Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Poggiali, Davide (2016) Postprocessing Neuroimaging methods in MRI and PET/MRI
with applications to Multiple Sclerosis and other Neurological diseases.
[Ph.D. thesis]

Full text disponibile come:

[img]PDF Document (tesi di dottorato) - Submitted Version
Thesis not accessible until 01 February 2020 for intellectual property related reasons.
Visibile to: nobody
Available under License Creative Commons Attribution Non-commercial Share Alike.

19Mb

Abstract (english)

Many non-invasive imaging instruments have been developed in the last 40 years, allowing to obtain images of the interior human body while the patient is still alive. In the contest of Neurology studies, imaging system as CT, MRI, SPECT or PET allows to obtain biomarkers useful to quantitatively distinguish between healthy and unhealthy subjects, evaluate the staging of a Neurological illness in a patient, evaluate the efficacy of a treatment, explore the causes of the illness.
In this work MRI and PET imaging system introduced from scratch, going from reconstruction from raw data to state-of-the art post-processing techniques and the computation of more popular biomarkers.
After these introduction, three original work using the recent PET/MRI imaging system are presented, with a particular focus on the methods. These three studies involve patients with Multiple Sclerosis, Alzheimer's Disease and Brain Tumor.

Abstract (italian)

Negli ultimi 40 anni sono stati sviluppati diversi strumenti di imaging non-invasivi, in modo da ottenere immagini dell'interno del corpo umano mentre il paziente è ancora in vita. Nel contesto neurologico, sistemi di imaging come TAC, RM, SPECT e PET permettono di ottenere biomarcatori utili a distinguere quantitativamente soggetti sani da pazienti con malattie neurologiche, valutare lo stato di avanzamento di una malattia in un paziente, valutare l'efficacia di un trattamento, esplorare le cause della malattia.
Nel presente lavoro si presentano i sistemi di acquisione di immagini RM e PET fin dalle fondamenta, partendo dai metodi di ricostruzione dell'immagine dai dati grezzi, allo stato dell'arte dei metodi di post-processing, fino al calcolo dei biomarcatori più diffusi.
Dopo tale introduzione saranno presentati tre lavori originali di imaging PET/MRI, con una particolare attenzione ai metodi. Questi tre lavori riguardano pazienti con Sclerosi Multipla, Morbo di Alzheimer e Tumori Cerebrali.

Aggiungi a RefWorks
EPrint type:Ph.D. thesis
Tutor:Pegoraro, Elena
Supervisor:Gallo, Paolo
Ph.D. course:Ciclo 29 > Corsi 29 > SCIENZE MEDICHE, CLINICHE E SPERIMENTALI
Data di deposito della tesi:15 November 2016
Anno di Pubblicazione:11 November 2016
Key Words:MS, AD, MRI, PET, PET/MRI
Settori scientifico-disciplinari MIUR:Area 01 - Scienze matematiche e informatiche > MAT/08 Analisi numerica
Area 06 - Scienze mediche > MED/26 Neurologia
Struttura di riferimento:Dipartimenti > Dipartimento di Scienze Cardiologiche, Toraciche e Vascolari
Dipartimenti > Dipartimento di Neuroscienze
Codice ID:9793
Depositato il:24 Nov 2017 09:51
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Aine CJ. A conceptual overview and critique of functional neuroimaging techniques in humans: I. MRI/FMRI and PET. Critical reviews in neurobiology, 1994. Cerca con Google

Anderson DH. Compartmental Modeling and Tracer Kinetics. Springer Berlin Heidelberg, 1983. Cerca con Google

Barker GJ, et al. 3D fast flair: a CSF-nulled 3D fast spin-echo pulse sequence. Magn.Reson.Imaging, 1998. Cerca con Google

Barkhof F, McGowan JC, et al. Hypointense multiple sclerosis lesions on T1-weighted spin echo magnetic resonance images: their contribution in understanding multiple sclerosis evolution. J. Neurol.Neurosurg. 1998. Cerca con Google

Barthel H, Luthardt J, et al. Individualized quantification of brain beta-amyloid burden: results of a proof of mechanism phase 0 florbetaben PET trial in patients with Alzheimers disease and healthy controls. Eur J Nucl Med Mol Imaging, 2011. Cerca con Google

Becker GA, Ichise M, Barthel H, et al. PET quantification of 18F-florbetaben binding to beta-amyloid deposits in human brains. J Nucl Med, 2013. Cerca con Google

Blinkenberg M, Jensen CV, Holm S, Paulson OB, Sorensen PS. A longitudinal study of cerebral glucose metabolism, MRI, and disability in patients with MS. Neurology, 1999. Cerca con Google

Blinkenberg M, Mathiesen HK, Tscherning T, et al. Cerebral metabolism, magnetic resonance spectroscopy and cognitive dysfunction in early multiple sclerosis: an exploratory study. Neurol Res, 2012. Cerca con Google

Bourgeat P, Villemagne VL, et al. Comparison of MR-less PiB SUVR quantification methods. Neurobiol Aging, 2015. Cerca con Google

Calabrese M, Atzori M, et al. Cortical atrophy is relevant in multiple sclerosis at clinical onset. J Neurol, 2007. Cerca con Google

Calabrese M, Gallo P. Magnetic resonance evidence of cortical onset of multiple sclerosis. Mult Scler 2009. Cerca con Google

Calabrese M, Mattisi I, et al. Magnetic resonance evidence of cerebellar cortical pathology in multiple sclerosis. J Neurol Neurosurg Psychiatry, 2010. Cerca con Google

Calabrese M, Rinaldi F, et al. The predictive value of gray matter atrophy in clinically isolated syndromes. Neurology 2011. Cerca con Google

Callaghan P. Principles of Nuclear Magnetic Resonance Microscopy. Oxford University Press 1994. Cerca con Google

Camus V, Payoux P, et al. Using PET with 18F-AV-45 (florbetapir) to quantify brain amyloid load in a clinical environment. Eur J Nucl Med Mol Imaging. 2012. Cerca con Google

Cardoso MJ, Wolz R, et al. Geodesic information flows. Med Image Comput Comput Assist Interv. 2012. Cerca con Google

Carson RE, Herscovitch P, Daube-Witherspoon ME. Quantitative Functional Brain Imaging with Positron Emission Tomography. Academic Press, 1998. Cerca con Google

Chard DT, Jackson JS, Miller DH, Wheeler-Kingshott CA. Reducing the impact of white matter lesions on automated measures of brain gray and white matter volumes. . J Magn Reson Imaging. 2010. Cerca con Google

Chen M, Mao S, Liu Y. Big data: a survey. Mobile Networks and Applications, Springer 2014. Cerca con Google

Cobelli C, Carson E. Introduction to modeling in physiology and medicine. AP, 2008. Cerca con Google

Cobelli C, Foster D, Toffolo G. Tracer kinetics in biomedical research. Springer, 2001. Cerca con Google

Das SR, Avants BB, Grossman M, Gee JC. Registration based cortical thickness measurement. Neuroimage. 2009. Cerca con Google

Dendrou CA, Fugger L, Friese MA. Immunopathology of multiple sclerosis. . Nat. Rev. Immunol, 2015. Cerca con Google

Desikan RS, Segonne F, al et.. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage, 2006. Cerca con Google

Dougherty G. Digital Image Processing for Medical Applications. Cambridge University Press. 2009. Cerca con Google

Douw L, et al. Cognitive and radiological effects of radiotherapy in patients with low-grade glioma: long-term follow-up. Lancet Neurol. 2009. Cerca con Google

Eklund A, Nichols TE, Knutsson H. Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates. Proceedings of the National Academy of Sciences of the USA, 2016. Cerca con Google

Epstein CL. Introduction to the mathematics of Medical Imaging. Second Edition, Siam, 2008, Ch14. Cerca con Google

Erlandsson K, Buvat I, Pretorius PH, Thomas BA, BF Hutton and. A review of partial volume correction techniques for emission tomography and their applications in neurology, cardiology and oncology. Phys. Med. Biol., 2012. Cerca con Google

Favaretto A, Poggiali D, Lazzarotto A, Rolma G, Causin F, Gallo P. The Parallel Analysis of Phase Sensitive Inversion Recovery (PSIR) and Double Inversion Recovery (DIR) Images Significantly Improves the Detection of Cortical Lesions in Multiple Sclerosis (MS) since Clinical Onset. PLoS One, 2015. Cerca con Google

Feeman TG. The mathematics of medical imaging: A beginners guide. Springer, 2010, Ch10. Cerca con Google

Geurts et al. JJG. Cortical lesions in multiple sclerosis: combined postmortem MR imaging and histopathology. Am. J. Neuroradiol, 2005. Cerca con Google

Gimeno-Bayon J, Lopez-Lopez A, Rodriguez MJ, Mahy N. Glucose pathways adaptation supports acquisition of activated microglia phenotype. J Neurosci Res, 2014. Cerca con Google

Hajnal JV, Hill and DJ Hawkes D. Medical Image Registration. CRC Press. 2001. Cerca con Google

Hashemi RH, Bradley WG, Lisanti CJ. MRI, the Basics. Lippincott Williams & Wilkins, 2010. Cerca con Google

Henry RG, et al. Regional grey matter atrophy in clinically isolated syndromes at presentation. J Neurol Neurosurg Psychiatry, 2008. Cerca con Google

Hutter A, Schwetye KE, Bierhals AJ, McKinstry RC. Brain neoplasms epidemiology, diagnosis, and prospects for cost-effective imaging. Neuroimaging Clin N Am, 2003. Cerca con Google

Hutton C, Declerck J, al. et, . Quantification of 18F-florbetapir PET: comparison of two analysis methods. Eur J Nucl Med Mol Imaging, 2015. Cerca con Google

Jack CR, et al. Amyloid-first and neurodegeneration-first profiles characterize incident amyloid PET positivity. Neurology, 2013. Cerca con Google

Jack CRJ, Knopman DS, et al. Hypothetical model of dynamic biomarkers of the Alzheimers pathological cascade.. Lancet Neurol. 2010. Cerca con Google

Jurcovicova J. Glucose transport in brain - effect of inflammation. Endocr Regul, 2014. Cerca con Google

Juweid ME, Hoekstra OS. Positron Emission Tomography. Humana Press, 2011. Cerca con Google

Kienast Y, Winkler F. Therapy and prophylaxis of brain metastases. Expert Rev Anticancer Ther. 2010. Cerca con Google

Kleihues P, Kiessling M, Scheithauer BW. The new WHO classification of brain tumours. Brain Pathol, 1987. Cerca con Google

Knopman DS, Jack CR, et al. Selective worsening of brain injury biomarker abnormalities in cognitively normal elderly persons with beta-amyloidosis. JAMA Neurol, 2013. Cerca con Google

Lee YY, Van Tassel P. Intracranial oligodendrogliomas: imaging findings in 35 untreated cases. AJR Am J Roentgenol. 1989. Cerca con Google

Lucchinetti CF, et al. Inflammatory cortical demyelination in early multiple sclerosis. N. Engl. J. Med, 2011. Cerca con Google

Lutz NW, Viola A, Malikova I, et al. Inflammatory multiple-sclerosis plaques generate characteristic metabolic profiles in cerebrospinal fluid. PLoS One, 2007. Cerca con Google

Magistretti PJ. Neuron-glia metabolic coupling and plasticity. J Exp Biol, 2006 Jun. Cerca con Google

Magliozzi R, et al. Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain 2007. Cerca con Google

Mayeux R. Epidemiology of neurodegeneration. Annu Rev Neurosci, 2003. Cerca con Google

Miller DH, Grossman RI, et al. The role of magnetic resonance techniques in understanding and managing multiple sclerosis. Brain 1998. Cerca con Google

Modersitzki J. FAIR:Flexible Algorithms for Image Registration. SIAM.2009. Cerca con Google

Modersitzki J. Numerical Methods for Image Registration. Oxford University Press. 2004. Cerca con Google

Morgen K, Sammer G, et al. Evidence for a direct association between cortical atrophy and cognitive impairment in relapsing-remitting MS. Neuroimage, 2006. Cerca con Google

Mori F, Nicoletti CG GC, et al. Growth factors and synaptic plasticity in relapsing-remitting multiple sclerosis. Neuromolecular Med, 2014. Cerca con Google

NJ Tustison, BB Avants, PA Cook, et al. N4ITK:Improved N3 Bias Correction. IEEE transactions on medical imaging, 2010. Cerca con Google

Nelissen N, Van Laere K, et al. Phase 1 study of the Pittsburgh compound B derivative 18F-flutemetamol in healthy volunteers and patients with probable Alzheimer disease. J Nucl Med. 2009. Cerca con Google

Nelson F, Datta S, Garcia N, et al. Intracortical lesions by 3T magnetic resonance imaging and correlation with cognitive impairment in multiple sclerosis. Mult Scler, 2011. Cerca con Google

Noseworthy JH, Lucchinetti C, et al. Multiple sclerosis. N. Engl. J. Med., 2000. Cerca con Google

Pardoe HR, Abbot DF, al et. Sample Size Estimates for Well-Powered Cross-Sectional Cortical Thickness Studies. Hum Brain Mapp, 2013. Cerca con Google

Patlak CS, Blasberg RG. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalizations. Journal of Cerebral Blood Flow and Metabolism, 1985. Cerca con Google

Poggiali D. Reconstruction of medical images from Radon data in transmission and emission tomography. Masters thesis 2012. Cerca con Google

Polman CH, Reingold SC, Banwell B, et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol, 2011 Feb. Cerca con Google

Popescu BF, Bunyan RF, Parisi JE, Ransohoff RM, Lucchinetti CF. A case of multiple sclerosis presenting with inflammatory cortical demyelination. Neurology, 2011 May 17. Cerca con Google

Pozzilli C, Fieschi C, Perani D, et al. Relationship between corpus callosum atrophy and cerebral metabolic asymmetries in multiple sclerosis. J Neurol Sci, 1992. Cerca con Google

Pugliatti M, et al. The epidemiology of multiple sclerosis in Europe. Eur. J. Neurol., 2006. Cerca con Google

Puthenparampil M, Poggiali D, Causin F, Rolma G, Rinaldi F, Perini P, Gallo P. Cortical relapses in multiple sclerosis. Multiple Sclerosis Journal, 2015. Cerca con Google

R. Mayeux. Early alzheimers disease. N Engl J Med, 2010. Cerca con Google

Ricci PE. Imaging of adult brain tumors. Neuroimaging Clin N Am, 1999. Cerca con Google

Roelcke U, Kappos L, Lechner-Scott J, et al. Reduced glucose metabolism in the frontal cortex and basal ganglia of multiple sclerosis patients with fatigue: a 18F-fluorodeoxyglucose positron emission tomography study. Neurology, 1997. Cerca con Google

Roosendaal SD, Bendfeldt K, Vrenken H, et al. Grey matter volume in a large cohort of MS patients: relation to MRI parameters and disability. Mult Scler, 2011. Cerca con Google

Rossi S, Furlan R, De Chiara, et al. Interleukin-1beta causes synaptic hyperexcitability in multiple sclerosis. Ann Neurol, 2012 Jan. Cerca con Google

Rossi S, Motta C, Studer V, et al. Interleukin-1beta causes excitotoxic neurodegeneration and multiple sclerosis disease progression by activating the apoptotic protein p53. Mol Neurodegener, 2014 Dec 12. Cerca con Google

Saint-Aubert L, Nemmi F, et al. Comparison between PET template-based method and MRI-based method for cortical quantification of florbetapir (AV-45) uptake in vivo. Eur J Nucl Med Mol Imaging, 2014. Cerca con Google

Selkoe DJ. Physiological production of the beta-amyloid protein and the mechanism of alzheimers disease. Trends Neurosci, 1993. Cerca con Google

Simone IL, Federico F, Trojano M, et al. High resolution proton MR spectroscopy of cerebrospinal fluid in MS patients. Comparison with biochemical changes in demyelinating plaques, J Neurol Sci 1996. Cerca con Google

Smith JD, Levin-Allerhand JA. Potential use of estrogen-like drugs for the prevention of alzheimers disease. J Mol Neurosci, 2003. Cerca con Google

Stadelmann C. Multiple sclerosis as a neurodegenerative disease: pathology, mechanisms and therapeutic implications. Curr Opin Neurol, 2011. Cerca con Google

Stupp R, Mason WP, van den Bent MJ, et-al. et-al.. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med, 2005. Cerca con Google

Trapp BD, Stys PK. Virtual hypoxia and chronic necrosis of demyelinated axons in multiple scle rosis. Lancet Neurol, 2009. Cerca con Google

Vercellino M, Plano F, Votta B, et al. Grey matter pathology in multiple sclerosis. J Neuropathol Exp Neurol, 2005. Cerca con Google

Wang H, Das SR, et al. A learning-based wrapper method to correct systematic errors in automatic image segmentation: consistently improved performance in hippocampus, cortex and brain segmentation. Neuroimage. 2011. Cerca con Google

Wegner C, Esiri MM, Chance SA, Palace J, Matthews PM. Neocortical neuronal, synaptic, and glial loss in multiple sclerosis. Neurology, 2006. Cerca con Google

Wernick MN, Aarsvold JN. Emission Tomography, The Fundamentals of PET and SPECT. Elsevier, 2004. Cerca con Google

Wrensch M, Minn Y, Chew T, Bondy M, Berger MS. Epidemiology of primary brain tumors: Current concepts and review of the literature. Neuro Oncol, 2002. Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record