Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Bilardi, Alessandra (2008) Regolatori di RNA e loro sequenze bersaglio. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
3316Kb

Abstract (inglese)

Bioinformatics is an interdisciplinary subject which integrates fields like biology, chemistry, biophysics, biostatist ics and computer science to solve biological problems. Its goal is to enable the discovery of new biological insights as well as to create global perspective from which unifying principles in biology can be discerned. The first and foremost biological problem is the annotation of functional genes hidden in sequenced genomes which can be effectively scanned by computational approaches. The other problems include protein structure prediction, drug discovery, metabolic pathway manipulation and much more. These problems can be consolved
in a faster way by using bioinformatics as a catalyst.
In these four years I have been involved in the annotation of structural and functional genes. In prokariotes I study Rho dependent terminator (RDT) as attenuator and/or terminator of
transcriptional unit (TU). In gram negative bacteria, RDT study is important to understand alternative TUs inside each operon so as it is weighty to identify Rho independent terminator (RIT). If we know where terminators (RDT and RIT) are located then we could cluster genes in operons and so we could contribute in annotating structural and functional genes. In the literature, documented RDT are less than 40 and there are 18 only in Escherichia coli. There is not a RDT prediction program and not even a RDT consensus sequence but only some features that they describe RDT shares. I designed first algorithm about RDT prediction and I suggested first RDT consensus sequence with a weighed matrix. I designed oligos and conditions about microarray experiments in order to confirm our RDT predictions and to understand about Rho functional correlation with genes that they have got a RDT. Microarray results confirmed that I can use intensity of oligos to calculate if one putative RDT exits. But to confirm putative RDTs we do other microarray experiments.
In eukariotes I study plants microRNA and their targets as genes annotated hardly and their function. Standard automatic gene annotation identifies and/or predicts genes that they will be translate. There are programs that they identify and/or predict genes about transfer, ribosomal and microRNA but there is little about microRNA and their targets in plants. I am involved in the annotation of microRNA genes and their targets in Vitis vinifira sequencing genome project. I implemented and tested more finder and predictor programs about microRNA genes and their targets for plants and animals. I proposted an integrated method with which I obtain positive results. Results about microRNA gene prediction could be validate with highthroughput sequencing approach. Results about microRNA target prediction protocol could be the starting point for lab experiments necessary for the validation of microRNA targets.
Beyond, I contributed to visualize data and to do advanced queries with databases about lab projects. I gained through experience and manage a generic genome browser and a advanced query tool about GMOD project. GMOD is the Generic Model Organism Database Toolkit, a collection of software tools for creating and managing genome-scale biological databases. I
realized new versions of some scripts about GMOD tool that they will be proposed in the next GBrowse release. I implemented and tested scripts more fast than real GBrowse scripts and without some bugs. Results of configuration and design about visualization and querying of databases are important since our genomics research group will be the responsible for the development of the Vitis vinifera annotation platform.


Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Valle, Giorgio
Dottorato (corsi e scuole):Ciclo 19 > Corsi per il 19simo ciclo > BIOTECNOLOGIE
Data di deposito della tesi:31 Gennaio 2008
Anno di Pubblicazione:31 Gennaio 2008
Parole chiave (italiano / inglese):RNA regulator, RDT, microRNA, GMOD
Settori scientifico-disciplinari MIUR:Area 05 - Scienze biologiche > BIO/11 Biologia molecolare
Struttura di riferimento:Centri > Centro di ricerca Interdipartimentale Biotecnologie Innovative (CRIBI)
Codice ID:975
Depositato il:18 Set 2008
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] Jaillon O, et al. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature, 449: 463-467, 2007 Cerca con Google

[2] Itoh T, et al. Evolutionary instability of operon structures disclosed by sequence comparisons of complete microbial genomes. Mol Biol Evol, 16: 332-346, 1999 Cerca con Google

[3] Wolf I, et al. Genome alignment, evolution of prokaryotic genome organization and prediction of gene function using genomic context. Genome Res, 11: 356-372, 2001 Cerca con Google

[4] Wang L, et al. Genome-wide operon prediction in Staphylococcus aureus. Nucleic Acids Res, 32: 3689-3702, 2004 Cerca con Google

[5] Chen X, et al. Operon prediction by comparative genomics: an application to the Synechococcus sp. WH8102 genome. Nucleic Acids Res, 32: 2147-2157, 2004 Cerca con Google

[6] Salgado H, et al. Operons in Escherichia coli: genomic analyses and predictions. Proc Natl Acad Sci USA, 97: 6652-6657, 2000 Cerca con Google

[7] Jian-Cheng Lin,Li, et al. Prediction of prokaryotic promoters based on prediction of transcriptional units . Acta Biochimica et Biophysica Sinica, 35: 317-324, 2003 Cerca con Google

[8] Ermolaeva D, et al. Prediction of operons in microbial genomes. Nucleic Acids Res, 29: 1216-1221, 2001 Cerca con Google

[9] Romero PR and Karp PD, et al. Using functional and organizational information to improve genome-wide computational prediction of transcription units on pathway-genome databases. Bioinformatics, 20: 709-717, 2004 Cerca con Google

[10] Paredes J, et al. Transcriptional organization of the Clostridium acetobutylicum genome. Nucleic Acids Res, 32: 1973-1981, 2004 Cerca con Google

[11] Moreno-Hagelsieb G and Collado-Vides J, et al. A powerful non-homology method for the prediction of operons in prokaryotes. Bioinformatics, 18: S329-S336, 2002 Cerca con Google

[12] Yellaboina S, et al. PredictRegulon: a web server for the prediction of the regulatory protein binding sites and operons in prokaryote genomes. Nucleic Acids Res, 32: W318- W320, 2004 Cerca con Google

[13] Alkema WB, et al. Regulog analysis: detection of conserved regulatory networks across bacteria: application to Staphylococcus aureus. Genome Res, 14: 1362-1373, 2004 Cerca con Google

[14] Yada T, et al. Modeling and predicting transcriptional units od Escherichia coli genes using hidden Markov models. Bioinformatics, 15: 987-993, 1999 Cerca con Google

[15] Bockhorst J, et al. Predicting bacterial transcription units using sequence and expression data. Bioinformatics, 19: i34-i43, 2003 Cerca con Google

[16] Bockhorst J, et al. A Bayesian network approach to operon prediction. Bioinformatics, 19: 1227-1235, 2003 Cerca con Google

[17] Sabatti C, et al. Co-expression pattern from DNA microarray experiments as a tool for operon prediction. Nucleic Acids Res, 30: 2886-2893, 2002 Cerca con Google

[18] Lauro FM, et al. Large-scale transposon mutagenesis of Photobacterium profundum SS9 reveals new genetic loci important for growth at low temperature and high pressure. J Bacteriol, [Epub ahead of print], 2007 Cerca con Google

[19] Campanaro S, et al. Laterally transferred elements and high pressure adaptation in Photobacterium profundum strains. BMC Genomics, 6: 122, 2005 Cerca con Google

[20] Vezzi A, et al. Life at depth: Photobacterium profundum genome sequence and expression analysis. Science, 307: 1459-1461, 2005 Cerca con Google

[21] Skordalahes E and Berger JM. Structure of the Rho transcription terminator: mechanism of mRNA recognition and helicase loading. Cell, 114: 135-146, 2003 Cerca con Google

[22] Graham JE et al. Sequence-specific Rho-RNA interactions in transcription termination. Nucleic Acids Res, 32: 3093-3100, 2004 Cerca con Google

[23] Chen CY and Richardson JP, et al. Sequence elements essential for rho-dependent trascription termination at lambda tR1. J Biol Chem, 262: 11292-11299, 1987 Cerca con Google

[24] Graham JE and Richardson JP. rut Sites in the nascent transcript mediate Rho-dependent transcription termination in vivo. J Biol Chem, 273: 20764-20769, 1998 Cerca con Google

[25] Hart CM and Roberts JW. Rho-dependent transcription termination. Characterization of the requirement for cytidine in the nascent transcript. J Biol Chem, 266: 24140-24148, 1991 Cerca con Google

[26] Walstrom KM, et al. Effects of reaction conditions on RNA secondary structure and on the helicase activity of Escherichia coli transcription termination factor Rho. J Mol Biol, 279: 713-726, 1998 Cerca con Google

[27] Wei RR and Richardson JP, et al. Identification of an RNA binding site in the ATP binding domain of Escherichia coli Rho by H2O2/Fe-EDTA cleavage protection studies. J Biol Chem, 276: 28380-28387, 2001 Cerca con Google

[28] Lau F, et al. RNA polymerase pausing and transcript release at the lambda tR1 terminator in vitro. J Biol Chem, 258: 9391-9397, 1983 Cerca con Google

[29] Morgan D, et al. Rho-dependent termination of transcription . J Biol Chem, 258: 9565- 9574, 1983 Cerca con Google

[30] Hitchens TK, et al. Sequence-specific interactions in the RNA-binding domain of E. coli transcription termination factor Rho. J Biol Chem, 44: 33697-33703, 2006 Cerca con Google

[31] Geiselmann J, et al. Functional interactions of ligand cofactors with Escherichia coli transcription termination factor rho. II. Binding of RNA. Protein Sci, 1: 861-873, 1992 Cerca con Google

[32] Richardson JP, et al. Rho-dependent termination and ATPases in trascript termination. BBA, 1577: 251-260, 2002 Cerca con Google

[33] Nudler E. Transcription termination and anti-termination in E. coli. Genes to cells, 7: 755-768, 2002 Cerca con Google

[34] Sharp JA and Platt T. Rho-dependent termination and concomitant NTPase activity requires a specific, intact RNA region. J Biol Chem, 259: 2268-73, 1984 Cerca con Google

[35] Richardson LV and Richardson JP. Rho-dependent termination of transcription is governed primarily by the upstream rho utilization (rut) sequences of a terminator. J Biol Chem, 271: 21597-21603, 1996 Cerca con Google

[36] Morgan D, et al. Rho-dependent termination of transcription . J Biol Chem, 258: 9553- 9564, 1983 Cerca con Google

[37] Arnving B, et al. A high-affinity interaction between NusA and the rrn nut site in Mycobacterium tuberculosis. Proc Natl Acad Sci USA, 101: 8325-8330, 2004 Cerca con Google

[38] Gong F and Yanofsky C, et al. Analysis of tryptophanase operon expression in vitro. J Biol Chem, 277: 17095-17100, 2002 Cerca con Google

[39] Kempsell KE, et al. The nucleotide sequence of the promoter, 16S rRNA and spacer region of the ribosomal RNA operon of Mycobacterium tuberculosis and comparison with Mycobacterium leprae precursor rRNA. J Gen Microbiol, 138: 1717-1727, 1992 Cerca con Google

[40] Kochlar S and Paulus H, et al. Lysine-induced premature transcription termination in the lysC operon of Bacillus subtilis . Microbiology, 142: 1635-1639, 1996 Cerca con Google

[41] Vincent KonanYanofsky Charles, et al. Rho-dependent transcription termination in the tna operon of Escherichia coli: roles of the boxA sequence and the rut site. J Bacteriol, 182: 3981-3988, 2000 Cerca con Google

[42] Seoh HK, et al. rRNA antitermination functions with heat shock promoters. J Bacteriol, 185: 6486-6489, 2003 Cerca con Google

[43] Todo K, et al. Comparative analysis of the four rRNA operons in Finegoldia magna ATCC29328. Syst Appl Microbiol, 27: 18-26, 2004 Cerca con Google

[44] Williamson RM and Oxender DL. Premature termination of in vivo transcription of a gene encoding a branched-chain amino acid transport protein in Escherichia coli. J Bacteriol, 174: 1777-1782, 1992 Cerca con Google

[45] Carlomagno S and Nappo A, et al. NusA modulates intragenic termination by different pathways. Gene, 308: 115-128, 2003 Cerca con Google

[46] Cheng C, et al. Transcription termination signals in the nin region of basteriophage lambda: identification of rho-dependent termination regions. Genetics, 140: 875-887, 1995 Cerca con Google

[47] Briani F, et al. A rho-dependent transcription termination site regulated by Bacteriophage P4 RNA imminity factor. Virology, 223: 57-67, 1996 Cerca con Google

[48] Burns CM and Richardson JP. NusG is required to overcome a kinetic limitation to Rho function at an intragenic terminator. Proc Natl Acad Sci USA, 92: 4738-4742, 1995 Cerca con Google

[49] Lavitola A, et al. Intracistronic transcription termination in polyltransferase gene (siaD) affects phase variation in Neisseria meningitidis. Mol Microbiol, 33: 119-127, 1999 Cerca con Google

[50] Nowatzke WL and Richardson JP. Characterization of an unusual Rho factor from the high G+C gram-positive bacterium Micrococcus luteus. J Biol Chem, 271: 742-747, 1996 Cerca con Google

[51] Brunel F and Pilaete MF, et al. Localisation and characterization of a new rho-dependent transcription terminator from bacteriophage T5. Nucleic Acids Res, 13: 7687-7701, 1985 Cerca con Google

[52] Joyce SA and Dorman CJ. A rho-dependent phase-variable transcription terminator controls expression of the FimE recombinase in Escherichia coli. Mol Microbiol, 45: 1107-1117, 2002 Cerca con Google

[53] Vadeboncoeur C, et al. Regulation of the pts operon in low G+C G ram-positive bacteria. J Mol Microbiol Biotechnol, 2: 483-490, 2000 Cerca con Google

[54] Albrechtsen B, et al. Transcriptional termination sequence at the end of the Escherichia coli ribosomal RNA G operon: complex terminators and antitermination. Nucleic Acids Res, 19: 1845-1852, 1991 Cerca con Google

[55] La Farina M, et al. Readthrough transcription occurs at the rho dependent signal F1 TIV in suppressor cells. Nucleic Acids Res, 18: 865-870, 1990 Cerca con Google

[56] Thoma R, et al. A histidine gene cluster of the hyperthermophile Themotoga maritima: sequence analysis and evolutionary significance. Extremophiles, 2: 379-389, 1998 Cerca con Google

[57] Wu M, et al. Tandem termination sites in the tryptophan operon of Escherichia coli. Proc Natl Acad Sci USA, 78: 2913-2917, 1981 Cerca con Google

[58] Gilbert W. The RNA world. Nature, 319: 618, 1986 Cerca con Google

[59] Gesteland RF, et al. The RNA world. Cold Spring Harbor, NY, USA: Cold Spring Harbor Laboratory Press, 1999 Cerca con Google

[60] Argaman L, et al. Novel small RNA-encoding genes in the intergenic regions of Escherichia coli. Curr Biol, 11: 941-950, 2001 Cerca con Google

[61] Huttenhofer A, et al. RNomics: an experimental approach that identifies 201 candidates for novel, small, non-messenger RNAs in mouse. EMBO J, 20: 2943-2953, 2001 Cerca con Google

[62] Olivas WM, et al. Analysis of the yeast genome: identification of new non-coding and small ORF-containing RNAs. Nucleic Acids Res, 25: 4619-4625, 1997 Cerca con Google

[63] Rivas E, et al. Computational identification of noncoding RNAs in E. coli by comparative genomics. Curr Biol, 11: 1369-1373, 2001 Cerca con Google

[64] Wassarman KM, et al. Identification of novel small RNAs using comparative genomics and microarrays. Genes Dev, 15: 1637-1651, 2001 Cerca con Google

[65] Lee RC, et al. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-4. Cell, 75: 843-854, 1993 Cerca con Google

[66] Wightman B, et al. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell, 75: 855-862, 1993 Cerca con Google

[67] Llave C, et al. Cleavage of scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science, 297: 2053-2056, 2002 Cerca con Google

[68] Reinhart BJ, et al. MicroRNAs in plants. Genes Dev, 16: 1616-1626, 2002. Erratum in: Genes Dev, 16: 2313, 2002 Cerca con Google

[69] Park MY, et al. Nuclear processing and export of microRNAs in Arabidopsis. Proc Natl Acad Sci U S A, 102: 3691-3696, 2005 Cerca con Google

[70] Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116: 281- 287, 2004 Cerca con Google

[71] Saumet A and Lecellier CH. Anti-viral RNA silencing: do we look like plants? Retrovirology, 3: doi:10.1186/1742-4690-3-3, 2006 Cerca con Google

[72] Lee Y, et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J, 23: 4051-4060, 2004 Cerca con Google

[73] Kurihara Y and Watanabe Y. Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions. Proc Natl Acad Sci U S A, 101: 12753-12758, 2004 Cerca con Google

[74] Tang G, et al. A biochemical framework for RNA silencing in plants. Genes Dev, 17: 49-63, 2003 Cerca con Google

[75] Bonnet E, et al. The small RNA world of plants. New Phytologist, 171: 451-468, 2006 Cerca con Google

[76] Yi R, et al. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev, 17: 3011-3016, 2003 Cerca con Google

[77] Lund E, et al. Nuclear export of microRNA precursors. Science, 303: 95-98, 2004 Cerca con Google

[78] Zeng Y and Cullen BR. Structural requirements for pre-microRNA binding and nuclear export by Exportin 5. Nucleic Acids Res, 32: 4776-4785, 2004 Cerca con Google

[79] Bernstein E, et al. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature, 409: 363-366, 2001 Cerca con Google

[80] Papp I, et al. Evidence for nuclear processing of plant microRNA and short interfering RNA precursor. Plant Physiol, 132: 1382-1390, 2003 Cerca con Google

[81] Bonnet E, et al. Evidence that microRNA precursors, unlike other non-coding RNAs, have lower folding free energies than random sequences. Bioinformatics, 20: 2911-2917, 2004 Cerca con Google

[82] Weber MJ. New human and mouse microRNA genes found by homology search. FEBS J, 272: 59-73, 2005 Cerca con Google

[83] Berezikov E, et al. Phylogenetic shadowing and computational identification of human microRNA genes. Cell, 120: 21-24, 2005 Cerca con Google

[84] Altuvia Y, et al. Clustering and conservation patterns of human microRNAs. Nucleic Acids Res, 33: 2697-2706, 2005 Cerca con Google

[85] Floyd SK, Bowman JL. Gene regulation: ancient microRNA target sequences in plants. Nature, 428: 485-486, 2004 Cerca con Google

[86] Axtell MJ and Bartel DP. Antiquity of microRNAs and their targets in land plants. Plant Cell, 17: 1658-1673, 2005 Cerca con Google

[87] Zhang BH, et al. Identification and characterization of new microRNAs using EST analysis. Cell Res, 15: 336-360, 2005 Cerca con Google

[88] Jones-Rhoades MW, et al. MicroRNA and their regulatory roles in plants. Annu Rev Plant Biol, 57: 19-53, 2006 Cerca con Google

[89] Lindow M and Gorodkin J. Principles and limitations of computational microRNA gene and target finding. DNA Cell Biol, 26: 339-351, 2007 Cerca con Google

[90] Lu C, et al. Elucidation of the smallRNA component of the trascriptome. Science, 309: 1567-1569, 2005 Cerca con Google

[91] Brown JR and Sanseau P. A computational view of microRNAs and their targets. Drug Discov Today, 10: 595-601, 2005 Cerca con Google

[92] Meyers BC, et al. Sweating the small stuff: microRNA discovery in plants. Curr Opin Biotechnol, 17: 139-146, 2006 Cerca con Google

[93] Hamilton AJ and Baulcombe DC. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science, 286: 950-952, 1999 Cerca con Google

[94] Brenner S, et al. Gene expression analysis by Massively Parallel Signature Sequencing (MPSS) on microbead arrays. Nat Biotechnol, 18: 630-634, 2000 Cerca con Google

[95] Margulies M, et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature. 437: 376-380, 2005 Cerca con Google

[96] Solexa, Inc. Protocol for Whole Genome Sequencing using Solexa Technology. BioTechniques Protocol Guide: 37, 2006 Cerca con Google

[97] Jacob F and Monod J. Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol, 3: 318-356, 1961 Cerca con Google

[98] Britten RJ and Davidson EH. Gene regulation for higher cells: a theory. Science, 165: 349-357, 1969 Cerca con Google

[99] Sito ufficiale del progetto GMOD: http://www.gmod.org/ Vai! Cerca con Google

[100] Sito ufficiale del NIH: http://www.nih.gov/ Vai! Cerca con Google

[101] Sito ufficiale dell’agenzia ARS: http://www.ars.usda.gov/ Vai! Cerca con Google

[102] Stein LD, et al. WormBase: network access to the genome and biology of Caenorhabditis elegans. Nucleic Acids Res, 1: 82-86, 2001 Cerca con Google

[103] Rogers A, et al. WormBase 2007. Nucleic Acids Res, doi:10.1093/nar/gkm975, 2007 Cerca con Google

[104] Ashburner M and Drysdale R. FlyBase: the Drosophila genetic database. Development, 7: 2077-2079, 1994 Cerca con Google

[105] Wilson RJ, et al. FlyBase: integration and improvements to query tools. Nucleic Acids Res, doi:10.1093/nar/gkm930, 2007 Cerca con Google

[106] Zhu Y, et al. Integrating computationally assembled mouse transcript sequences with the Mouse Genome Informatics (MGI) database. Genome Biol, 2: R16, 2003 Cerca con Google

[107] Ware D, et al. Gramene: a resource for comparative grass genomics. Nucleic Acids Res, 1: 103-105, 2002 Cerca con Google

[108] Liang C, et al. Gramene: a growing plant comparative genomics resource. Nucleic Acids Res, doi:10.1093/nar/gkm968, 2007 Cerca con Google

[109] Twigger SN, et al. Rat Genome Database (RGD): mapping disease onto the genome. Nucleic Acids Res, 1: 125-128, 2002 Cerca con Google

[110] Twigger SN, et al. The Rat Genome Database, update 2007: easing the path from disease to data and back again. Nucleic Acids Res, 35: D658-662, 2007 Cerca con Google

[111] Huala E, et al. The Arabidopsis Information Resource (TAIR): a comprehensive database and web-based information retrieval, analysis, and visualization system for a model plant. Nucleic Acids Res, 1: 102-105, 2001 Cerca con Google

[112] Swarbreck D, et al. The Arabidopsis Information Resource (TAIR): gene structure and function annotation. Nucleic Acids Res, doi:10.1093/nar/gkm965, 2007 Cerca con Google

[113] Karp PD, et al. EcoCyc: an encyclopedia of Escherichia coli genes and metabolism. Nucleic Acids Res, 1: 32-29, 1996 Cerca con Google

[114] Keseler IM, et al. EcoCyc: a comprehensive database resource for Escherichia coli. Nucleic Acids Res, 33: D334-337, 2005 Cerca con Google

[115] Cherry JM, et al. SGD: Saccharomyces Genome Database. Nucleic Acids Res, 1: 73-79, 1998 Cerca con Google

[116] Nash R, et al. Expanded protein information at SGD: new pages and proteome browser. Nucleic Acids Res, 35: D468-471, 2007 Cerca con Google

[117] Sito del CRIBI genomics: http://genomics.cribi.unipd.it/ Vai! Cerca con Google

[118] Sito ufficiale del EMBL-EBI: http://www.ebi.ac.uk/ Vai! Cerca con Google

[119] Sito ufficiale del JGI: http://www.jgi.doe.gov/ Vai! Cerca con Google

[120] Sito ufficiale del NCBI: http://www.ncbi.nlm.nih.gov/ Vai! Cerca con Google

[121] Sito ufficiale del Sanger Center: http://www.sanger.ac.uk/ Vai! Cerca con Google

[122] Sito ufficiale del TIGR: http://www.tigr.org/ Vai! Cerca con Google

[123] Gasteiger E, et al. SWISS-PROT: connecting biological knowledge via a protein database. Curr Issues Mol Biol, 3: 47-55, 2001 Cerca con Google

[124] Camon E., et al. The Gene Ontology Annotation (GOA) Database: sharing knowledge in Uniprot with Gene Ontology. Nucleic Acids Research, 32: D262-D266, 2004 Cerca con Google

[125] Jensen KF. The Escherichia coli K12 ’Wild Types’ W3110 and MG1655 have an rph frameshift mutation that leads to pyrimidine starvation due to low pyrE espression levels. J Bacteriol, 175: 3401-3407, 1993 Cerca con Google

[126] Yanisch-Perron C, et al. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene, 33: 103-119, 1985 Cerca con Google

[127] Nittler MP, et al. Identification of Histoplasma capsulatum transcripts induced in response to reactive nitrogen species. Mol Biol Cell, 16: 4792-4813, 2005 Cerca con Google

[128] Wells CA, et al. Alternate transcription of the Toll-like receptor signaling cascade. Genome Biol, 7: R10, 2006 Cerca con Google

[129] Ghindilis AL, et al. CombiMatrix oligonucleotide arrays: Genotyping and gene expression assays employing electrochemical detection. Biosens Bioelectron, 22: 1853-1860, 2007 Cerca con Google

[130] Altschul SF, et al. Basic local alignment search tool. J Mol Biol 215: 403-410, 1990 Cerca con Google

[131] Florea L, et al. A Computer Program for Aligning a cDNA Sequence with a Genomic DNA Sequence. Genome Res, 8: 967-974, 1998 Cerca con Google

[132] Hertz GZ and Stormo GD. Identifying DNA and protein patterns with statistically significant alignments of multiple sequences. Bioinformatics, 15: 563-577, 1999 Cerca con Google

[133] Gautheret D and Lambert A, et al. Direct RNA definition and identification from multiple sequence alignments using secondary structure profiles. J Mol Biol, 313: 1003-1011, 2001 Cerca con Google

[134] Zuker M and Stiegler P. Optimal computer folding of large RNA sequences using thermodynamic and auxiliary information. Nucl Acid Res, 9: 133-148, 1981 Cerca con Google

[135] Stein LD, et al. The generic genome browser: a building block for a model organism system database. Genome Res, 12: 1599-1610, 2002 Cerca con Google

[136] Sito ufficiale dell’ontologia delle sequenze: http://www.sequenceontology.org/ Vai! Cerca con Google

[137] Sito del tutorial ufficiale della sintassi GFF3: http://www.sequenceontology.org/gff3.shtml Vai! Cerca con Google

[138] Durinck S, et al. BioMart and Bioconductor: a powerful link between biological databases and microarray data analysis. Bioinformatics, 21: 3439-3440, 2005 Cerca con Google

[139] Schwab R, et al. Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell, 18: 1121-1133, 2006 Cerca con Google

[140] Adai A, et al. Computational prediction of miRNAs in Arabidopsis thaliana. Genome Res, 15: 78-91, 2005 identification of C. elegans microRNAs. Mol Cell, 11: 1253-1263, 2003 Cerca con Google

[141] Dezulian T, et al. Identification of plant microRNA homologs. Bioinformatics, 22: 359- 360, 2006 Cerca con Google

[142] Enright AJ, et al. MicroRNA targets in Drosophila. Genome Biology, 5: R1, 2003 Cerca con Google

[143] Rehmsmeier M, et al. Fast and effective prediction of microRNA/target duplexes. RNA, 10: 1507-1517, 2004 Cerca con Google

[144] Grad Y, et al. Computational and experimental Cerca con Google

[145] Lewis BP, et al. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 120: 15-20, 2005 Cerca con Google

[146] Notredame C, et al. T-Coffee: A novel method for fast and accurate multiple sequence alignment. J Mol Biol, 302: 205-217, 2000 Cerca con Google

[147] Sito ufficiale del programma RepeatMasker: http://www.repeatmasker.org/ Vai! Cerca con Google

[148] Blanchette M, et al. Aligning multiple genomic sequences with the Threaded Blockset Aligner. Genome Res, 14: 708-715, 2004 Cerca con Google

[149] Sito ufficiale della Combimatrix: http://www.combimatrix.com/ Vai! Cerca con Google

[150] Saeed AI, et al. TM4: a free, open-source system for microarray data management and analysis. Biotechniques, 34: 374-378, 2003 Cerca con Google

[151] Quackenbush J. Microarray data normalization and transformation. Nature Genetics, 32: 496-501, 2002 Cerca con Google

[152] Yang IV et al. Within the fold: assessing differential expression measures and reproducibility in microarray assays. Genome Biol, 3, research0062.1-0062.12, 2002 Cerca con Google

[153] Cleveland WS. Robust locally weighted regression and smoothing scatterplots. J Amer Stat Assoc, 74: 829-836, 1979 Cerca con Google

[154] Tusher VG, et al. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA, 98: 5116-5121, 2001. Erratum in: Proc Natl Acad Sci USA 98: 10515, 2001 Cerca con Google

[155] Zeeberg BR, et al. GoMiner: a resource for biological interpretation of genomic and proteomic data. Genome Biol, 4: R28, doi:10.1186/gb-2003-4-4-r28, 2003 Cerca con Google

[156] Ashburner M, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet, 25: 25-29, 2000 Cerca con Google

[157] Mathews DH, et al. Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol, 288: 911-40, 1999 Cerca con Google

[158] Cherry JL. Genome size and operon content. J theor Biol, 221: 401-410, 2003 Cerca con Google

[159] Eom CY, et al. Cloning, molecular characterization, and transcriptional analysis of dnaK operon in a methylotrophic bacterium Methylovorus sp. strain SS1 DSM 11726. Mol Cells, 14: 245-254, 2002 Cerca con Google

[160] Robinson K, et al. A comprehensive library of DNA-binding site matrices for 55 proteins applied to the complete Escherichia coli K-12 genome. J Mol Biol. 284: 241-254, 1998 Cerca con Google

[161] Zhang R and Zhang CT. A systematic method to identify genomic islands and its applications in analyzing the genomes of Corynebacterium glutamicum and Vibrio vulnificus CMCP6 chromosome I. Bioinformatics, 20: 612-622, 2004 Cerca con Google

[162] Hinde P, et al. Characterization of the Detachable Rho-Dependent Transcription Terminator of fimE Gene in Escherichia coli K-12. J Bacteriol, 187: 8256-8266, 2005 Cerca con Google

[163] Someya A, et al. Morphological changes of Escherichia coli induced by bicyclomycin. Antimicrob Agents Chemother, 16: 87-91, 1978 Cerca con Google

[164] Tanaka N, et al. Mechanism of action of bicyclomycin. J Antibiot, 29: 155-168, 1976 Cerca con Google

[165] Someya A, et al. Binding of bicyclomycin to inner membrane proteins of E. coli. J Antibiot, 31: 712-718, 1978 Cerca con Google

[166] Konan KV and Yanofsky C. Regulation of Escherichia coli tna operon: nascent leader peptide control at the tnaC stop codon. J Bacteriol, 179: 1774-1779, 1997 Cerca con Google

[167] Nakaya A, et al. Tracing synergetic behavior of the QTLs affecting oral glucose tolerance in the OLETF rat. Genome Inform Ser Workshop Genome Inform, 10: 155-165, 1999 Cerca con Google

[168] Huynh T, et al. A pattern-based method for the identification of microRNA-target sites and their corresponding RNA/RNA complexes. Cell, 126: 1203-1217, 2006 Cerca con Google

[169] Sito del CRIBI GBbrowse: http://gbrowse.cribi.unipd.it/ Vai! Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record