google

Hungr, O., 1995. A model for the runout analysis of rapid flow slides, debris flows, and avalanches. Canadian Geotechnical Journal, 32(4), pp.610-23. DOI: 10.1139/t95-063. Cerca con Google

Hungr, O. & Evans, S.G., 1996. Rock avalanche runout prediction using a dynamic model. Proceedings of the 7th International Symposium on Landslides, Trondheim, Norway, 1. Cerca con Google

Hungr, O., Evans, S.G., Bovis, M.J. & Hutchinson, J.N., 2001. Review of the classification of landslides of the flow type. Environmental & Enineering Geoscience, VII(3), pp.221-38. Cerca con Google

Hungr, O., Leroueil, S. & Picarelli, L., 2014. The Varnes classification of landslide types, an update. Landslides, 11(2), pp.167-94. Cerca con Google

Hungr, O. & McDougall, S., 2009. Two numerical models for landslide dynamic analysis. Computers & Geosciences, 35(5), pp.978-92. Cerca con Google

Hungr, O., McDougall, S. & Bovis, M., 2005. Entrainment of material by debris flows. In Debris-flow Hazards and Related Phenomena. Springer Berlin Heidelberg. pp.135-58. Cerca con Google

Hungr, O., Morgan, G.C. & Kellerhals, R., 1984. Quantitative analysis of debris torrent hazards for design of remedial measures. Canadian Geotechnical Journal, 21(4), pp.663-77. Cerca con Google

Hungr, O. & Morgenstern, N.R., 1984. Experiments on the flow behaviour of granular materials at high velocity in an open channel. Geotechnique, 34(3), pp.405-13. Cerca con Google

Hürlimann, M., McArdell, B.W. & Rickli, C., 2015. Field and laboratory analysis of the runout characteristics of hillslope debris flows in Switzerland. Geomorphology, 232, pp.20-32. Cerca con Google

Hutchinson, J.N., 1988. General report: morphological and geotechnical parameters landslides in relation to geology and hydrogeology. In Proceedings of the 5th International Symposium on Landslides. Lausanne, 1988. Cerca con Google

Imran, J., Parker, G., Locat, J. & Lee, H., 2001. 1D numerical model of muddy subaqueous and subaerial debris flows. Journal of hydraulic engineering, 127(11), pp.959-68. Cerca con Google

Iverson, R.M., 1997. The physics of debris flows. Reviews of Geophysics, 35(3), p.245. DOI: 10.1029/97RG00426. Cerca con Google

Iverson, R.M., 2012. Elementary theory of bed‐sediment entrainment by debris flows and avalanches. Journal of Geophysical Research: Earth Surface, 117(F3). Cerca con Google

Iverson, R.M., 2015. Scaling and design of landslide and debris-flow experiments. Geomorphology, 244, pp.9-20. Cerca con Google

Iverson, R. & Denlinger, R., 2001. Flow of variably fluidized granular masses across three‐dimensional terrain: 1. Coulomb mixture theory. Journal of Geophysical Research: Solid Earth, 106(B1), pp.537-52. Cerca con Google

Iverson, R.M., Logan, M. & Denlinger, R.P., 2004. Granular avalanches across irregular three‐dimensional terrain: 2. Experimental tests. Journal of Geophysical Research: Earth Surface, 109(F1), pp.1-16. Cerca con Google

Iverson, R.M., Logan, M., LaHusen, R.G. & Berti, M., 2010. The perfect debris flow? Aggregated results from 28 large‐scale experiments. Journal of Geophysical Research, 115. Cerca con Google

Jan, C.-D. & Shen, H.W., 1997. Review dynamic modeling of debris flows. In Recent Developments on Debris Flows. Springer Berlin Heidelberg. pp.93-116. Cerca con Google

Johnson, A.M., 1965. A model for debris flow. Ph.D Thesys at the Pennsylvania State University. Cerca con Google

Johnson, A.M., 1970. Physical processes in geology;: A method for interpretation of natural phenomena; intrusions in igneous rocks, fractures, and folds, flow of debris and ice. University of Minnesota: Freeman, Cooper. Cerca con Google

Johnson, C.G. et al., 2012. Grain‐size segregation and levee formation in geophysical mass flows. Journal of Geophysical Research: Earth Surface, 117(F1). Cerca con Google

Julien, P.Y. & Lan, Y., 1991. Rheology of hyperconcentrations. Journal of Hydraulic Engineering, 117(3), pp.346-53. Cerca con Google

Julien, P.Y. & Leòn, C.A., 2000. Mud floods, mudflows and debris flows classification, rheology and structural design. In Proc., Int Workshop on the Debris Flow Disaster of December 1999 in Venezuela. Universidad Central de Venezuela, Caracas, Venezuela, 2000. Cerca con Google

Kaitna, R., Rickenmann, D. & Schatzmann, M., 2007. Experimental study on rheologic behaviour of debris flow material. Acta Geotechnica, 2(2), pp.71-85. Cerca con Google

Kang, Z. & Zhang, S., 1980. A preliminary analysis of the characteristics of debris flow. Proc. int. symp. river sed., Beijing, China, 1, pp.213-26. Cerca con Google

Keefer, D.K. & Johnson, A.M., 1983. Earthflows: morphology, mobilization and movement. USGS Professional Paper 1264. Cerca con Google

Körner, H.J., 1976. Reichweite und Geschwindigkeit von Bergstürzen und Fließschneelawinen. Rock mechanics, 8(4), pp.225-56. Cerca con Google

Krieger, I.M. & Dougherty, T.J., 1959. A mechanism for non-Newtonian flow in suspensions of rigid spheres. Transactions of the Society of Rheology, 3, pp.111-36. Cerca con Google

Krone, R.B., 1986. The significance of aggregate properties to transport processes. In Estuarine cohesive sediment dynamics. New York: Springer. pp.66-84. Cerca con Google

Lacasse, S. & Nadim, F., 2009. Landslide risk assessment and mitigation strategy. Landslides - Disaster Risk Reduction, pp.31-62. DOI: 10.1007/978-3-540-69970-5_3. Cerca con Google

Laigle, D. & Coussot, P., 1997. Numerical modeling of mudflows. Journal of Hydraulic Engineering, 123(7), pp.617-23. Cerca con Google

Lajeunesse, E., Mangeney-Castelnau, A. & Vilotte, J.P., 2004. Spreading of a granular mass on a horizontal plane. Physics of Fluids, 16(7), pp.2371-81. Cerca con Google

Larcher, M., Fraccarollo, L., Armanini, A. & Capart, H., 2007. Set of measurement data from flume experiments on steady uniform debris flows. Journal of Hydraulic Research, 45.sup1, pp.59-71. Cerca con Google

Larsen, I.J., Montgomery, D.R. & Korup, O., 2010. Landslide erosion controlled by hillslope material. Nature Geoscience, 3(4), pp.247-51. Cerca con Google

Liu, G.R. & Liu, M.B., 2003. Smoothed Particle Hydrodynamics: a meshfree particle method. World Scientific. Cerca con Google

Liu, M.B. & Liu, G.R., 2010. Smoothed Particle Hydrodynamics (SPH): an Overview and Recent Developments. Archives of Computational Methods in Engineering, 17(1), pp.25–76. DOI: 10.1007/s11831-010-9040-7. Cerca con Google

Mainali, A. & Rajaratnam, N., 1994. Experimental study of debris flows. J. Hydraul. Eng., 230(2), pp.104-23. Cerca con Google

Major, J.J., 1997. Depositional Processes in Large-Scale Debris-Flow Experiments. Journal of Geology, 105(3), pp.345-66. Cerca con Google

Major, J.J. & Pierson, T.C., 1992. Debris Flow Rheology' Experimental Analysis of Fine-Grained Slurries. Water resources research, 28(3), pp.841-53. Cerca con Google

Mangeney‐Castelnau, A. et al., 2003. Numerical modeling of avalanches based on Saint Venant equations using a kinetic scheme. Journal of Geophysical Research: Solid Earth, 108(B1). Cerca con Google

Manzanal, D. et al., 2016. Application of a New Rheological Model to Rock Avalanches: An SPH Approach. Rock Mechanics and Rock Engineering, 49(6), pp.2353-72. Cerca con Google

Marchetti, M., 2000. Geomorfologia fluviale. Pitagora ed. Cerca con Google

McDougall, S. & Hungr, O., 2004. A model for the analysis of rapid landslide motion across three-dimensional terrain. Canadian Geotechnical Journal, 41(6), pp.1084-97. DOI: 10.1139/t04-052. Cerca con Google

McDougall, S. & Hungr, O., 2005. Dynamic modelling of entrainment in rapid landslides. Canadian Geotechnical Journal, 42(5), pp.1437-48. DOI: 10.1139/t05-064. Cerca con Google

McTigue, D.F., 1982. A nonlinear constitutive model for granular materials: application to gravity flow. Journal of Applied Mechanics, 49(2), pp.291-96. Cerca con Google

Medina, V., Hürlimann, & Bateman, A., 2008. Application of FLATModel, a 2D finite volume code, to debris flows in the northeastern part of the Iberian Peninsula. Landslides, 5(1), pp.127-42. Cerca con Google

Monaghan, J.J., 1992. Smoothed particle hydrodynamics. Annual Review of Astronomy and Astrophysics, 30, pp.543-74. DOI: 10.1146/annurev.aa.30.090192.002551. Cerca con Google

Monaghan, J.J. & Gingold, R.A., 1983. Shock simulation by the particle method SPH. Journal of computational physics, 52(2), pp.374-89. Cerca con Google

Monaghan, J.J. & Lattanzio, J.J., 1985. A refined particle method for astrophysical problems. Astronomy and astrophysics, 149, pp.135-43. Cerca con Google

Morgenstern, N.R., 1992. The evaluation of slope stability: a 25 year perspective. Stability and performance of slopes and embankments, ASCE Geotechnical Special Publication 31, 1, pp.1-26. Cerca con Google

O'Brien, J.S. & Julien, P.Y., 1985. Physical properties and mechanics of hyperconcentrated sediment flows. Proc. ASCE HD Delineation of landslides, flash flood and debris flow Hazards. Cerca con Google

O'Brien, J.S. & Julien, P.Y., 1988. Laboratory analysis of mudflow properties. Journal of hydraulic engineering, 114(8), pp.877-87. Cerca con Google

O'brien, J.S., Julien, P.Y. & Fullerton, W.T., 1993. Two-dimensional water flood and mudflow simulation. Journal of hydraulic engineering, 119(2), pp.244-61. Cerca con Google

Parsons, J.D., Whipple, K.X. & Simoni, A., 2001. Experimental study of the grain‐flow, fluid‐mud transition in debris flows. The Journal of Geology, 109(4), pp.427-47. Cerca con Google

Pastor, M. et al., 2014. Application of a SPH depth-integrated model to landslide run-out analysis. Landslides, 11, pp.793-812. DOI: 10.1007/s10346-014-0484-y. Cerca con Google

Pastor, M. et al., 2008. A depth-integrated, coupled SPH model for flow-like landslides and related phenomena. International Journal for Numerical and Analytical Methods in Geomechanics, 33(2), pp.143-72. DOI: 10.1002/nag.705. Cerca con Google

Pastor, M. et al., 2004. Modelling of landslides (II) propagation. In V.I. Darve F, ed. Degradation and Instabilities in Geomaterials. New York: Springer Wien. pp.319-67. Cerca con Google

Pirulli, M., 2005. Numerical modelling of landslide runout, a continuum mechanics approach. Ph.D. Degree in Geotechnical Engineering, Politecnico di Torino (Italy). Cerca con Google

Pirulli, M. & Mangeney, A., 2008. Results of back-analysis of the propagation of rock avalanches as a function of the assumed rheology. Rock Mechanics and Rock Engineering, 41(1), pp.59-84. Cerca con Google

Pirulli, M. & Pastor, M., 2012. Numerical study on the entrainment of bed material into rapid landslides. Geotechnique, 62(11), pp.959-72. DOI: 10.1680/geot.10.P.074. Cerca con Google

Pirulli, M. & Sorbino, G., 2008. Assessing potential debris flow runout: a comparison of two simulation models. Natural Hazard and Earth System Sciences, 8(4), pp.961-71. DOI: 10.5194/nhess-8-961-2008. Cerca con Google

Pitman, B.E. & Le, L., 2005. A two-fluid model for avalanche and debris flows. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 363(1832), pp.1573-601. Cerca con Google

Pudasaini, S.P., 2012. A general two‐phase debris flow model. Journal of Geophysical Research: Earth Surface, 117(F3). Cerca con Google

Pudasaini, S., Wang, Y. & Hutter, K., 2005. Modelling debris flows down general channels. Natural Hazards and Earth System Science, 5(6), pp.799-819. Cerca con Google

Pudasaini, S.P., Wang, Y. & Hutter, K., 2005. Modelling debris flows down general channels. Natural Hazards and Earth System Science, 5(6), pp.799-819. DOI: 10.5194/nhess-5-799-2005. Cerca con Google

Quan Luna, B. et al., 2011. The application of numerical debris flow modelling for the generation of physical vulnerability curves. Natural Hazard and Earth System Sciences, 11, pp.2047-60. DOI: 10.5194/nhess-11-2047-2011. Cerca con Google

Revellino, P., Hungr, O., Guadagno, F.M. & Evans, S.G., 2004. Velocity and runout simulation of destructive debris flows and debris avalanches in pyroclastic deposits, Campania region, Italy. Environmental Geology, 45, pp.295-311. DOI: 10.1007/s00254-003-0885-z. Cerca con Google

Rosatti, G. & Begnudelli, L., 2013. Two-dimensional simulation of debris flows over mobile bed: Enhancing the TRENT2D model by using a well-balanced Generalized Roe-type solver. Computers & Fluids, 71, pp.179-95. Cerca con Google

Salm, B., 1966. Contribution to avalanche dynamics. In Proceedings of International Symposium on Scientific Aspects of Snow and Ice Avalanches. IAHS, Christchurch (New Zeland), 1966. Cerca con Google

Savage, S.B. & Hutter, K., 1989. The motion of a finite mass of granular material down a rough incline. Journal of fluid mechanics, 199, pp.177-215. Cerca con Google

Savage, S.B. & Hutter, K., 1991. The dynamics of avalanches of granular materials from initiation to runout. Part I: Analysis. Acta Mechanica, 86(1-4), pp.201-23. Cerca con Google

Schädler, W. et al., 2014. Geomechanical assessment of the Corvara earthflow through numerical modelling and inverse analysis. Landslides, DOI: 10.1007/s10346-014-0498-5. Cerca con Google

Schatzmann, M. et al., 2009. Schatzmann, M., Bezzola, G. R., Minor, H. E., Windhab, E. J., & Fischer, P. (2009). Rheometry for large-particulated fluids: analysis of the ball measuring system and comparison to debris flow rheometry. Rheologica Acta, 48(7), pp.715-33. Cerca con Google

Schatzmann, M., Fischer, P. & Bezzola, G.R., 2003. Rheological behavior of fine and large particle suspensions. Journal of Hydraulic Engineering, 129(10), pp.796-803. Cerca con Google

Sharpe, C.F.S., 1938. Landslides and related phenomena. NY: Columbia University Press. Cerca con Google

Simonett, D., 1967. Landform Studies from Australia and New Guinea. In Australian National Univ. Press. Jennings, J. N. & Mabbutt, J. A. pp.64-84. Cerca con Google

Skempton, A.W. & Hutchinson, J., 1969. Stability of natural slopes and embankment foundations. Proceedings, 7th. International conference of soil mechanics and foundation engineering, Mexico, State of the Art volume, pp.291-340. Cerca con Google

Sosio, R., Crosta, G. & Hungr, O., 2008. Complete dynamic modeling calibration for the Thurwieser rock avalanche (Italian Central Alps). Engineering Geology, 100(1-2), pp.11-26. DOI: 10.1016/j.enggeo.2008.02.012. Cerca con Google

Swanston, D.N., 1974. Slope stability problems associated with timber harvesting in mountainous regions of the Southwestern United States. Forest Service General Technical Report PNW-021. Washington, DC: U. S. Department of U. S. Department of Agriculture. Cerca con Google

Takahashi, T., 1978. Mechanical characteristics of debris flow. Journal of the Hydraulics Division, 104(8), pp.1153-69. Cerca con Google

Takahashi, T., 1980. Debris flow on prismatic open channel. Journal of the Hydraulics Division, 106(3), pp.381-96. Cerca con Google

Takahashi, T., 1991. Debris flow. International Association for Hydraulic Research, Balkema, Rotterdam. Cerca con Google

Takahashi, T., 2014. Debris Flow: Mechanics, Prediction and Countermeasures. 2nd ed. Cerca con Google

Takahashi, T. & Kuang, S.F., 1986. Formation of debris flow on varied slope bed. Annuals, Disas. Prev. Res. Inst., Kyoto University, 29B(2), pp.343-59. Cerca con Google

Tang, C. et al., 2012. Catastrophic debris flows on 13 August 2010 in the Qingping area, southwestern China: the combined effects of a strong earthquake and subsequent rainstorms. Geomorphology, 139, pp.559-76. Cerca con Google

Trivelli, G., 1991. Storia del territorio e delle genti di Recoaro. Novara: Istituto Geografico De Agostini [in Italian]. Cerca con Google

Varnes, D.J., 1954. Landslide types and processes. Highway research board special report 29, pp.20-47. Cerca con Google

Varnes, D.J., 1978. Slope movement types and processes. Transportation Research Board Special Report 176, pp.11-33. Cerca con Google

Voellmy, A., 1955. Über die Zerstörungskraft von Lawinen. Schweiz Bauzeitung, 73, pp.159-165, 212–217, 246–249, 280–285. Cerca con Google

Wieczorek, G., 1987. Effect of rainfall intensity and duration on debris flows in central Santa Cruz Mountains, California. Reviews in Engineering Geology, 7, pp.93-104. Cerca con Google

Willmott, C.J. & Matsuura, K., 2005. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate research, 30(1), pp.79-82. Cerca con Google

Wu, Y.-H., Liu, K.-F. & Chen, Y.-C., 2013. Comparison between FLO-2D and Debris-2D on the application of assessment of granular debris flow hazards with case study. Journal of Mountain Science, 10(2), pp.293-304. DOI: 10.1007/s11629-013-2511-1. Cerca con Google

Yano, K. & Daido, A., 1965. Fundamental study on mud-flow. Bulletin od the Disaster Prevention Research Institute, 14(2), pp.69-83. Cerca con Google

Zhou, G.G.D. et al., 2015. Experimental study on the triggering mechanisms and kinematic properties of large debris flows in Wenjia Gully. Engineering Geology, 194, pp.52-61. Cerca con Google

Zienkiewicz, O.C., 1982. Basic formulation of static and dynamic behaviour of soil and other porous media. Numerical methods in geomechanics, Springer Netherlands, pp.39-55. Cerca con Google

Zienkiewicz, O.C. & Shiomi, T., 1984. Dynamic behaviour of saturated porous media; the generalized Biot formulation and its numerical solution. International journal for numerical and analytical methods in geomechanics, 8(1), pp.71-96. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record