Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Ottaviani, Daniele (2016) Protein kinase ck2 phosphorylates the neuronal chaperone hsj1: a paradigmatic example of ubiquitin signaling regulation. [Ph.D. thesis]

Full text disponibile come:

[img]PDF Document - Accepted Version
Thesis not accessible until 01 February 2020 for intellectual property related reasons.
Visibile to: nobody

23Mb

Abstract (english)

Protein kinase CK2 is an anti-apoptotic, constitutively active and ubiquitous Ser/Thr protein kinase. CK2 phosphorylates hundreds of substrates, characterized by the presence of acidic residues near the Ser/Thr target; its minimal consensus sequence is the motif S/TXXE/D/pS,pY,pT, where X is any amino acid and E/D/pX are acidic residues or previously phosphorylated ones. CK2 stabilizes anti-apoptotic signalling pathways and therefore is regarded as a pro-survival kinase. It is highly expressed in cancer where it sustains abnormal cell growth and survival. Therefore, CK2 represents a promising drug target against which several inhibitory compounds have been developed so far. However, there are now compelling evidences for a critical function of CK2 in neurons and a role in neurodegeneration has been suggested, but never studied in detail. Interestingly, we noticed that the CK2 consensus is superimposable to a sequence inside the ubiquitin interacting motif (UIM) of the neuronal-specific chaperone HSJ1. HSJ1 has a neuroprotective role and controls the folding, misfolding, aggregation and degradation of protein clients, thus maintaining their homeostasis (proteostasis). Consistently, functional mutations in its gene have been associated to neurodegenerative disease (NDs). The project presented in this thesis is based on the working hypothesis that phosphorylation of residues conforming to the CK2 consensus on HSJ1 could affect its functions.
HSJ1 belongs to the DNAJ protein family. It is preferentially expressed in neuronal tissues and contains an N-terminal J domain and two UIM domains near the C-terminus. It is codified by the DNAJB2 gene and alternatively spliced to produce two isoforms: HSJ1a and HSJ1b. The former is mainly located in the nuclear and cytosolic compartments, the latter is anchored to the cytosolic face of the endoplasmic reticulum. HSJ1b participates in the endoplasmic reticulum-associated protein degradation (ERAD) system as a folding controller of membrane-associated proteins. HSJ1a cooperates with Hsp70 in binding and delivering ubiquitylated proteins to proteasomal degradation. In particular, it suppresses the deposition of aggregation-prone proteins such as SOD1 (Superoxide Dismutase 1) in amiotrophic lateral sclerosis, polyglutamine expanded huntingtin in Huntington’s disease, ataxin-3 in spinocerebellar ataxias, and promotes the refolding of a Parkin mutant in Parkinson’s disease. Genetic studies have provided further evidences for a role of HSJ1 in neuronal survival, as mutations in DNAJB2 cause distal hereditary motor neuropathy and Charcot-Marie-Tooth type 2. Nevertheless, the biochemical mechanisms by which HSJ1 acts in these pathologies are only partially understood.
The results we obtained suggest that CK2 is a prominent HSJ1 phosphorylating kinase. As mentioned above, HSJ1 UIMs display canonical CK2 consensus sites. Therefore, we first performed in vitro phosphorylation experiments on HSJ1a. We expressed the protein in HEK-293T cells and confirmed the phosphorylation of HSJ1 by means of cell loading with [32P]phosphate, followed by the immunoprecipitation of the chaperone. In this assay, the HSJ1 phosphorylation was assessed by autoradiography of the immunoprecipitated protein and the CK2-dependendece by demonstrating its sensitivity to the CK2 inhibitor CX-4945. A mass spectrometry analysis revealed that Ser247, Ser250 and Ser264 are phosphorylated and are inside the second UIM. Then, we produced Serine-to-Alanine mutants of each CK2 target-residue, both in prokaryotic and eukaryotic expression vectors. We performed in vitro kinase assays on recombinant purified proteins or upon their expression in HEK-293T cells and subsequent immunoprecipitation. Collectively, the data demonstrated that Ser250 is the main phospho-site on HSJ1. The Ser264 only marginally contributes to the overall HSJ1 phosphorylation and Ser247 is a hierarchical site. In fact, Ser247 does not fulfil the CK2 minimal consensus sequence, because it does not have an acidic residue in +3 position. However, once Ser250 is phosphorylated the residue becomes acidic and fits the consensus sequence. This implies that a hierarchical phosphorylation can occur in HSJ1, where the previous phosphorylation of Ser250 primes Ser247 for subsequent phosphorylation.
Then, we successfully designed and developed a strategy for the production of phospho-specific antibodies against the main Ser247/Ser250 phospho-sites. The signal of he purified antibodies strongly reduced in response to cell treatments with different CK2 specific inhibitors. They were also useful to confirm the phosphorylation of both HSJ1 isoforms, a and b, in cells.
We then aimed at investigating the effects of HSJ1a phosphorylation on its functions and in particular on the binding to its ubiquitylated clients. To this purpose, we exploited the transfection of phospho-null and phospho-mimetic mutants into HEK-293T cells. The analysis of the ubiquitylated proteins co-immunoprecipitated with WT or mutated HSJ1a followed. Results showed that HSJ1a is able to bind more ubiquitylated clients when the phosphorylation at its CK2 sites is prevented. Moreover, we also found that these not-phosphorylated forms have enhanced activities in delivering the reporter luciferase protein to proteasomal degradation. We concluded that the phosphorylation of HSJ1a by CK2 impairs its chaperone function.
With this study, we disclosed an unanticipated HSJ1/CK2 connection with important implications for the molecular mechanisms of neurodegeneration and hopefully for the development of associated therapies. The HSJ1 co-chaperone function is critical in preventing neurodegeneration and is enhanced by the dephosphorylation of the sites targeted by CK2; therefore, treatments with CK2
inhibitors could be explored in the future as novel therapeutic compounds in NDs.
Since we observed that UIMs residues are evolutionary conserved in other proteins and superimposable to the CK2 consensus, with this work we suggest that other UIM-containing proteins could be phosphorylated. Indeed, we already showed that the UIM-containing proteasome subunit S5a is phosphorylated by CK2. Therefore, the CK2/HSJ1 connection could be a paradigmatic example of a broader regulation mechanism able to influence the processing of ubiquitylated proteins.

Related Projects
Protein kinase CK2 appeared to be a prominent druggable target after the discovery of its deregulated activity in cancer. Cancer cells were demonstrated to be more sensitive to the inhibition of CK2 than their healthy counterparts. This observation promotes the design and testing of several inhibitory molecules some of which are currently patented and/or in clinical trials. However, the use of inhibitors was also of invaluable support in helping understanding the role of CK2 in other pathologies. From the work described in the main project, is now evident that CK2 inhibitors should be indeed considered in a therapeutic perspective for neurodegeneration.
Despite the wide use and availability of CK2 inhibitory compounds, the characterization of their mechanism of action and tolerability are still under intensive investigations. Most inhibitors have been designed as competitors for the ATP-binding pocket on protein kinases. However, different strategies have been explored in order to increase the therapeutic efficacy. We designed, developed and characterized two alternative inhibition strategies. A first project concerned the analysis of a chimeric molecule named CK2-MCP, designed to specifically target the consensus recognized by CK2 in its substrates. We showed that CK2-MCP is able to double-hit both substrates and the kinase itself. A second project concerned a different kind of ’double-hit’ strategy addressed by a compound named TDB. It was designed to multitarget both CK2 and Pim-1, another kinase implied in cancer onset and progression. We compared TDB and CX-4945 in term of their ability to inhibit the CK2 activity and to reduce cancer cells viability. Our results, in different treatments times and protocols, revealed that TDB displays a higher persistence of the inhibitory effect on CK2. This peculiarity produced a more pronounced toxicity for cancer cells, despite the superiority of CX-4945 efficacy in vitro. We suggest that the optimization of the cellular persistence of the CK2-inhibitor complex is a crucial aspect that should be considered during the optimization of inhibitory compounds.

Abstract (italian)

La proteinchinasi CK2 è una serina/treonina chinasi espressa ubiquitariamente in tutti i tessuti dove svolge un importante ruolo anti-apoptotico. Questo enzima fosoforila una molteplicità di substrati coinvolti nella proliferazione e sopravvivenza cellulari ed accomunati dalla presenza di un “sito consenso”. Questo sito presenta un residuo di serina (S) o treonina (T) inserito in un intorno di amminoacidi acidi che definiscono il motivo minimo S/TXXE/pS/pY/pT: X rappresenta un generico amminoacido mentre E/D/pX sono residui acidi o fosforilati in precedenza. Elevati livelli di espressione di CK2 sono stati riscontrati in neoplasie dove il suo ruolo anti-apoptotico promuove la proliferazione e l’invasione delle cellule cancerose. Di conseguenza, l’enzima è considerato un importante bersaglio, contro cui sono stati sviluppati negli anni diversi inibitori in grado di ridurne l’attività. Tuttavia, vi sono ormai evidenze del coinvolgimento di CK2 nello sviluppo e funzione neuronali; inoltre, è stato suggerito, ma non studiato nel dettaglio, che il ruolo di CK2 nei neuroni possa avere ripercussioni nella progressione e sviluppo di malattie neurodegenerative. Abbiamo notato che uno dei “sito consenso” riconosciti da CK2 nei suoi substrati, coincide con una sequenza all’interno di un motivo in grado di legare l’ubiquitina (UIM) della proteina HSJ1. HSJ1, espressa prevalentemente in cellule neuronali, agisce da “chaperone molecolare”: controlla l’assemblaggio (folding), disassemblaggio, aggregazione e degradazione delle proteine che riconosce mediante i suoi domini UIM, mantenendo i loro livelli in equilibrio dinamico (proteostasi). Ne consegue che HSJ1 esercita un ruolo neuroprotettore. Infatti, sono state identificate alcune mutazioni a carico del suo gene DNAJB2, ed associate all’insorgenza di alcune malattie neurodegenerative. Inoltre, alcune di queste mutazioni sono in grado di compromettere la funzione neuroprotettiva di HSJ1.
Il progetto di questa tesi si pone come obiettivo di dimostrare che la fosforilazione di alcuni residui di HSJ1 da parte di CK2 è in grado di influenzarne la funzione. HSJ1 è una proteina appartenente alla famiglia detta DNAJ cui membri sono accomunati dalla presenza del dominio proteico detto “dominio J”. HSJ1, come detto prima, contiene anche due domini UIM localizzati al C-terminale. Il genoma umano codifica un unico trascritto, poi processato per produrre due isoforme: HSJ1a, espressa nel citosol, ed HSJ1b, ancorata alla faccia esterna del reticolo endoplasmatico. Entrambe le isoforme cooperano con la proteina Hsp70 nel legare e dirigere proteine ubiquitilate al proteasoma per essere degradate. In particolare, HSJ1a promuove la degradazione di proteine prone all’aggregazione. Infatti, il non corretto folding proteico può causarne la deposizione come aggregati intracellulari tossici, detti amiloidi, e considerati come un sintomo indicativo nella diagnosi di molte malattie neurodegenerative. Ad esempio, HSJ1a è tra i mediatori della degradazione della proteina SOD1 (superossido dismutasi 1) coinvolta nella sclerosi laterale amiotrofica, di proteine con tratti poliglutamminici espansi ed associati alla malattia di Huntington, ed infine della proteina ataxina-3, considerata agente eziologico nelle atassie spinocerebellari. Inoltre, HSJ1a coadiuva il folding della proteina parkina coinvolta nell’insorgenza di alcune forme del morbo di Parkinson. Studi di associazione genetica hanno anche dimostrato che alcune mutazioni nel gene DNAJB2 causano neuropatie motorie ereditarie e la malattia di Charcot Marie Tooth - tipo 2. Tuttavia i meccanismi molecolari mediante cui HSJ1 agisce sono stati compresi solo parzialmente.
I risultati che abbiamo ottenuto dimostrano che HSJ1 è fosforilata da CK2. Come detto in precedenza, HSJ1 presenta alcuni residui amminoacidici all’interno del suo dominio UIM che sono potenzialmente fosforilabili da CK2. Abbiamo quindi svolto un’analisi in spettrometria di massa della proteina fosforilata che ci ha permesso di identificare i siti riconosciuti da CK2 che sono: i residui di serina alle posizione 247, 250 e 264. Successivamente, abbiamo espresso HSJ1 in cellule mediante vettori di espressioni eucariotici. Questi esperimenti erano atti a dimostrare che HSJ1 è fosforilata anche in cellule da CK2. Infatti, trattamenti in cui l’attività dell’enzima è stata ridotta mediante l’uso dell’inibitore CX-4945, hanno dimostrato che HSJ1 è substrato di CK2. Inoltre, abbiamo operato singole sostituzioni amminoacidiche a carico dei residui serinici riconosciuti dall’enzima che sono stati mutati in residui alaninici. Ciò ha confermato ulteriormente i siti da noi identificati su HSJ1 come fosforilati da CK2, sia in vitro che in cellule. Collettivamente, i dati raccolti confermano che il sito principale di fosforilazione è la serina alla posizione 250. Il residuo alla posizione 264 contribuisce solo marginalmente. La serina 247 invece è definita come un sito gerarchico. Infatti, l’intorno amminoacidico del residuo alla posizione 247 non soddisfa i requisiti minimi per essere definito “sito consenso” per CK2. Ciò può avvenire solo una volta che la serina 250 è fosforilata. Di conseguenza, la serina 247 potrà essere riconosciuta da CK2 grazie al residuo acidico in posizione +3, in questo caso rappresentato dalla serina 250 fosforilata in precedenza.
Abbiamo poi ideato e sviluppato una strategia che ci ha permesso di produrre anticorpi in grado di riconoscere in maniera specifica le serine alla posizione 247 e 250, solo nel caso esse siano fosforilate da CK2. Questo strumento è stato utilizzato per confermare che entrambe le isoforme di HSJ1, a e b, sono fosforilate in cellule. Inoltre, abbiamo potuto verificare che la fosforilazione di HSJ1a è sensibile all’inibizione esercitata da un ampio pannello di inibitori specifici di CK2. Abbiamo poi analizzato se la fosforilazione di HSJ1 possa avere un impatto sulla sua funzione di legare proteine ubiquitinate da convogliare al proteasoma per la degradazione. Abbiamo quindi espresso HSJ1 in cellule, nella sua forma originale o mutata nei siti di fosforilazione. Mediante la co-precipitazione della proteina, a cui permangono legati i partner ubiquitilati, abbiamo potuto dimostrare che la fosforilazione dei siti-chiave da noi identificati causa una minor funzionalità del dominio UIM di HSJ1. Al contrario, la prevenzione della fosforilazione aumenta la capacità del dominio UIM di legare proteine ubiquitilate e di trasportarle al proteasoma, come abbiamo verificato nei riguardi della proteina luciferasi. Abbiamo potuto così concludere che la fosforilazione di HSJ1 da parte di CK2 contrasta la sua funzione di “chaperone molecolare”. Questo studio ci ha consentito di dimostrare una nuova connessione tra HSJ1 e CK2, in grado di aiutarci a comprendere meglio i meccanismi molecolari che sottendono l’insorgenza e lo sviluppo delle malattie neurodegenerative. Vi sono inoltre importanti risvolti terapeutici, dal momento che l’uso di inibitori di CK2 potrebbe essere proposto per aumentare la funzionalità di HSJ1.
Infine, abbiamo notato che alcuni residui amminoacidici all’interno del motivo UIM sono evolutivamente conservati e coincidono con la “sequenza consenso” minima richiesta per la fosforilazione da parte di CK2. Pertanto consideriamo altamente probabile che altre proteine contenenti domini UIM possano essere substrati di CK2, come dimostriamo in questa tesi anche per la proteina S5a, una subunità del proteasoma. Pertanto, HSJ1 vuole porsi come esempio paradigmatico di una possibile più ampia regolazione da parte di CK2 in grado di influenzare questa via di segnale mediata dall’ubiquitina.

Progetti complementari
Dalla scoperta del coinvolgimento della proteinchinasi CK2 nel cancro, le cellule neoplastiche si sono rivelate essere più sensibili all’inibizione della sua attività, rispetto alle cellule sane. Questo ha favorito lo sviluppo di molti inibitori alcuni dei quali sono al momento brevettati e/o in trials clinici. Tuttavia, come suggerito dal lavoro principale di questa tesi, queste molecole si sono rivelate utili strumenti per meglio comprendere il ruolo di CK2 in altre patologie (i.e. nelle malattie neurodegenerative) e potrebbero essere presi in considerazione per il loro
trattamento.
Nonostante l’uso diffuso di inibitori di CK2, la comprensione del loro meccanismo d’azione e tollerabilità non sono stati ancora del tutto chiariti. Molti degli inibitori sviluppati fino ad ora sono ATP-competitivi, quindi in grado di legarsi alla tasca per i nucleotidi in CK2. Tuttavia, si stanno prendendo in considerazione strategie differenti per cercare di aumentarne l’efficacia terapeutica. In progetti complementari all’argomento principale di questa tesi, abbiamo analizzato due strategie di inibizione alternative. La prima ha riguardato lo sviluppo di una molecola chimerica chiamata CK2-MCP. Questa è in grado di legare per complementarietà il “sito consenso” di CK2 nei suoi substrati, impedendo all’enzima di accedervi per fosforilarli. Abbiamo però dimostrato che questa classe di composti è in grado di legare sia i substrati di CK2, come atteso, che l’enzima stesso.
Nel secondo progetto complementare, abbiamo invece preso in considerazione un altro tipo di strategia duale, mediante l’uso di un inibitore sviluppato recentemente, detto TDB. Questo composto è in grado di inibire sia CK2 che Pim-1, un’altra proteinchinasi implicata nello sviluppo tumorale. Abbiamo comparato i composti CX-4945 e TDB per la loro capacità di inibire CK2 e di ridurre la vitalità delle cellule cancerose. Differenti tempi e condizioni di trattamento hanno dimostrato la più alta persistenza dell’inibizione di CK2 esercitata dal TDB in cellule, nonostante la superiorità del CX-4945 in vitro. La maggior durata dell’inibizione di CK2, indipendentemente dal fatto che il TDB inibisca anche Pim-1, sembra essere responsabile dei maggiori effetti citotossici indotti dal TDB nelle cellule tumorali. Questo suggerisce che l’ottimizzazione di inibitori di CK2 in cellule debba tenere conto anche di questo parametro.

Aggiungi a RefWorks
EPrint type:Ph.D. thesis
Tutor:Ruzzene, Maria
Ph.D. course:Ciclo 29 > Corsi 29 > BIOSCIENZE E BIOTECNOLOGIE
Data di deposito della tesi:12 January 2017
Anno di Pubblicazione:23 December 2016
Key Words:CK2, DNAJB2, HSJ1, Ubiquitylation, UIM
Settori scientifico-disciplinari MIUR:Area 05 - Scienze biologiche > BIO/10 Biochimica
Struttura di riferimento:Dipartimenti > Dipartimento di Biologia
Dipartimenti > Dipartimento di Scienze Biomediche
Codice ID:9817
Depositato il:16 Nov 2017 10:57
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Ahmad, K. A., G. Wang, G. Unger, J. Slaton, and K. Ahmed (2008). Protein kinase CK2–a key suppressor of apoptosis. Advances in Enzyme Regulation 48, 179– 187. Cerca con Google

Anamika, n. and L. Spyracopoulos (2016, February). Molecular Basis for Phosphorylation-dependent SUMO Recognition by the DNA Repair Protein RAP80. The Journal of Biological Chemistry 291(9), 4417–4428. Cerca con Google

Barata, J. T. (2011). The impact of PTEN regulation by CK2 on PI3k-dependent signaling and leukemia cell survival. Advances in Enzyme Regulation 51(1), 37– 49. Cerca con Google

Battistutta, R., G. Cozza, F. Pierre, E. Papinutto, G. Lolli, S. Sarno, S. E. O’Brien, A. Siddiqui-Jain, M. Haddach, K. Anderes, D. M. Ryckman, F. Meggio, and L. A. Pinna (2011, October). Unprecedented selectivity and structural determinants of a new class of protein kinase CK2 inhibitors in clinical trials for the treatment of cancer. Biochemistry 50(39), 8478–8488. Cerca con Google

Benavent, F., C. S. Capobianco, J. Garona, S. M. Cirigliano, Y. Perera, A. J. Urtreger, S. E. Perea, D. F. Alonso, and H. G. Farina (2016, June). CIGB-300, an anti-CK2 peptide, inhibits angiogenesis, tumor cell invasion and metastasis in lung cancer models. Lung Cancer (Amsterdam, Netherlands). Cerca con Google

Bernatik, O., R. S. Ganji, J. P. Dijksterhuis, P. Konik, I. Cervenka, T. Polonio, P. Krejci, G. Schulte, and V. Bryja (2011, March). Sequential activation and inactivation of Dishevelled in the Wnt/beta-catenin pathway by casein kinases. The Journal of Biological Chemistry 286(12), 10396–10410. Cerca con Google

Blanco-Aparicio, C. and A. Carnero (2013, March). Pim kinases in cancer: Diagnostic, prognostic and treatment opportunities. Biochemical Pharmacology 85(5), 629–643. Cerca con Google

Blanquet, P. R. (2000, February). Casein kinase 2 as a potentially important enzyme in the nervous system. Progress in Neurobiology 60(3), 211–246. Cerca con Google

Blumen, S. C., S. Astord, V. Robin, L. Vignaud, N. Toumi, A. Cieslik, A. Achiron, R. L. Carasso, M. Gurevich, I. Braverman, N. Blumen, A. Munich, M. Barkats, and L. Viollet (2012, April). A rare recessive distal hereditary motor neuropathy with HSJ1 chaperone mutation. Annals of Neurology 71(4), 509–519. Cerca con Google

Bose, S., F. L. L. Stratford, K. I. Broadfoot, G. G. F. Mason, and A. J. Rivett (2004, February). Phosphorylation of 20s proteasome alpha subunit C8 (alpha7) stabilizes the 26s proteasome and plays a role in the regulation of proteasome complexes by gamma-interferon. The Biochemical Journal 378(Pt 1), 177–184. Cerca con Google

Bulat, V., M. Rast, and J. Pielage (2014, January). Presynaptic CK2 promotes synapse organization and stability by targeting Ankyrin2. The Journal of Cell Biology 204(1), 77–94. Cerca con Google

Burnett, G. and E. P. Kennedy (1954, December). The enzymatic phosphorylation of proteins. The Journal of Biological Chemistry 211(2), 969–980. Cerca con Google

Cesaro, L., L. A. Pinna, and M. Salvi (2015, April). A Comparative Analysis and Review of lysyl Residues Affected by Posttranslational Modifications. Current Genomics 16(2), 128–138. Cerca con Google

Chapple, J. P. and M. E. Cheetham (2003, May). The chaperone environment at the cytoplasmic face of the endoplasmic reticulum can modulate rhodopsin processing and inclusion formation. The Journal of Biological Chemistry 278(21), 19087–19094. Cerca con Google

Cheetham, M. E., J. P. Brion, and B. H. Anderton (1992, June). Human homologues of the bacterial heat-shock protein DnaJ are preferentially expressed in neurons. The Biochemical Journal 284 ( Pt 2), 469–476. Cerca con Google

Cheetham, M. E., A. P. Jackson, and B. H. Anderton (1994, November). Regulation of 70-kDa heat-shock-protein ATPase activity and substrate binding by human DnaJ-like proteins, HSJ1a and HSJ1b. European journal of biochemistry / FEBS 226(1), 99–107. Cerca con Google

Chen, H.-J., J. C. Mitchell, S. Novoselov, J. Miller, A. L. Nishimura, E. L. Scotter, C. A. Vance, M. E. Cheetham, and C. E. Shaw (2016, May). The heat shock response plays an important role in TDP-43 clearance: evidence for dysfunction in amyotrophic lateral sclerosis. Brain: A Journal of Neurology 139(Pt 5), 1417– 1432. Cerca con Google

Cirigliano, S., M. I. Díaz Bessone, C. Flumian, D. Berardi, S. Perea, E. B. De Kier Joffé, H. Farina, L. Todaro, and A. Urtreger (2016, October). P2.05: The Synthetic Peptide CIGB-300 Inhibits NF-κB Translocation Affecting the Survival and Chemoresistance of NSCLC Cell Lines: Track: Biology and Pathogenesis. Journal of Thoracic Oncology: Official Publication of the International Association for the Study of Lung Cancer 11(10S), S218–S219. Cerca con Google

Cohen, P. (2002, May). The origins of protein phosphorylation. Nature Cell Biology 4(5), E127–130. Cerca con Google

Cozza, G., C. Girardi, A. Ranchio, G. Lolli, S. Sarno, A. Orzeszko, Z. Kazimierczuk, R. Battistutta, M. Ruzzene, and L. A. Pinna (2014, January). Cell-permeable dual inhibitors of protein kinases CK2 and PIM-1: structural features and pharmacological potential. Cellular and Molecular Life Sciences 71(16), 3173–3185. Cerca con Google

Cozza, G., L. A. Pinna, and S. Moro (2012, September). Protein kinase CK2 inhibitors: a patent review. Expert Opinion on Therapeutic Patents 22(9), 1081– 1097. Cerca con Google

Cozza, G., L. A. Pinna, and S. Moro (2013). Kinase CK2 inhibition: an update. Current Medicinal Chemistry 20(5), 671–693. Cerca con Google

Crunkhorn, S. (2016, November). Autoimmune disease: CK2 blockade ameliorates EAE. Nature Reviews. Drug Discovery 15(11), 750. Cerca con Google

Cyr, D. M. and C. H. Ramos (2015). Specification of Hsp70 function by Type I and Type II Hsp40. Sub-Cellular Biochemistry 78, 91–102. Cerca con Google

Di Maira, G., F. Brustolon, J. Bertacchini, K. Tosoni, S. Marmiroli, L. A. Pinna, and M. Ruzzene (2007, October). Pharmacological inhibition of protein kinase CK2 reverts the multidrug resistance phenotype of a CEM cell line characterized by high CK2 level. Oncogene 26(48), 6915–6926. Cerca con Google

Di Maira, G., F. Brustolon, L. A. Pinna, and M. Ruzzene (2009, October). Dephosphorylation and inactivation of Akt/PKB is counteracted by protein kinase CK2 in HEK 293t cells. Cellular and molecular life sciences: CMLS 66(20), 3363–3373. Cerca con Google

Di Maira, G., M. Salvi, G. Arrigoni, O. Marin, S. Sarno, F. Brustolon, L. A. Pinna, and M. Ruzzene (2005, June). Protein kinase CK2 phosphorylates and upregulates Akt/PKB. Cell Death and Differentiation 12(6), 668–677. Cerca con Google

DiFiglia, M., E. Sapp, K. O. Chase, S. W. Davies, G. P. Bates, J. P. Vonsattel, and N. Aronin (1997, September). Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science (New York, N.Y.) 277(5334), 1990–1993. Cerca con Google

Dominguez, I., G. E. Sonenshein, and D. C. Seldin (2009, June). Protein kinase CK2 in health and disease: CK2 and its role in Wnt and NF-kappaB signaling: linking development and cancer. Cellular and molecular life sciences: CMLS 66(11-12), 1850–1857. Cerca con Google

Duncan, J. S., J. P. Turowec, G. Vilk, S. S. C. Li, G. B. Gloor, and D. W. Litchfield (2010, March). Regulation of cell proliferation and survival: convergence of protein kinases and caspases. Biochimica Et Biophysica Acta 1804(3), 505–510. Cerca con Google

Ebrahimi-Fakhari, D., L. Wahlster, and P. J. McLean (2012, August). Protein degradation pathways in Parkinson’s disease: curse or blessing. Acta Neuropathologica 124(2), 153–172. Cerca con Google

Eckhart, W., M. A. Hutchinson, and T. Hunter (1979, December). An activity phosphorylating tyrosine in polyoma T antigen immunoprecipitates. Cell 18(4), 925–933. Cerca con Google

Eddy, S. F., S. Guo, E. G. Demicco, R. Romieu-Mourez, E. Landesman-Bollag, D. C. Seldin, and G. E. Sonenshein (2005, December). Inducible IkappaB kinase/IkappaB kinase epsilon expression is induced by CK2 and promotes aberrant nuclear factor-kappaB activation in breast cancer cells. Cancer Research 65(24), 11375–11383. Cerca con Google

Engert, J. C., P. Bérubé, J. Mercier, C. Doré, P. Lepage, B. Ge, J. P. Bouchard, J. Mathieu, S. B. Melançon, M. Schalling, E. S. Lander, K. Morgan, T. J. Hudson, and A. Richter (2000, February). ARSACS, a spastic ataxia common in northeastern Québec, is caused by mutations in a new gene encoding an 11.5- kb ORF. Nature Genetics 24(2), 120–125. Cerca con Google

Evgrafov, O. V., I. Mersiyanova, J. Irobi, L. V. D. Bosch, I. Dierick, C. L. Leung, O. Schagina, N. Verpoorten, K. V. Impe, V. Fedotov, E. Dadali, M. Auer-Grumbach, C. Windpassinger, K. Wagner, Z. Mitrovic, D. Hilton-Jones, K. Talbot, J.-J. Martin, N. Vasserman, S. Tverskaya, A. Polyakov, R. K. H. Liem, J. Gettemans, W. Robberecht, P. D. Jonghe, and V. Timmerman (2004, June). Mutant small heat-shock protein 27 causes axonal Charcot-Marie-Tooth disease and distal hereditary motor neuropathy. Nature Genetics 36(6), 602–606. Cerca con Google

Farina, H. G., F. Benavent Acero, Y. Perera, A. Rodríguez, S. E. Perea, B. A. Castro, R. Gomez, D. F. Alonso, and D. E. Gomez (2011, July). CIGB-300, a proapoptotic peptide, inhibits angiogenesis in vitro and in vivo. Experimental Cell Research 317(12), 1677–1688. Cerca con Google

Filhol, O., S. Giacosa, Y. Wallez, and C. Cochet (2015, September). Protein kinase CK2 in breast cancer: the CK2β regulatory subunit takes center stage in epithelial plasticity. Cellular and molecular life sciences: CMLS 72(17), 3305–3322. Cerca con Google

Franchin, C., M. Salvi, G. Arrigoni, and L. A. Pinna (2015, October). Proteomics perturbations promoted by the protein kinase CK2 inhibitor quinalizarin. Biochimica Et Biophysica Acta 1854(10 Pt B), 1676–1686. Cerca con Google

Gao, X.-C., C.-J. Zhou, Z.-R. Zhou, Y.-H. Zhang, X.-M. Zheng, A.-X. Song, and H.-Y. Hu (2011). Co-chaperone HSJ1a dually regulates the proteasomal degradation of ataxin-3. PloS One 6(5), e19763. Cerca con Google

Garg, A. and B. B. Aggarwal (2002, June). Nuclear transcription factor-kappaB as a target for cancer drug development. Leukemia 16(6), 1053–1068. Cerca con Google

Gess, B., M. Auer-Grumbach, A. Schirmacher, T. Strom, M. Zitzelsberger, S. Rudnik-Schöneborn, D. Röhr, H. Halfter, P. Young, and J. Senderek (2014, November). HSJ1-related hereditary neuropathies: novel mutations and extended clinical spectrum. Neurology 83(19), 1726–1732. Cerca con Google

Girardi, C., D. Ottaviani, L. A. Pinna, and M. Ruzzene (2015). Different Persistence of the Cellular Effects Promoted by Protein Kinase CK2 Inhibitors CX-4945 and TDB. BioMed Research International 2015, 185736. Cerca con Google

González, N., J. J. Moresco, F. Cabezas, E. de la Vega, F. Bustos, J. R. Yates, and H. C. Olguín (2016). Ck2-Dependent Phosphorylation Is Required to Maintain Pax7 Protein Levels in Proliferating Muscle Progenitors. PloS One 11(5), e0154919. Cerca con Google

Guerra, B. (2006, March). Protein kinase CK2 subunits are positive regulators of AKT kinase. International Journal of Oncology 28(3), 685–693. Cerca con Google

Guerra, B. and O.-G. Issinger (2008). Protein kinase CK2 in human diseases. Current Medicinal Chemistry 15(19), 1870–1886. Cerca con Google

Hageman, J., M. J. Vos, M. A. W. H. van Waarde, and H. H. Kampinga (2007, November). Comparison of intra-organellar chaperone capacity for dealing with stress-induced protein unfolding. The Journal of Biological Chemistry 282(47), 34334–34345. Cerca con Google

Hammarsten, O. (1883). Zur Frage ob Caseïn ein einheitlicher Stoff sei. Hoppe- Seyler’s Zeitschrift fur physiologische Chemie 7, 227–273. Cerca con Google

Hanger, D. P., H. L. Byers, S. Wray, K.-Y. Leung, M. J. Saxton, A. Seereeram, C. H. Reynolds, M. A. Ward, and B. H. Anderton (2007, August). Novel phosphorylation sites in tau from Alzheimer brain support a role for casein kinase 1 in disease pathogenesis. The Journal of Biological Chemistry 282(32), 23645–23654. Cerca con Google

Harada, S., E. Haneda, T. Maekawa, Y. Morikawa, S. Funayama, N. Nagata, K. Ohtsuki, N. Nagata, and K. Ohtsuki (1999, October). Casein kinase II (CK-II)- mediated stimulation of HIV-1 reverse transcriptase activity and characterization of selective inhibitors in vitro. Biological & Pharmaceutical Bulletin 22(10), 1122–1126. Cerca con Google

Hardy, J. A. and G. A. Higgins (1992, April). Alzheimer’s disease: the amyloid cascade hypothesis. Science (New York, N.Y.) 256(5054), 184–185. Cerca con Google

Hartl, F. U., A. Bracher, and M. Hayer-Hartl (2011, July). Molecular chaperones in protein folding and proteostasis. Nature 475(7356), 324–332. Cerca con Google

Hecker, C.-M., M. Rabiller, K. Haglund, P. Bayer, and I. Dikic (2006, June). Specification of SUMO1- and SUMO2-interacting motifs. The Journal of Biological Chemistry 281(23), 16117–16127. Cerca con Google

Hicke, L., H. L. Schubert, and C. P. Hill (2005, August). Ubiquitin-binding domains. Nature Reviews. Molecular Cell Biology 6(8), 610–621. Cerca con Google

Hirano, S., M. Kawasaki, H. Ura, R. Kato, C. Raiborg, H. Stenmark, and S. Wakatsuki (2006, March). Double-sided ubiquitin binding of Hrs-UIM in endosomal protein sorting. Nature Structural & Molecular Biology 13(3), 272– 277. Cerca con Google

Hofmann, K. and P. Bucher (1996, May). The UBA domain: a sequence motif present in multiple enzyme classes of the ubiquitination pathway. Trends in Biochemical Sciences 21(5), 172–173. Cerca con Google

Hofmann, K. and L. Falquet (2001, June). A ubiquitin-interacting motif conserved in components of the proteasomal and lysosomal protein degradation systems. Trends in Biochemical Sciences 26(6), 347–350. Cerca con Google

Howarth, J. L., S. Kelly, M. P. Keasey, C. P. J. Glover, Y.-B. Lee, K. Mitrophanous,. P. Chapple, J. M. Gallo, M. E. Cheetham, and J. B. Uney (2007, June). Hsp40 molecules that target to the ubiquitin-proteasome system decrease inclusion formation in models of polyglutamine disease. Molecular Therapy: The Journal of the American Society of Gene Therapy 15(6), 1100–1105. Cerca con Google

Hunter, T. (2007, December). The age of crosstalk: phosphorylation, ubiquitination, and beyond. Molecular Cell 28(5), 730–738. Cerca con Google

Hurley, J. H., S. Lee, and G. Prag (2006, November). Ubiquitin-binding domains. The Biochemical Journal 399(3), 361–372. Cerca con Google

Husnjak, K. and I. Dikic (2012). Ubiquitin-binding proteins: decoders of ubiquitin-mediated cellular functions. Annual Review of Biochemistry 81, 291–322. Cerca con Google

Iimoto, D. S., E. Masliah, R. DeTeresa, R. D. Terry, and T. Saitoh (1990, January). Aberrant casein kinase II in Alzheimer’s disease. Brain Research 507(2), 273–280. Cerca con Google

Irobi, J., K. V. Impe, P. Seeman, A. Jordanova, I. Dierick, N. Verpoorten, A. Michalik, E. D. Vriendt, A. Jacobs, V. V. Gerwen, K. Vennekens, R. Mazanec, I. Tournev, D. Hilton-Jones, K. Talbot, I. Kremensky, L. V. D. Bosch, Cerca con Google

W. Robberecht, J. Vandekerckhove, C. V. Broeckhoven, J. Gettemans, P. D. Jonghe, and V. Timmerman (2004, June). Hot-spot residue in small heat-shock protein 22 causes distal motor neuropathy. Nature Genetics 36(6), 597–601. Cerca con Google

Kato, T., M. Delhase, A. Hoffmann, and M. Karin (2003, October). CK2 Is a C- Terminal IkappaB Kinase Responsible for NF-kappaB Activation during the UV Response. Molecular Cell 12(4), 829–839. Cerca con Google

Kelliher, M. A., D. C. Seldin, and P. Leder (1996, October). Tal-1 induces T cell acute lymphoblastic leukemia accelerated by casein kinase IIalpha. The EMBO journal 15(19), 5160–5166. Cerca con Google

Kohlstedt, K., F. Shoghi, W. Müller-Esterl, R. Busse, and I. Fleming (2002, October). CK2 phosphorylates the angiotensin-converting enzyme and regulates its retention in the endothelial cell plasma membrane. Circulation Research 91(8), 749–756. Cerca con Google

Kosmaoglou, M., N. Schwarz, J. S. Bett, and M. E. Cheetham (2008, July). Molecular chaperones and photoreceptor function. Progress in Retinal and Eye Research 27(4), 434–449. Cerca con Google

Kramerov, A. A., M. Saghizadeh, H. Pan, A. Kabosova, M. Montenarh, K. Ahmed, J. S. Penn, C. K. Chan, D. R. Hinton, M. B. Grant, and A. V. Ljubimov (2006, May). Expression of protein kinase CK2 in astroglial cells of normal and neovascularized retina. The American Journal of Pathology 168(5), 1722–1736. Cerca con Google

Labbadia, J., S. S. Novoselov, J. S. Bett, A. Weiss, P. Paganetti, G. P. Bates, and M. E. Cheetham (2012, April). Suppression of protein aggregation by chaperone modification of high molecular weight complexes. Brain: A Journal of Neurology 135(Pt 4), 1180–1196. Cerca con Google

Leliveld, S. R. and C. Korth (2007, August). The use of conformation-specific ligands and assays to dissect the molecular mechanisms of neurodegenerative diseases. Journal of Neuroscience Research 85(11), 2285–2297. Cerca con Google

Ljubimov, A. V., S. Caballero, A. M. Aoki, L. A. Pinna, M. B. Grant, and R. Castellon (2004, December). Involvement of protein kinase CK2 in angiogenesis and retinal neovascularization. Investigative Ophthalmology & Visual Science 45(12), 4583–4591. Cerca con Google

Long, J., T. R. A. Gallagher, J. R. Cavey, P. W. Sheppard, S. H. Ralston, R. Layfield, and M. S. Searle (2008, February). Ubiquitin recognition by the ubiquitin- associated domain of p62 involves a novel conformational switch. The Journal of Biological Chemistry 283(9), 5427–5440. Cerca con Google

Luan, B., Z. Zhang, Y. Wu, J. Kang, and G. Pei (2005, December). Beta-arrestin2 functions as a phosphorylation-regulated suppressor of UV-induced NF-kappaB activation. The EMBO journal 24(24), 4237–4246. Cerca con Google

Manning, G., D. B. Whyte, R. Martinez, T. Hunter, and S. Sudarsanam (2002, December). The Protein Kinase Complement of the Human Genome. Science 298(5600), 1912–1934. Cerca con Google

Martins, L. R., Y. Perera, P. Lúcio, M. G. Silva, S. E. Perea, and J. T. Barata (2014, January). Targeting chronic lymphocytic leukemia using CIGB-300, a clinical- stage CK2-specifc cell-permeable peptide inhibitor. Oncotarget 5(1), 258. Cerca con Google

Matsumoto, G., K. Wada, M. Okuno, M. Kurosawa, and N. Nukina (2011, October). Serine 403 phosphorylation of p62/SQSTM1 regulates selective autophagic clearance of ubiquitinated proteins. Molecular Cell 44(2), 279–289. Cerca con Google

McElhinny, J. A., S. A. Trushin, G. D. Bren, N. Chester, and C. V. Paya (1996, March). Casein kinase II phosphorylates I kappa B alpha at S-283, S-289, S- 293, and T-291 and is required for its degradation. Molecular and Cellular Biology 16(3), 899–906. Cerca con Google

Meggio, F., A. Donella Deana, M. Ruzzene, A. M. Brunati, L. Cesaro, B. Guerra, T. Meyer, H. Mett, D. Fabbro, and P. Furet (1995, November). Different susceptibility of protein kinases to staurosporine inhibition. Kinetic studies and molecular bases for the resistance of protein kinase CK2. European journal of biochemistry / FEBS 234(1), 317–322. Cerca con Google

Meggio, F., O. Marin, and L. A. Pinna (1994). Substrate specificity of protein kinase CK2. Cellular & Molecular Biology Research 40(5-6), 401–409. Cerca con Google

Meggio, F. and L. A. Pinna (2003, March). One-thousand-and-one substrates of protein kinase CK2? FASEB journal: official publication of the Federation of American Societies for Experimental Biology 17(3), 349–368. Cerca con Google

Miller, S. L. H., E. Malotky, and J. P. O’Bryan (2004, August). Analysis of the role of ubiquitin-interacting motifs in ubiquitin binding and ubiquitylation. The Journal of Biological Chemistry 279(32), 33528–33537. Cerca con Google

Mueller, T., P. Breuer, I. Schmitt, J. Walter, B. O. Evert, and U. Wüllner (2009, September). CK2-dependent phosphorylation determines cellular localization and stability of ataxin-3. Human Molecular Genetics 18(17), 3334–3343. Cerca con Google

Niefind, K., B. Guerra, I. Ermakowa, and O. G. Issinger (2001, October). Crystal structure of human protein kinase CK2: insights into basic properties of the CK2 holoenzyme. The EMBO journal 20(19), 5320–5331. Cerca con Google

Niefind, K., B. Guerra, L. A. Pinna, O.-G. Issinger, and D. Schomburg (1998, May). Crystal structure of the catalytic subunit of protein kinase CK2 from Zea mays at 2.1 å resolution. The EMBO Journal 17(9), 2451–2462. Cerca con Google

Novoselov, S. S., W. J. Mustill, A. L. Gray, J. R. Dick, N. Kanuga, B. Kalmar, L. Greensmith, and M. E. Cheetham (2013). Molecular chaperone mediated late- stage neuroprotection in the SOD1(G93a) mouse model of amyotrophic lateral sclerosis. PloS One 8(8), e73944. Cerca con Google

Okochi, M., J. Walter, A. Koyama, S. Nakajo, M. Baba, T. Iwatsubo, L. Meijer, P. J. Kahle, and C. Haass (2000, January). Constitutive phosphorylation of the Parkinson’s disease associated alpha-synuclein. The Journal of Biological Chemistry 275(1), 390–397. Cerca con Google

Okur, V., M. T. Cho, L. Henderson, K. Retterer, M. Schneider, S. Sattler, D. Niyazov, M. Azage, S. Smith, J. Picker, S. Lincoln, M. Tarnopolsky, Cerca con Google

L. Brady, H. T. Bjornsson, C. Applegate, A. Dameron, R. Willaert, B. Baskin, J. Juusola, and W. K. Chung (2016, July). De novo mutations in CSNK2a1 are associated with neurodevelopmental abnormalities and dysmorphic features. Human Genetics 135(7), 699–705. Cerca con Google

Pagano, M. A., L. Cesaro, F. Meggio, and L. A. Pinna (2006, December). Protein kinase CK2: a newcomer in the ’druggable kinome’. Biochemical Society Transactions 34(Pt 6), 1303–1306. Cerca con Google

Pagano, M. A., S. Sarno, G. Poletto, G. Cozza, L. A. Pinna, and F. Meggio (2005, June). Autophosphorylation at the regulatory beta subunit reflects the supramolecular organization of protein kinase CK2. Molecular and Cellular Biochemistry 274(1-2), 23–29. Cerca con Google

Perea, S. E., O. Reyes, I. Baladron, Y. Perera, H. Farina, J. Gil, A. Rodriguez, D. Bacardi, J. L. Marcelo, K. Cosme, M. Cruz, C. Valenzuela, P. A. López- Saura, Y. Puchades, J. M. Serrano, O. Mendoza, L. Castellanos, A. Sanchez, Cerca con Google

L. Betancourt, V. Besada, R. Silva, E. López, V. Falcón, I. Hernández, M. Solares, A. Santana, A. Díaz, T. Ramos, C. López, J. Ariosa, L. J. González, H. Garay, D. Gómez, R. Gómez, D. F. Alonso, H. Sigman, L. Herrera, and B. Acevedo (2008, June). CIGB-300, a novel proapoptotic peptide that impairs the CK2 phosphorylation and exhibits anticancer properties both in vitro and in vivo. Molecular and Cellular Biochemistry 316(1-2), 163–167. Cerca con Google

Perera, Y., H. G. Farina, I. Hernández, O. Mendoza, J. M. Serrano, O. Reyes, D. E. Gómez, R. E. Gómez, B. E. Acevedo, D. F. Alonso, and S. E. Perea (2008, January). Systemic administration of a peptide that impairs the protein kinase (CK2) phosphorylation reduces solid tumor growth in mice. International Journal of Cancer 122(1), 57–62. Cerca con Google

Perera, Y., N. D. Toro, L. Gorovaya, J. Fernandez-DE-Cossio, H. G. Farina, and S. E. Perea (2014, November). Synergistic interactions of the anti-casein kinase 2 CIGB-300 peptide and chemotherapeutic agents in lung and cervical preclinical cancer models. Molecular and Clinical Oncology 2(6), 935–944. Cerca con Google

Peter, J.-C., J.-P. Briand, and J. Hoebeke (2003, March). How biotinylation can interfere with recognition: a surface plasmon resonance study of peptide-antibody interactions. Journal of Immunological Methods 274(1-2), 149–158. Cerca con Google

Piazza, F., S. Manni, M. Ruzzene, L. A. Pinna, C. Gurrieri, and G. Semenzato (2012, June). Protein kinase CK2 in hematologic malignancies: reliance on a pivotal cell survival regulator by oncogenic signaling pathways. Leukemia 26(6), 1174–1179. Cerca con Google

Pinna, L. A. (2002, October). Protein kinase CK2: a challenge to canons. Journal of Cell Science 115(Pt 20), 3873–3878. Cerca con Google

Rabellino, A., B. Carter, G. Konstantinidou, S.-Y. Wu, A. Rimessi, L. A. Byers, J. V. Heymach, L. Girard, C.-M. Chiang, J. Teruya-Feldstein, and P. P. Scaglioni (2012, May). The SUMO E3-ligase PIAS1 regulates the tumor suppressor PML and its oncogenic counterpart PML-RARA. Cancer Research 72(9), 2275–2284. Cerca con Google

Reyes-Turcu, F. E., J. R. Horton, J. E. Mullally, A. Heroux, X. Cheng, and K. D. Wilkinson (2006, March). The ubiquitin binding domain ZnF UBP recognizes the C-terminal diglycine motif of unanchored ubiquitin. Cell 124(6), 1197–1208. Cerca con Google

Rose, J. M., S. S. Novoselov, P. A. Robinson, and M. E. Cheetham (2011, January). Molecular chaperone-mediated rescue of mitophagy by a Parkin RING1 domain mutant. Human Molecular Genetics 20(1), 16–27. Cerca con Google

Rosen, D. R., T. Siddique, D. Patterson, D. A. Figlewicz, P. Sapp, A. Hentati, D. Donaldson, J. Goto, J. P. O’Regan, and H. X. Deng (1993, March). Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362(6415), 59–62. Cerca con Google

Ruzzene, M. and L. A. Pinna (2010, March). Addiction to protein kinase CK2: a common denominator of diverse cancer cells? Biochimica Et Biophysica Acta 1804(3), 499–504. Cerca con Google

Ruzzene, M., K. Tosoni, S. Zanin, L. Cesaro, and L. A. Pinna (2011, October). Protein kinase CK2 accumulation in "oncophilic" cells: causes and effects. Molecular and Cellular Biochemistry 356(1-2), 5–10. Cerca con Google

Salvi, M., S. Sarno, L. Cesaro, H. Nakamura, and L. A. Pinna (2009, May). Extraordinary pleiotropy of protein kinase CK2 revealed by weblogo phosphoproteome analysis. Biochimica Et Biophysica Acta 1793(5), 847–859. Cerca con Google

Salvi, M., E. Trashi, G. Cozza, C. Franchin, G. Arrigoni, and L. A. Pinna (2012, December). Investigation on PLK2 and PLK3 substrate recognition. Biochimica Et Biophysica Acta 1824(12), 1366–1373. Cerca con Google

Sanchez, E., H. Darvish, R. Mesias, S. Taghavi, S. G. Firouzabadi, R. H. Walker, A. Tafakhori, and C. Paisán-Ruiz (2016, July). Identification of a Large DNAJB2 Deletion in a Family with Spinal Muscular Atrophy and Parkinsonism. Human Mutation. Cerca con Google

Sarno, S., H. Reddy, F. Meggio, M. Ruzzene, S. P. Davies, A. Donella- Deana, D. Shugar, and L. A. Pinna (2001, May). Selectivity of 4,5,6,7- tetrabromobenzotriazole, an ATP site-directed inhibitor of protein kinase CK2 (’casein kinase-2’). FEBS letters 496(1), 44–48. Cerca con Google

Sarno, S., P. Vaglio, F. Meggio, O. G. Issinger, and L. A. Pinna (1996, May). Proteinkinase CK2 mutants defective in substrate recognition. Purification and kinetic analysis. The Journal of Biological Chemistry 271(18), 10595–10601. Cerca con Google

Scaglioni, P. P., T. M. Yung, L. F. Cai, H. Erdjument-Bromage, A. J. Kaufman, B. Singh, J. Teruya-Feldstein, P. Tempst, and P. P. Pandolfi (2006, July). A CK2- dependent mechanism for degradation of the PML tumor suppressor. Cell 126(2), 269–283. Cerca con Google

Sharma, K., R. C. J. D’Souza, S. Tyanova, C. Schaab, J. R. Wisniewski, J. Cox, and M. Mann (2014, September). Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Reports 8(5), 1583–1594. Cerca con Google

Shekhtman, A. and D. Cowburn (2002, September). A ubiquitin-interacting motif from Hrs binds to and occludes the ubiquitin surface necessary for polyubiquitination in monoubiquitinated proteins. Biochemical and Biophysical Research Communications 296(5), 1222–1227. Cerca con Google

Siddiqui-Jain, A., D. Drygin, N. Streiner, P. Chua, F. Pierre, S. E. O’Brien, J. Bliesath, M. Omori, N. Huser, C. Ho, C. Proffitt, M. K. Schwaebe, D. M. Ryckman, W. G. Rice, and K. Anderes (2010, December). CX-4945, an orally bioavailable selective inhibitor of protein kinase CK2, inhibits prosurvival and angiogenic signaling and exhibits antitumor efficacy. Cancer Research 70(24), 10288–10298. Cerca con Google

Siepmann, M., S. Kumar, G. Mayer, and J. Walter (2010). Casein kinase 2 dependent phosphorylation of neprilysin regulates receptor tyrosine kinase signaling to Akt. PloS One 5(10). Cerca con Google

Smith, H. L., W. Li, and M. E. Cheetham (2015, April). Molecular chaperones and neuronal proteostasis. Seminars in Cell & Developmental Biology 40, 142–152. Cerca con Google

Sokratous, K., A. Hadjisavvas, E. P. Diamandis, and K. Kyriacou (2014, October). The role of ubiquitin-binding domains in human pathophysiology. Critical Reviews in Clinical Laboratory Sciences 51(5), 280–290. Cerca con Google

Solares, A. M., A. Santana, I. Baladrón, C. Valenzuela, C. A. González, A. Díaz, D. Castillo, T. Ramos, R. Gómez, D. F. Alonso, L. Herrera, H. Sigman, S. E. Perea, B. E. Acevedo, and P. López-Saura (2009, May). Safety and preliminary efficacy data of a novel casein kinase 2 (CK2) peptide inhibitor administered intralesionally at four dose levels in patients with cervical malignancies. BMC cancer 9, 146. Cerca con Google

Solimini, N. L., J. Luo, and S. J. Elledge (2007, September). Non-oncogene addiction and the stress phenotype of cancer cells. Cell 130(6), 986–988. Cerca con Google

Song, D. H., I. Dominguez, J. Mizuno, M. Kaut, S. C. Mohr, and D. C. Seldin (2003, June). CK2 phosphorylation of the armadillo repeat region of beta-catenin potentiates Wnt signaling. The Journal of Biological Chemistry 278(26), 24018– 24025. Cerca con Google

Soto, C. and L. D. Estrada (2008, February). Protein misfolding and neurodegeneration. Archives of Neurology 65(2), 184–189. Cerca con Google

Spillantini, M. G., R. A. Crowther, R. Jakes, M. Hasegawa, and M. Goedert (1998, May). alpha-Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with lewy bodies. Proceedings of the National Academy of Sciences of the United States of America 95(11), 6469–6473. Cerca con Google

Stehmeier, P. and S. Muller (2009, February). Phospho-regulated SUMO interaction modules connect the SUMO system to CK2 signaling. Molecular Cell 33(3), 400–409. Cerca con Google

Tagliabracci, V. S., J. L. Engel, J. Wen, S. E. Wiley, C. A. Worby, L. N. Kinch, J. Xiao, N. V. Grishin, and J. E. Dixon (2012, June). Secreted kinase phosphorylates extracellular proteins that regulate biomineralization. Science (New York, N.Y.) 336(6085), 1150–1153. Cerca con Google

Taus, T., T. Köcher, P. Pichler, C. Paschke, A. Schmidt, C. Henrich, and K. Mechtler (2011, December). Universal and confident phosphorylation site localization using phosphoRS. Journal of Proteome Research 10(12), 5354–5362. Cerca con Google

Taylor, S. S., E. Radzio-Andzelm, D. R. Knighton, L. F. Ten Eyck, J. M. Sowadski, F. W. Herberg, W. Yonemoto, and J. Zheng (1993). Crystal structures of the catalytic subunit of cAMP-dependent protein kinase reveal general features of the protein kinase family. Receptor 3(3), 165–172. Cerca con Google

Torres, J. and R. Pulido (2001, January). The tumor suppressor PTEN is phosphorylated by the protein kinase CK2 at its C terminus. Implications for PTEN stability to proteasome-mediated degradation. The Journal of Biological Chemistry 276(2), 993–998. Cerca con Google

Tsuchiya, Y., H. Taniguchi, Y. Ito, T. Morita, M. R. Karim, N. Ohtake, K. Fukagai, T. Ito, S. Okamuro, S.-I. Iemura, T. Natsume, E. Nishida, and A. Kobayashi (2013, September). The casein kinase 2-nrf1 axis controls the clearance of ubiquitinated proteins by regulating proteasome gene expression. Molecular and Cellular Biology 33(17), 3461–3472. Cerca con Google

Venerando, A., C. Franchin, N. Cant, G. Cozza, M. A. Pagano, K. Tosoni, A. Al- Zahrani, G. Arrigoni, R. C. Ford, A. Mehta, and L. A. Pinna (2013). Detection of phospho-sites generated by protein kinase CK2 in CFTR: mechanistic aspects of Thr1471 phosphorylation. PloS One 8(9), e74232. Cerca con Google

Venerando, A., M. Ruzzene, and L. A. Pinna (2014, June). Casein kinase: the triple meaning of a misnomer. The Biochemical Journal 460(2), 141–156. Cerca con Google

Walsh, C. T., S. Garneau-Tsodikova, and G. J. Gatto (2005, December). Protein posttranslational modifications: the chemistry of proteome diversifications. Angewandte Chemie (International Ed. in English) 44(45), 7342–7372. Cerca con Google

Wang, D., S. D. Westerheide, J. L. Hanson, and A. S. Baldwin (2000, October). Tumor necrosis factor alpha-induced phosphorylation of RelA/p65 on Ser529 is controlled by casein kinase II. The Journal of Biological Chemistry 275(42), 32592–32597. Cerca con Google

Wang, L. G., X. M. Liu, H. Wikiel, and A. Bloch (1995, February). Activation of casein kinase II in ML-1 human myeloblastic leukemia cells requires IGF-1 and transferrin. Journal of Leukocyte Biology 57(2), 332–334. Cerca con Google

Watabe, M. and T. Nakaki (2011, May). Protein kinase CK2 regulates the formation and clearance of aggresomes in response to stress. Journal of Cell Science 124(Pt 9), 1519–1532. Cerca con Google

Westhoff, B., J. P. Chapple, J. van der Spuy, J. Höhfeld, and M. E. Cheetham (2005, June). HSJ1 is a neuronal shuttling factor for the sorting of chaperone clients to the proteasome. Current biology: CB 15(11), 1058–1064. Cerca con Google

Wirkner, U. and W. Pyerin (1999, January). CK2alpha loci in the human genome: structure and transcriptional activity. Molecular and Cellular Biochemistry 191(1-2), 59–64. Cerca con Google

Young, P., Q. Deveraux, R. E. Beal, C. M. Pickart, and M. Rechsteiner (1998, June). Characterization of Two Polyubiquitin Binding Sites in the 26 S Protease Subunit 5a. Journal of Biological Chemistry 273(10), 5461–5467. Cerca con Google

Zandomeni, R., M. C. Zandomeni, D. Shugar, and R. Weinmann (1986, March). Casein kinase type II is involved in the inhibition by 5,6-dichloro-1-beta-D- ribofuranosylbenzimidazole of specific RNA polymerase II transcription. The Journal of Biological Chemistry 261(7), 3414–3419. Cerca con Google

Zhang, C., G. Vilk, D. A. Canton, and D. W. Litchfield (2002, May). Phosphorylation regulates the stability of the regulatory CK2beta subunit. Oncogene 21(23), 3754–3764 Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record