Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Prats Sedano, Maria Angeles (2017) COGNITIVE PROCESSING AND BRAIN COMMUNICATION IN AMYOTROPHIC LATERAL SCLEROSIS. [Ph.D. thesis]

Full text disponibile come:

[img]
Preview
PDF Document (PratsSedano_MariaAngeles_tesi) - Accepted Version
4018Kb

Abstract (english)

Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive paralysis of limbs and bulbar musculature. This severe physical impairment makes cognitive evaluation a big challenge, thus there is a great need for an assessment that does not require overt motor responses. Moreover, we need of augmentative communication strategies because the disease generally leads to complete paralysis and, therefore, patients are unable to communicate with the external world by any means. For this purpose, Brain Computer Interfaces (BCIs) seem a promising approach to facilitate communication with these patients.
The aim of this thesis is twofold. First, assessing cognitive processing in ALS by means of a novel evaluation tool. Second, allowing brain communication in completely paralyzed ALS patients who had lost their vision in order to eliminate the unbearable loss of communication in paralysis (“unlocking the locked-in”).
The first study introduces a novel approach for assessing cognitive functions in ALS. This approach uses neuropsychological tests that require minimal overt motor or verbal responses; together with vibro-tactile P300s. Results indicate mild cognitive impairment in oral language comprehension tasks and reduced vibro-tactile P300 amplitudes in patients compared to healthy controls. Importantly, correlations between the vibro-tactile P300 latency and psychometric test results suggest that the former measure could serve as a neurophysiological marker of cognitive decline in ALS patients.
The second study introduces a distraction paradigm based in auditory event-related potentials (ERPs) to evaluate the ability of change detection, focusing, and re-orientation of attention in ALS. The results revealed a modification of the amplitude and the latency of the N200, the P300 and the re-orienting negativity (RON) components. This could suggest an alteration of the endogenous mechanism that controls the detection of change, thus resulting in a reduction of the allocation and the re-orientation of attentional resources.
The third study aimed at testing the feasibility of a Near Infrared Spectroscopy (NIRS) -based BCI communication approach for patients in the Completely Locked-in Stage (CLIS) due to ALS. For this purpose two CLIS patients were trained to control their cerebral-cortex´s functional-activations in response to auditory processing of correct or incorrect statements assessed with NIRS. The results of the study are very promising, showing that both CLIS patients communicated with fronto-cortical oxygenation based BCI at an average correct response rate of 70% over a period of several weeks. We conclude that this novel approach of brain-communication is safe and, reliable, representing, so far, the best communication possible for patients in completely locked-in state.
In conclusion we propose a) the novel combination of vibro-tactile or acoustic ERPs and motor-independent neuropsychological tests as an alternative and easily implementable way for assessing cognitive functions in ALS and b) we confirm the usefulness and effectiveness of above mentioned electrophysiological approaches in the late stage of ALS either to assess cognitive processing or to establish communication with a BCI system.

Abstract (italian)

Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive paralysis of limbs and bulbar musculature. This severe physical impairment makes cognitive evaluation a big challenge, thus there is a great need for an assessment that does not require overt motor responses. Moreover, we need of augmentative communication strategies because the disease generally leads to complete paralysis and, therefore, patients are unable to communicate with the external world by any means. For this purpose, Brain Computer Interfaces (BCIs) seem a promising approach to facilitate communication with these patients.
The aim of this thesis is twofold. First, assessing cognitive processing in ALS by means of a novel evaluation tool. Second, allowing brain communication in completely paralyzed ALS patients who had lost their vision in order to eliminate the unbearable loss of communication in paralysis (“unlocking the locked-in”).
The first study introduces a novel approach for assessing cognitive functions in ALS. This approach uses neuropsychological tests that require minimal overt motor or verbal responses; together with vibro-tactile P300s. Results indicate mild cognitive impairment in oral language comprehension tasks and reduced vibro-tactile P300 amplitudes in patients compared to healthy controls. Importantly, correlations between the vibro-tactile P300 latency and psychometric test results suggest that the former measure could serve as a neurophysiological marker of cognitive decline in ALS patients.
The second study introduces a distraction paradigm based in auditory event-related potentials (ERPs) to evaluate the ability of change detection, focusing, and re-orientation of attention in ALS. The results revealed a modification of the amplitude and the latency of the N200, the P300 and the re-orienting negativity (RON) components. This could suggest an alteration of the endogenous mechanism that controls the detection of change, thus resulting in a reduction of the allocation and the re-orientation of attentional resources.
The third study aimed at testing the feasibility of a Near Infrared Spectroscopy (NIRS) -based BCI communication approach for patients in the Completely Locked-in Stage (CLIS) due to ALS. For this purpose two CLIS patients were trained to control their cerebral-cortex´s functional-activations in response to auditory processing of correct or incorrect statements assessed with NIRS. The results of the study are very promising, showing that both CLIS patients communicated with fronto-cortical oxygenation based BCI at an average correct response rate of 70% over a period of several weeks. We conclude that this novel approach of brain-communication is safe and, reliable, representing, so far, the best communication possible for patients in completely locked-in state.
In conclusion we propose a) the novel combination of vibro-tactile or acoustic ERPs and motor-independent neuropsychological tests as an alternative and easily implementable way for assessing cognitive functions in ALS and b) we confirm the usefulness and effectiveness of above mentioned electrophysiological approaches in the late stage of ALS either to assess cognitive processing or to establish communication with a BCI system.

Statistiche Download - Aggiungi a RefWorks
EPrint type:Ph.D. thesis
Tutor:Pegoraro, Elena
Supervisor:Birbaumer, Niels
Ph.D. course:Ciclo 29 > Corsi 29 > SCIENZE MEDICHE, CLINICHE E SPERIMENTALI
Data di deposito della tesi:09 January 2017
Anno di Pubblicazione:09 January 2017
Key Words:Amyotrophic Lateral Sclerosis, Cognitive assessment, vibro-tactile event-related potentials, auditory event-related potentials, motor-independent neuropsychological tests, Brain computer inferfaces, Functional Near Infrared Spectrocopy, Completely Locked-in state, yes/no communication.
Settori scientifico-disciplinari MIUR:Area 06 - Scienze mediche > MED/26 Neurologia
Struttura di riferimento:Dipartimenti > Dipartimento di Neuroscienze
Codice ID:9821
Depositato il:24 Nov 2017 09:57
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. Andrews J. Amyotrophic lateral sclerosis: clinical management and research update. Curr Neurol Neurosci Rep (2009) 9:59–68 Cerca con Google

2. Strong M, Rosenfeld J. Amyotrophic lateral sclerosis: a review of current concepts. Amyotroph Lateral Scler Other Motor Neuron Disord (2003) 4:136–43 Cerca con Google

3. Haverkamp LJ, Appel V, Appel SH. Natural history of amyotrophic lateral sclerosis in a database population. Validation of a scoring system and a model for survival prediction. Brain (1995)707–19 Cerca con Google

4. Wijesekera L, Leigh PN. Amyotrophic lateral sclerosis. Orphanet J Rare Dis (2009) doi:10.1186/1750-1172-4-3 Cerca con Google

5. Logroscino G, Traynor BJ, Hardiman O, Chiò A, Mitchell D, Swingler RJ, Millul A, Benn E, Beghi E. Incidence of amyotrophic lateral sclerosis in Europe. J Neurol Neurosurg Psychiatry (2010) 81:385–90. doi:10.1136/jnnp.2009.183525 Cerca con Google

6. Chiò A, Mora G, Calvo A, Mazzini L, Bottacchi E, Mutani R. Epidemiology of ALS in Italy: A 10-year prospective population-based study. Neurology (2009) 72:725–731. doi:10.1212/01.wnl.0000343008.26874.d1 Cerca con Google

7. Ghatak NR, Campbell WW, Lippman RH, Hadfield MG. Anterior horn changes of motor neuron disease associated with demyelinating radiculopathy. J Neuropathol Exp Neurol (1986) 45:385–95 Cerca con Google

8. Hammer RP, Tomiyasu U, Scheibel AB. Degeneration of the human Betz cell due to amyotrophic lateral sclerosis. Exp Neurol (1979) 63:336–346. doi:10.1016/0014-4886(79)90129-8 Cerca con Google

9. Udaka F, Kameyama M, Tomonaga M. Degeneration of Betz cells in motor neuron disease. A Golgi study. Acta Neuropathol (1986) 70:289–95 Cerca con Google

10. Murayama S, Inoue K, Kawakami H, Bouldin TW, Suzuki K. A unique pattern of astrocytosis in the primary motor area in amyotrophic lateral sclerosis. Acta Neuropathol (1991) 82:456–61 Cerca con Google

11. Pamphlett R, Kril J, Hng TM. Motor neuron disease: a primary disorder of corticomotoneurons? Muscle Nerve (1995) 18:314–8. doi:10.1002/mus.880180308 Cerca con Google

12. Rosen DR, Sapp P, O’Regan J, McKenna-Yasek D, Schlumpf KS, Haines JL, Gusella JF, Horvitz HR, Brown RH. Genetic linkage analysis of familial amyotrophic lateral sclerosis using human chromosome 21 microsatellite DNA markers. Am J Med Genet (1994) 51:61–9. doi:10.1002/ajmg.1320510114 Cerca con Google

13. Gitcho MA, Baloh RH, Chakraverty S, Mayo K, Norton JB, Levitch D, Hatanpaa KJ, White CL, Bigio EH, Caselli R, et al. TDP-43 A315T mutation in familial motor neuron disease. Ann Neurol (2008) 63:535–8. doi:10.1002/ana.21344 Cerca con Google

14. Vance C, Rogelj B, Hortobágyi T, De Vos KJ, Nishimura AL, Sreedharan J, Hu X, Smith B, Ruddy D, Wright P, et al. Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science (2009) 323:1208–11. doi:10.1126/science.1165942 Cerca con Google

15. Kwiatkowski TJ, Bosco DA, Leclerc AL, Tamrazian E, Vanderburg CR, Russ C, Davis A, Gilchrist J, Kasarskis EJ, Munsat T, et al. Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science (2009) 323:1205–8. doi:10.1126/science.1166066 Cerca con Google

16. Renton AE, Majounie E, Waite A, Simón-Sánchez J, Rollinson S, Gibbs JR, Schymick JC, Laaksovirta H, van Swieten JC, Myllykangas L, et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron (2011) 72:257–68. doi:10.1016/j.neuron.2011.09.010 Cerca con Google

17. Laferriere F, Polymenidou M. Advances and challenges in understanding the multifaceted pathogenesis of amyotrophic lateral sclerosis. Swiss Med Wkly (2015) 145:w14054. doi:10.4414/smw.2015.14054 Cerca con Google

18. Brooks BR, Miller RG, Swash M, Munsat TL, World Federation of Neurology Research Group on Motor Neuron Diseases. El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord (2000) 1:293–9 Cerca con Google

19. Traynor BJ, Codd MB, Corr B, Forde C, Frost E, Hardiman OM, BR B, D C, M J, A E, et al. Clinical Features of Amyotrophic Lateral Sclerosis According to the El Escorial and Airlie House Diagnostic Criteria. Arch Neurol (2000) 57:1171. doi:10.1001/archneur.57.8.1171 Cerca con Google

20. Bromberg MB. Assessing quality of life in ALS. J Clin Neuromuscul Dis (2007) 9:318–25. doi:10.1097/CND.0b013e31815af9b7 Cerca con Google

21. Lulé D, Häcker S, Ludolph A, Birbaumer N, Kübler A. Depression and quality of life in patients with amyotrophic lateral sclerosis. Dtsch Arztebl Int (2008) 105:397–403. doi:10.3238/arztebl.2008.0397 Cerca con Google

22. Kubler A. Severity of depressive symptoms and quality of life in patients with Amyotrophic Lateral Sclerosis. Neurorehabil Neural Repair (2005) 19:182–193. doi:10.1177/1545968305276583 Cerca con Google

23. Kiebert GM, Green C, Murphy C, Mitchell JD, O’Brien M, Burrell A, Leigh PN. Patients’ health-related quality of life and utilities associated with different stages of amyotrophic lateral sclerosis. J Neurol Sci (2001) 191:87–93 Cerca con Google

24. Robbins RA, Simmons Z, Bremer BA, Walsh SM, Fischer S. Quality of life in ALS is maintained as physical function declines. Neurology (2001) 56:442–4 Cerca con Google

25. Pagnini F, Manzoni GM, Tagliaferri A, Gibbons CJ. Depression and disease progression in amyotrophic lateral sclerosis: A comprehensive meta-regression analysis. J Health Psychol (2015) 20:1107–28. doi:10.1177/1359105314530453 Cerca con Google

26. Ganzini L, Block S. Physician-Assisted Death — A Last Resort? N Engl J Med (2002) 346:1663–1665. doi:10.1056/NEJM200205233462113 Cerca con Google

27. Körner S, Kollewe K, Abdulla S, Zapf A, Dengler R, Petri S. Interaction of physical function, quality of life and depression in Amyotrophic lateral sclerosis: characterization of a large patient cohort. BMC Neurol (2015) 15:84. doi:10.1186/s12883-015-0340-2 Cerca con Google

28. Hunter MD, Robinson IC, Neilson S. The functional and psychological status of patients with amyotrophic lateral sclerosis: some implications for rehabilitation. Disabil Rehabil 15:119–26 Cerca con Google

29. Oh H, Sin M-K, Schepp KG, Choi-Kwon S. Depressive symptoms and functional impairment among amyotrophic lateral sclerosis patients in South Korea. Rehabil Nurs 37:136–44. doi:10.1002/RNJ.00045 Cerca con Google

30. Simmons Z Robbins RA, et al. BBA. Quality of life in ALS depends on factors other than strenght and physical function. Neurology (2000) 55:388–392. Cerca con Google

31. Rabkin JG, Wagner GJ, Del Bene M. Resilience and distress among amyotrophic lateral sclerosis patients and caregivers. Psychosom Med 62:271–9 Cerca con Google

32. Connolly S, Galvin M, Hardiman O. End-of-life management in patients with amyotrophic lateral sclerosis. Lancet Neurol (2015) 14:435–442. doi:10.1016/S1474-4422(14)70221-2 Cerca con Google

33. Simmons Z. Management strategies for patients with amyotrophic lateral sclerosis from diagnosis through death. Neurologist (2005) 11:257–70 Cerca con Google

34. Miller RG, Mitchell JD, Moore DH. Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND). Cochrane database Syst Rev (2012) 3:CD001447. doi:10.1002/14651858.CD001447.pub3 Cerca con Google

35. Bauer G, Gerstenbrand F, Rumpl E. Varieties of the locked-in syndrome. J Neurol (1979) 221:77–91 Cerca con Google

36. Kübler A, Birbaumer N. Brain-computer interfaces and communication in paralysis: extinction of goal directed thinking in completely paralysed patients? Clin Neurophysiol (2008) 119:2658–66. doi:10.1016/j.clinph.2008.06.019 Cerca con Google

37. Birbaumer N, Murguialday AR, Cohen L. Brain-computer interface in paralysis. Curr Opin Neurol (2008) 21:634–8. doi:10.1097/WCO.0b013e328315ee2d Cerca con Google

38. Braunmühl A Von. Picksche krankheit und amyotrophische Lateralsklerose. Allg Z Psychiat (1932) Cerca con Google

39. Lomen-Hoerth C, Anderson T, Miller B. The overlap of amyotrophic lateral sclerosis and frontotemporal dementia. Neurology (2002) 59:1077–1079. doi:10.1097/WCO.0b013e3283168d1d Cerca con Google

40. Ringholz GM, Appel SH, Bradshaw M, Cooke NA, Mosnik DM, Schulz PE. Prevalence and patterns of cognitive impairment in sporadic ALS. Neurology (2005) 65:586–90. doi:10.1212/01.wnl.0000172911.39167.b6 Cerca con Google

41. Lillo P, Savage S, Mioshi E, Kiernan MC, Hodges JR. Amyotrophic lateral sclerosis and frontotemporal dementia: A behavioural and cognitive continuum. Amyotroph Lateral Scler (2012) 13:102–9. doi:10.3109/17482968.2011.639376 Cerca con Google

42. Barulli MR, Fontana A, Panza F, Copetti M, Bruno S, Tursi M, Iurillo A, Tortelli R, Capozzo R, Simone IL, et al. Frontal assessment battery for detecting executive dysfunction in amyotrophic lateral sclerosis without dementia: a retrospective observational study. BMJ Open (2015) 5:e007069. doi:10.1136/bmjopen-2014-007069 Cerca con Google

43. Seer C, Fürkötter S, Vogts M-B, Lange F, Abdulla S, Dengler R, Petri S, Kopp B. Executive Dysfunctions and Event-Related Brain Potentials in Patients with Amyotrophic Lateral Sclerosis. Front Aging Neurosci (2015) 7:225. doi:10.3389/fnagi.2015.00225 Cerca con Google

44. Abrahams S, Leigh PN, Goldstein LH. Cognitive change in ALS: a prospective study. Neurology (2005) 64:1222–1226. doi:10.1212/01.WNL.0000156519.41681.27 Cerca con Google

45. Ringholz GM, Greene SR. The relationship between amyotrophic lateral sclerosis and frontotemporal dementia. Curr Neurol Neurosci Rep (2006) 6:387–92 Cerca con Google

46. Abrahams S, Goldstein LH, Al-Chalabi A, Pickering A, Morris RG, Passingham RE, Brooks DJ, Leigh PN. Relation between cognitive dysfunction and pseudobulbar palsy in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry (1997) 62:464–72 Cerca con Google

47. Moretti R, Torre P, Antonello RM, Carraro N, Cazzato G, Bava A. Complex cognitive disruption in motor neuron disease. Dement Geriatr Cogn Disord (2002) 14:141–50. doi:63600 Cerca con Google

48. Phukan J, Elamin M, Bede P, Jordan N, Gallagher L, Byrne S, Lynch C, Pender N, Hardiman O. The syndrome of cognitive impairment in amyotrophic lateral sclerosis: a population-based study. J Neurol Neurosurg Psychiatry (2012) 83:102–8. doi:10.1136/jnnp-2011-300188 Cerca con Google

49. Rakowicz WP, Hodges JR. Dementia and aphasia in motor neuron disease: an underrecognised association? J Neurol Neurosurg Psychiatry (1998) 65:881–9 Cerca con Google

50. Ludolph AC, Langen KJ, Regard M, Herzog H, Kemper B, Kuwert T, Böttger IG, Feinendegen L. Frontal lobe function in amyotrophic lateral sclerosis: a neuropsychologic and positron emission tomography study. Acta Neurol Scand (1992) 85:81–9 Cerca con Google

51. Abrahams S, Newton J, Niven E, Foley J, Bak TH. Screening for cognition and behaviour changes in ALS. Amyotroph Lateral Scler Frontotemporal Degener (2014) 15:9–14. doi:10.3109/21678421.2013.805784 Cerca con Google

52. Cohen MJ, Stanczak DE. On the Reliability, Validity, and Cognitive Structure of the Thurstone Word Fluency Test. Arch Clin Neuropsychol (2000) 15:267–279. doi:10.1016/S0887-6177(99)00017-7 Cerca con Google

53. Abrahams S, Goldstein LH, Simmons A, Brammer M, Williams SCR, Giampietro V, Leigh PN. Word retrieval in amyotrophic lateral sclerosis: a functional magnetic resonance imaging study. Brain (2004) 127:1507–17. doi:10.1093/brain/awh170 Cerca con Google

54. Volpato C, Piccione F, Silvoni S, Cavinato M, Palmieri A, Meneghello F, Birbaumer N. Working memory in amyotrophic lateral sclerosis: auditory event-related potentials and neuropsychological evidence. J Clin Neurophysiol (2010) 27:198–206. doi:10.1097/WNP.0b013e3181e0aa14 Cerca con Google

55. Abrahams S, Goldstein LH, Kew JJM, Brooks DJ, Lloyd CM, Frith CD, Leigh PN. Frontal lobe dysfunction in amyotrophic lateral sclerosis A PET study. (1996)2105–2120. Cerca con Google

56. Gallassi R, Montagna P, Ciardulli C, Lorusso S, Mussuto V, Stracciari A. Cognitive impairment in motor neuron disease. Acta Neurol Scand (1985) 71:480–4 Cerca con Google

57. Frank B, Haas J, Heinze HJ, Stark E, Münte TF. Relation of neuropsychological and magnetic resonance findings in amyotrophic lateral sclerosis: evidence for subgroups. Clin Neurol Neurosurg (1997) 99:79–86 Cerca con Google

58. Volpato C, Prats Sedano MA, Silvoni S, Segato N, Cavinato M, Merico A, Piccione F, Palmieri A, Birbaumer N. Selective attention impairment in amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener (2016)1–9. doi:10.3109/21678421.2016.1143514 Cerca con Google

59. Massman PJ, Sims J, Cooke N, Haverkamp LJ, Appel V, Appel SH. Prevalence and correlates of neuropsychological deficits in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry (1996) 61:450–5 Cerca con Google

60. Abrahams S, Leigh PN, Harvey A, Vythelingum GN, Grisé D, Goldstein LH. Verbal fluency and executive dysfunction in amyotrophic lateral sclerosis (ALS). Neuropsychologia (2000) 38:734–747. doi:10.1016/S0028-3932(99)00146-3 Cerca con Google

61. Hanagasi HA, Gurvit IH, Ermutlu N, Kaptanoglu G, Karamursel S, Idrisoglu HA, Emre M, Demiralp T. Cognitive impairment in amyotrophic lateral sclerosis: evidence from neuropsychological investigation and event-related potentials. Brain Res Cogn Brain Res (2002) 14:234–44 Cerca con Google

62. Strong MJ, Grace GM, Orange JB, Leeper HA, Menon RS, Aere C. A prospective study of cognitive impairment in ALS. Neurology (1999) 53:1665–1665. doi:10.1212/WNL.53.8.1665 Cerca con Google

63. Raaphorst J, de Visser M, van Tol M-J, Linssen WHJP, van der Kooi AJ, de Haan RJ, van den Berg LH, Schmand B. Cognitive dysfunction in lower motor neuron disease: executive and memory deficits in progressive muscular atrophy. J Neurol Neurosurg Psychiatry (2011) 82:170–5. doi:10.1136/jnnp.2009.204446 Cerca con Google

64. Bak TH, Hodges JR. Motor neurone disease, dementia and aphasia: coincidence, co-occurrence or continuum? J Neurol (2001) 248:260–70 Cerca con Google

65. Bede P, Elamin M, Byrne S, McLaughlin RL, Kenna K, Vajda A, Pender N, Bradley DG, Hardiman O. Basal ganglia involvement in amyotrophic lateral sclerosis. Neurology (2013) 81:2107–15. doi:10.1212/01.wnl.0000437313.80913.2c Cerca con Google

66. Brettschneider J, Del Tredici K, Toledo JB, Robinson JL, Irwin DJ, Grossman M, Suh E, Van Deerlin VM, Wood EM, Baek Y, et al. Stages of pTDP-43 pathology in amyotrophic lateral sclerosis. Ann Neurol (2013) 74:20–38. doi:10.1002/ana.23937 Cerca con Google

67. Machts J, Bittner V, Kasper E, Schuster C, Prudlo J, Abdulla S, Kollewe K, Petri S, Dengler R, Heinze H-J, et al. Memory deficits in amyotrophic lateral sclerosis are not exclusively caused by executive dysfunction: a comparative neuropsychological study of amnestic mild cognitive impairment. BMC Neurosci (2014) 15:83. doi:10.1186/1471-2202-15-83 Cerca con Google

68. Bak TH, O’Donovan DG, Xuereb JH, Boniface S, Hodges JR. Selective impairment of verb processing associated with pathological changes in Brodmann areas 44 and 45 in the motor neurone disease-dementia-aphasia syndrome. Brain (2001) 124:103–120. doi:10.1093/brain/124.1.103 Cerca con Google

69. Grossman M, Anderson C, Khan A, Avants B, Elman L, McCluskey L. Impaired action knowledge in amyotrophic lateral sclerosis. Neurology (2008) 71:1396–401. doi:10.1212/01.wnl.0000319701.50168.8c Cerca con Google

70. Taylor LJ, Brown RG, Tsermentseli S, Al-Chalabi A, Shaw CE, Ellis CM, Leigh PN, Goldstein LH. Is language impairment more common than executive dysfunction in amyotrophic lateral sclerosis? J Neurol Neurosurg Psychiatry (2013) 84:494–8. doi:10.1136/jnnp-2012-303526 Cerca con Google

71. Abrahams S. Executive dysfunction in ALS is not the whole story. J Neurol Neurosurg Psychiatry (2013) 84:474–475. doi:10.1136/jnnp-2012-303851 Cerca con Google

72. Neumann N, Kotchoubey B. Assessment of cognitive functions in severely paralysed and severely brain-damaged patients: neuropsychological and electrophysiological methods. Brain Res Brain Res Protoc (2004) 14:25–36. doi:10.1016/j.brainresprot.2004.09.001 Cerca con Google

73. Lakerveld J, Kotchoubey B, Kübler A. Cognitive function in patients with late stage amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry (2008) 79:25–9. doi:10.1136/jnnp.2007.116178 Cerca con Google

74. Mistridis P, Taylor KI, Kissler JM, Monsch AU, Kressig RW, Kivisaari SL. Distinct neural systems underlying reduced emotional enhancement for positive and negative stimuli in early Alzheimer’s disease. Front Hum Neurosci (2013) 7:939. doi:10.3389/fnhum.2013.00939 Cerca con Google

75. Chainay H, Sava A, Michael GA, Landré L, Versace R, Krolak-Salmon P. Impaired emotional memory enhancement on recognition of pictorial stimuli in Alzheimer’s disease: No influence of the nature of encoding. Cortex (2014) 50:32–44. doi:10.1016/j.cortex.2013.10.001 Cerca con Google

76. Cadieux NL, Greve KW. Emotion processing in Alzheimer’s disease. J Int Neuropsychol Soc (1997) 3:411–9 Cerca con Google

77. Enrici I, Adenzato M, Ardito RB, Mitkova A, Cavallo M, Zibetti M, Lopiano L, Castelli L. Emotion processing in Parkinson’s disease: a three-level study on recognition, representation, and regulation. PLoS One (2015) 10:e0131470. doi:10.1371/journal.pone.0131470 Cerca con Google

78. Xi C, Zhu Y, Mu Y, Chen B, Dong B, Cheng H, Hu P, Zhu C, Wang K. Theory of mind and decision-making processes are impaired in Parkinson’s disease. Behav Brain Res (2015) 279:226–33. doi:10.1016/j.bbr.2014.11.035 Cerca con Google

79. Garrido-Vásquez P, Pell MD, Paulmann S, Sehm B, Kotz SA. Impaired neural processing of dynamic faces in left-onset Parkinson’s disease. Neuropsychologia (2016) 82:123–33. doi:10.1016/j.neuropsychologia.2016.01.017 Cerca con Google

80. Beer JS, Ochsner KN. Social cognition: a multi level analysis. Brain Res (2006) 1079:98–105. doi:10.1016/j.brainres.2006.01.002 Cerca con Google

81. Baron-Cohen S, Leslie AM, Frith U. Does the autistic child have a “theory of mind”? Cognition (1985) 21:37–46 Cerca con Google

82. Zimmerman EK, Eslinger PJ, Simmons Z, Barrett AM. Emotional perception deficits in amyotrophic lateral sclerosis. Cogn Behav Neurol (2007) 20:79–82. doi:10.1097/WNN.0b013e31804c700b Cerca con Google

83. Staios M, Fisher F, Lindell AK, Ong B, Howe J, Reardon K. Exploring sarcasm detection in amyotrophic lateral sclerosis using ecologically valid measures. Front Hum Neurosci (2013) 7:178. doi:10.3389/fnhum.2013.00178 Cerca con Google

84. Snowden JS, Austin NA, Sembi S, Thompson JC, Craufurd D, Neary D. Emotion recognition in Huntington’s disease and frontotemporal dementia. Neuropsychologia (2008) 46:2638–49. doi:10.1016/j.neuropsychologia.2008.04.018 Cerca con Google

85. Papps B, Abrahams S, Wicks P, Leigh PN, Goldstein LH. Changes in memory for emotional material in amyotrophic lateral sclerosis (ALS). Neuropsychologia (2005) 43:1107–14. doi:10.1016/j.neuropsychologia.2004.11.027 Cerca con Google

86. Lulé D, Kurt A, Jürgens R, Kassubek J, Diekmann V, Kraft E, Neumann N, Ludolph AC, Birbaumer N, Anders S. Emotional responding in amyotrophic lateral sclerosis. J Neurol (2005) 252:1517–1524. doi:10.1007/s00415-005-0907-8 Cerca con Google

87. Lomen-Hoerth C, Murphy J, Langmore S, Kramer JH, Olney RK, Miller B. Are amyotrophic lateral sclerosis patients cognitively normal? Neurology (2003) 60:1094–7 Cerca con Google

88. Grossman AB, Woolley-Levine S, Bradley WG, Miller RG. Detecting neurobehavioral changes in amyotrophic lateral sclerosis. Amyotroph Lateral Scler (2007) 8:56–61. doi:10.1080/17482960601044106 Cerca con Google

89. Murphy J, Factor-Litvak P, Goetz R, Lomen-Hoerth C, Nagy PL, Hupf J, Singleton J, Woolley S, Andrews H, Heitzman D, et al. Cognitive-behavioral screening reveals prevalent impairment in a large multicenter ALS cohort. Neurology (2016) doi:10.1212/WNL.0000000000002305 Cerca con Google

90. Girardi A, Macpherson SE, Abrahams S. Deficits in emotional and social cognition in amyotrophic lateral sclerosis. Neuropsychology (2011) 25:53–65. doi:10.1037/a0020357 Cerca con Google

91. Woolley SC, Zhang Y, Schuff N, Weiner MW, Katz JS. Neuroanatomical correlates of apathy in ALS using 4 Tesla diffusion tensor MRI. Amyotroph Lateral Scler (2011) 12:52–8. doi:10.3109/17482968.2010.521842 Cerca con Google

92. Mouraux A, Iannetti GD. Across-trial averaging of event-related EEG responses and beyond. Magn Reson Imaging (2008) 26:1041–54. doi:10.1016/j.mri.2008.01.011 Cerca con Google

93. Raggi A, Consonni M, Iannaccone S, Perani D, Zamboni M, Sferrazza B, Cappa SF. Auditory event-related potentials in non-demented patients with sporadic amyotrophic lateral sclerosis. Clin Neurophysiol (2008) 119:342–50. doi:10.1016/j.clinph.2007.10.010 Cerca con Google

94. Goldstein LH, Abrahams S. Changes in cognition and behaviour in amyotrophic lateral sclerosis: nature of impairment and implications for assessment. Lancet Neurol (2013) 12:368–80. doi:10.1016/S1474-4422(13)70026-7 Cerca con Google

95. Näätänen R, Picton T. The N1 wave of the human electric and magnetic response to sound: a review and an analysis of the component structure. Psychophysiology (1987) 24:375–425 Cerca con Google

96. García-Larrea L, Lukaszewicz AC, Mauguière F. Revisiting the oddball paradigm. Non-target vs neutral stimuli and the evaluation of ERP attentional effects. Neuropsychologia (1992) 30:723–41 Cerca con Google

97. Näätänen R, Paavilainen P, Rinne T, Alho K. The mismatch negativity (MMN) in basic research of central auditory processing: A review. Clin Neurophysiol (2007) 118:2544–2590. doi:10.1016/j.clinph.2007.04.026 Cerca con Google

98. Näätänen R, Alho K. Mismatch negativity--the measure for central sound representation accuracy. Audiol Neurootol 2:341–53 Cerca con Google

99. Näätänen R, Sussman ES, Salisbury D, Shafer VL. Mismatch negativity (MMN) as an index of cognitive dysfunction. Brain Topogr (2014) 27:451–66. doi:10.1007/s10548-014-0374-6 Cerca con Google

100. Folstein JR, Van Petten C. Influence of cognitive control and mismatch on the N2 component of the ERP: a review. Psychophysiology (2008) 45:152–70. doi:10.1111/j.1469-8986.2007.00602.x Cerca con Google

101. Sutton S, Braren M, Zubin J, John ER. Evoked-potential correlates of stimulus uncertainty. Science (1965) 150:1187–8 Cerca con Google

102. Duncan CC, Barry RJ, Connolly JF, Fischer C, Michie PT, Näätänen R, Polich J, Reinvang I, Van Petten C. Event-related potentials in clinical research: guidelines for eliciting, recording, and quantifying mismatch negativity, P300, and N400. Clin Neurophysiol (2009) 120:1883–908. doi:10.1016/j.clinph.2009.07.045 Cerca con Google

103. Polich J. Updating P300: an integrative theory of P3a and P3b. Clin Neurophysiol (2007) 118:2128–48. doi:10.1016/j.clinph.2007.04.019 Cerca con Google

104. Picton TW, Bentin S, Berg P, Donchin E, Hillyard SA, Johnson R, Miller GA, Ritter W, Ruchkin DS, Rugg MD, et al. Guidelines for using human event-related potentials to study cognition: recording standards and publication criteria. Psychophysiology (2000) 37:127–52 Cerca con Google

105. Polich J, Kok A. Cognitive and biological determinants of P300: an integrative review. Biol Psychol (1995) 41:103–46 Cerca con Google

106. Kutas M, Hillyard SA. Reading senseless sentences: brain potentials reflect semantic incongruity. Science (1980) 207:203–5 Cerca con Google

107. Sitnikova T, Kuperberg G, Holcomb PJ. Semantic integration in videos of real-world events: an electrophysiological investigation. Psychophysiology (2003) 40:160–4. Cerca con Google

108. Kutas M, Federmeier KD. Thirty years and counting: finding meaning in the N400 component of the event-related brain potential (ERP). Annu Rev Psychol (2011) 62:621–47. doi:10.1146/annurev.psych.093008.131123 Cerca con Google

109. Kotchoubey B, Lang S, Bostanov V, Birbaumer N. Is there a mind? Electrophysiology of unconscious patients. News Physiol Sci (2002) 17:38–42 Cerca con Google

110. Gil R, Neau JP, Dary-Auriol M, Agbo C, Tantot AM, Ingrand P. Event-related auditory evoked potentials and amyotrophic lateral sclerosis. Arch Neurol (1995) 52:890–6. Cerca con Google

111. Paulus KS, Magnano I, Piras MR, Solinas MA, Solinas G, Sau GF, Aiello I. Visual and auditory event-related potentials in sporadic amyotrophic lateral sclerosis. Clin Neurophysiol (2002) 113:853–61 Cerca con Google

112. Ogawa T, Tanaka H, Hirata K. Cognitive deficits in amyotrophic lateral sclerosis evaluated by event-related potentials. Clin Neurophysiol (2009) 120:659–64. doi:10.1016/j.clinph.2009.01.013 Cerca con Google

113. Münte TF, Tröger M, Nusser I, Wieringa BM, Matzke M, Johannes S, Dengler R. Recognition memory deficits in amyotrophic lateral sclerosis assessed with event-related brain potentials. Acta Neurol Scand (1998) 98:110–5 Cerca con Google

114. Silvoni S, Volpato C, Cavinato M, Marchetti M, Priftis K, Merico A, Tonin P, Koutsikos K, Beverina F, Piccione F. P300-Based Brain-Computer Interface Communication: Evaluation and Follow-up in Amyotrophic Lateral Sclerosis. Front Neurosci (2009) 3:60. doi:10.3389/neuro.20.001.2009 Cerca con Google

115. Vieregge P, Wauschkuhn B, Heberlein I, Hagenah J, Verleger R. Selective attention is impaired in amyotrophic lateral sclerosis--a study of event-related EEG potentials. Brain Res Cogn Brain Res (1999) 8:27–35 Cerca con Google

116. Kotchoubey B, Lang S, Winter S, Birbaumer N. Cognitive processing in completely paralyzed patients with amyotrophic lateral sclerosis. Eur J Neurol (2003) 10:551–8. Cerca con Google

117. Pinkhardt EH, Jürgens R, Becker W, Mölle M, Born J, Ludolph AC, Schreiber H. Signs of impaired selective attention in patients with amyotrophic lateral sclerosis. J Neurol (2008) 255:532–8. doi:10.1007/s00415-008-0734-9 Cerca con Google

118. Silvoni S, Konicar L, Prats-Sedano MA, Garcia-Cossio E, Genna C, Volpato C, Cavinato M, Paggiaro A, Veser S, De Massari D, et al. Tactile 1. Andrews J. Amyotrophic lateral sclerosis: clinical management and research update. Curr Neurol Neurosci Rep (2009) 9:59–68 Cerca con Google

2. Strong M, Rosenfeld J. Amyotrophic lateral sclerosis: a review of current concepts. Amyotroph Lateral Scler Other Motor Neuron Disord (2003) 4:136–43 Cerca con Google

3. Haverkamp LJ, Appel V, Appel SH. Natural history of amyotrophic lateral sclerosis in a database population. Validation of a scoring system and a model for survival prediction. Brain (1995)707–19 Cerca con Google

4. Wijesekera L, Leigh PN. Amyotrophic lateral sclerosis. Orphanet J Rare Dis (2009) doi:10.1186/1750-1172-4-3 Cerca con Google

5. Logroscino G, Traynor BJ, Hardiman O, Chiò A, Mitchell D, Swingler RJ, Millul A, Benn E, Beghi E. Incidence of amyotrophic lateral sclerosis in Europe. J Neurol Neurosurg Psychiatry (2010) 81:385–90. doi:10.1136/jnnp.2009.183525 Cerca con Google

6. Chiò A, Mora G, Calvo A, Mazzini L, Bottacchi E, Mutani R. Epidemiology of ALS in Italy: A 10-year prospective population-based study. Neurology (2009) 72:725–731. doi:10.1212/01.wnl.0000343008.26874.d1 Cerca con Google

7. Ghatak NR, Campbell WW, Lippman RH, Hadfield MG. Anterior horn changes of motor neuron disease associated with demyelinating radiculopathy. J Neuropathol Exp Neurol (1986) 45:385–95 Cerca con Google

8. Hammer RP, Tomiyasu U, Scheibel AB. Degeneration of the human Betz cell due to amyotrophic lateral sclerosis. Exp Neurol (1979) 63:336–346. doi:10.1016/0014-4886(79)90129-8 Cerca con Google

9. Udaka F, Kameyama M, Tomonaga M. Degeneration of Betz cells in motor neuron disease. A Golgi study. Acta Neuropathol (1986) 70:289–95 Cerca con Google

10. Murayama S, Inoue K, Kawakami H, Bouldin TW, Suzuki K. A unique pattern of astrocytosis in the primary motor area in amyotrophic lateral sclerosis. Acta Neuropathol (1991) 82:456–61 Cerca con Google

11. Pamphlett R, Kril J, Hng TM. Motor neuron disease: a primary disorder of corticomotoneurons? Muscle Nerve (1995) 18:314–8. doi:10.1002/mus.880180308 Cerca con Google

12. Rosen DR, Sapp P, O’Regan J, McKenna-Yasek D, Schlumpf KS, Haines JL, Gusella JF, Horvitz HR, Brown RH. Genetic linkage analysis of familial amyotrophic lateral sclerosis using human chromosome 21 microsatellite DNA markers. Am J Med Genet (1994) 51:61–9. doi:10.1002/ajmg.1320510114 Cerca con Google

13. Gitcho MA, Baloh RH, Chakraverty S, Mayo K, Norton JB, Levitch D, Hatanpaa KJ, White CL, Bigio EH, Caselli R, et al. TDP-43 A315T mutation in familial motor neuron disease. Ann Neurol (2008) 63:535–8. doi:10.1002/ana.21344 Cerca con Google

14. Vance C, Rogelj B, Hortobágyi T, De Vos KJ, Nishimura AL, Sreedharan J, Hu X, Smith B, Ruddy D, Wright P, et al. Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science (2009) 323:1208–11. doi:10.1126/science.1165942 Cerca con Google

15. Kwiatkowski TJ, Bosco DA, Leclerc AL, Tamrazian E, Vanderburg CR, Russ C, Davis A, Gilchrist J, Kasarskis EJ, Munsat T, et al. Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science (2009) 323:1205–8. doi:10.1126/science.1166066 Cerca con Google

16. Renton AE, Majounie E, Waite A, Simón-Sánchez J, Rollinson S, Gibbs JR, Schymick JC, Laaksovirta H, van Swieten JC, Myllykangas L, et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron (2011) 72:257–68. doi:10.1016/j.neuron.2011.09.010 Cerca con Google

17. Laferriere F, Polymenidou M. Advances and challenges in understanding the multifaceted pathogenesis of amyotrophic lateral sclerosis. Swiss Med Wkly (2015) 145:w14054. doi:10.4414/smw.2015.14054 Cerca con Google

18. Brooks BR, Miller RG, Swash M, Munsat TL, World Federation of Neurology Research Group on Motor Neuron Diseases. El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord (2000) 1:293–9 Cerca con Google

19. Traynor BJ, Codd MB, Corr B, Forde C, Frost E, Hardiman OM, BR B, D C, M J, A E, et al. Clinical Features of Amyotrophic Lateral Sclerosis According to the El Escorial and Airlie House Diagnostic Criteria. Arch Neurol (2000) 57:1171. doi:10.1001/archneur.57.8.1171 Cerca con Google

20. Bromberg MB. Assessing quality of life in ALS. J Clin Neuromuscul Dis (2007) 9:318–25. doi:10.1097/CND.0b013e31815af9b7 Cerca con Google

21. Lulé D, Häcker S, Ludolph A, Birbaumer N, Kübler A. Depression and quality of life in patients with amyotrophic lateral sclerosis. Dtsch Arztebl Int (2008) 105:397–403. doi:10.3238/arztebl.2008.0397 Cerca con Google

22. Kubler A. Severity of depressive symptoms and quality of life in patients with Amyotrophic Lateral Sclerosis. Neurorehabil Neural Repair (2005) 19:182–193. doi:10.1177/1545968305276583 Cerca con Google

23. Kiebert GM, Green C, Murphy C, Mitchell JD, O’Brien M, Burrell A, Leigh PN. Patients’ health-related quality of life and utilities associated with different stages of amyotrophic lateral sclerosis. J Neurol Sci (2001) 191:87–93 Cerca con Google

24. Robbins RA, Simmons Z, Bremer BA, Walsh SM, Fischer S. Quality of life in ALS is maintained as physical function declines. Neurology (2001) 56:442–4 Cerca con Google

25. Pagnini F, Manzoni GM, Tagliaferri A, Gibbons CJ. Depression and disease progression in amyotrophic lateral sclerosis: A comprehensive meta-regression analysis. J Health Psychol (2015) 20:1107–28. doi:10.1177/1359105314530453 Cerca con Google

26. Ganzini L, Block S. Physician-Assisted Death — A Last Resort? N Engl J Med (2002) 346:1663–1665. doi:10.1056/NEJM200205233462113 Cerca con Google

27. Körner S, Kollewe K, Abdulla S, Zapf A, Dengler R, Petri S. Interaction of physical function, quality of life and depression in Amyotrophic lateral sclerosis: characterization of a large patient cohort. BMC Neurol (2015) 15:84. doi:10.1186/s12883-015-0340-2 Cerca con Google

28. Hunter MD, Robinson IC, Neilson S. The functional and psychological status of patients with amyotrophic lateral sclerosis: some implications for rehabilitation. Disabil Rehabil 15:119–26 Cerca con Google

29. Oh H, Sin M-K, Schepp KG, Choi-Kwon S. Depressive symptoms and functional impairment among amyotrophic lateral sclerosis patients in South Korea. Rehabil Nurs 37:136–44. doi:10.1002/RNJ.00045 Cerca con Google

30. Simmons Z Robbins RA, et al. BBA. Quality of life in ALS depends on factors other than strenght and physical function. Neurology (2000) 55:388–392. Cerca con Google

31. Rabkin JG, Wagner GJ, Del Bene M. Resilience and distress among amyotrophic lateral sclerosis patients and caregivers. Psychosom Med 62:271–9 Cerca con Google

32. Connolly S, Galvin M, Hardiman O. End-of-life management in patients with amyotrophic lateral sclerosis. Lancet Neurol (2015) 14:435–442. doi:10.1016/S1474-4422(14)70221-2 Cerca con Google

33. Simmons Z. Management strategies for patients with amyotrophic lateral sclerosis from diagnosis through death. Neurologist (2005) 11:257–70 Cerca con Google

34. Miller RG, Mitchell JD, Moore DH. Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND). Cochrane database Syst Rev (2012) 3:CD001447. doi:10.1002/14651858.CD001447.pub3 Cerca con Google

35. Bauer G, Gerstenbrand F, Rumpl E. Varieties of the locked-in syndrome. J Neurol (1979) 221:77–91 Cerca con Google

36. Kübler A, Birbaumer N. Brain-computer interfaces and communication in paralysis: extinction of goal directed thinking in completely paralysed patients? Clin Neurophysiol (2008) 119:2658–66. doi:10.1016/j.clinph.2008.06.019 Cerca con Google

37. Birbaumer N, Murguialday AR, Cohen L. Brain-computer interface in paralysis. Curr Opin Neurol (2008) 21:634–8. doi:10.1097/WCO.0b013e328315ee2d Cerca con Google

38. Braunmühl A Von. Picksche krankheit und amyotrophische Lateralsklerose. Allg Z Psychiat (1932) Cerca con Google

39. Lomen-Hoerth C, Anderson T, Miller B. The overlap of amyotrophic lateral sclerosis and frontotemporal dementia. Neurology (2002) 59:1077–1079. doi:10.1097/WCO.0b013e3283168d1d Cerca con Google

40. Ringholz GM, Appel SH, Bradshaw M, Cooke NA, Mosnik DM, Schulz PE. Prevalence and patterns of cognitive impairment in sporadic ALS. Neurology (2005) 65:586–90. doi:10.1212/01.wnl.0000172911.39167.b6 Cerca con Google

41. Lillo P, Savage S, Mioshi E, Kiernan MC, Hodges JR. Amyotrophic lateral sclerosis and frontotemporal dementia: A behavioural and cognitive continuum. Amyotroph Lateral Scler (2012) 13:102–9. doi:10.3109/17482968.2011.639376 Cerca con Google

42. Barulli MR, Fontana A, Panza F, Copetti M, Bruno S, Tursi M, Iurillo A, Tortelli R, Capozzo R, Simone IL, et al. Frontal assessment battery for detecting executive dysfunction in amyotrophic lateral sclerosis without dementia: a retrospective observational study. BMJ Open (2015) 5:e007069. doi:10.1136/bmjopen-2014-007069 Cerca con Google

43. Seer C, Fürkötter S, Vogts M-B, Lange F, Abdulla S, Dengler R, Petri S, Kopp B. Executive Dysfunctions and Event-Related Brain Potentials in Patients with Amyotrophic Lateral Sclerosis. Front Aging Neurosci (2015) 7:225. doi:10.3389/fnagi.2015.00225 Cerca con Google

44. Abrahams S, Leigh PN, Goldstein LH. Cognitive change in ALS: a prospective study. Neurology (2005) 64:1222–1226. doi:10.1212/01.WNL.0000156519.41681.27 Cerca con Google

45. Ringholz GM, Greene SR. The relationship between amyotrophic lateral sclerosis and frontotemporal dementia. Curr Neurol Neurosci Rep (2006) 6:387–92 Cerca con Google

46. Abrahams S, Goldstein LH, Al-Chalabi A, Pickering A, Morris RG, Passingham RE, Brooks DJ, Leigh PN. Relation between cognitive dysfunction and pseudobulbar palsy in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry (1997) 62:464–72 Cerca con Google

47. Moretti R, Torre P, Antonello RM, Carraro N, Cazzato G, Bava A. Complex cognitive disruption in motor neuron disease. Dement Geriatr Cogn Disord (2002) 14:141–50. doi:63600 Cerca con Google

48. Phukan J, Elamin M, Bede P, Jordan N, Gallagher L, Byrne S, Lynch C, Pender N, Hardiman O. The syndrome of cognitive impairment in amyotrophic lateral sclerosis: a population-based study. J Neurol Neurosurg Psychiatry (2012) 83:102–8. doi:10.1136/jnnp-2011-300188 Cerca con Google

49. Rakowicz WP, Hodges JR. Dementia and aphasia in motor neuron disease: an underrecognised association? J Neurol Neurosurg Psychiatry (1998) 65:881–9 Cerca con Google

50. Ludolph AC, Langen KJ, Regard M, Herzog H, Kemper B, Kuwert T, Böttger IG, Feinendegen L. Frontal lobe function in amyotrophic lateral sclerosis: a neuropsychologic and positron emission tomography study. Acta Neurol Scand (1992) 85:81–9 Cerca con Google

51. Abrahams S, Newton J, Niven E, Foley J, Bak TH. Screening for cognition and behaviour changes in ALS. Amyotroph Lateral Scler Frontotemporal Degener (2014) 15:9–14. doi:10.3109/21678421.2013.805784 Cerca con Google

52. Cohen MJ, Stanczak DE. On the Reliability, Validity, and Cognitive Structure of the Thurstone Word Fluency Test. Arch Clin Neuropsychol (2000) 15:267–279. doi:10.1016/S0887-6177(99)00017-7 Cerca con Google

53. Abrahams S, Goldstein LH, Simmons A, Brammer M, Williams SCR, Giampietro V, Leigh PN. Word retrieval in amyotrophic lateral sclerosis: a functional magnetic resonance imaging study. Brain (2004) 127:1507–17. doi:10.1093/brain/awh170 Cerca con Google

54. Volpato C, Piccione F, Silvoni S, Cavinato M, Palmieri A, Meneghello F, Birbaumer N. Working memory in amyotrophic lateral sclerosis: auditory event-related potentials and neuropsychological evidence. J Clin Neurophysiol (2010) 27:198–206. doi:10.1097/WNP.0b013e3181e0aa14 Cerca con Google

55. Abrahams S, Goldstein LH, Kew JJM, Brooks DJ, Lloyd CM, Frith CD, Leigh PN. Frontal lobe dysfunction in amyotrophic lateral sclerosis A PET study. (1996)2105–2120. Cerca con Google

56. Gallassi R, Montagna P, Ciardulli C, Lorusso S, Mussuto V, Stracciari A. Cognitive impairment in motor neuron disease. Acta Neurol Scand (1985) 71:480–4 Cerca con Google

57. Frank B, Haas J, Heinze HJ, Stark E, Münte TF. Relation of neuropsychological and magnetic resonance findings in amyotrophic lateral sclerosis: evidence for subgroups. Clin Neurol Neurosurg (1997) 99:79–86 Cerca con Google

58. Volpato C, Prats Sedano MA, Silvoni S, Segato N, Cavinato M, Merico A, Piccione F, Palmieri A, Birbaumer N. Selective attention impairment in amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener (2016)1–9. doi:10.3109/21678421.2016.1143514 Cerca con Google

59. Massman PJ, Sims J, Cooke N, Haverkamp LJ, Appel V, Appel SH. Prevalence and correlates of neuropsychological deficits in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry (1996) 61:450–5 Cerca con Google

60. Abrahams S, Leigh PN, Harvey A, Vythelingum GN, Grisé D, Goldstein LH. Verbal fluency and executive dysfunction in amyotrophic lateral sclerosis (ALS). Neuropsychologia (2000) 38:734–747. doi:10.1016/S0028-3932(99)00146-3 Cerca con Google

61. Hanagasi HA, Gurvit IH, Ermutlu N, Kaptanoglu G, Karamursel S, Idrisoglu HA, Emre M, Demiralp T. Cognitive impairment in amyotrophic lateral sclerosis: evidence from neuropsychological investigation and event-related potentials. Brain Res Cogn Brain Res (2002) 14:234–44 Cerca con Google

62. Strong MJ, Grace GM, Orange JB, Leeper HA, Menon RS, Aere C. A prospective study of cognitive impairment in ALS. Neurology (1999) 53:1665–1665. doi:10.1212/WNL.53.8.1665 Cerca con Google

63. Raaphorst J, de Visser M, van Tol M-J, Linssen WHJP, van der Kooi AJ, de Haan RJ, van den Berg LH, Schmand B. Cognitive dysfunction in lower motor neuron disease: executive and memory deficits in progressive muscular atrophy. J Neurol Neurosurg Psychiatry (2011) 82:170–5. doi:10.1136/jnnp.2009.204446 Cerca con Google

64. Bak TH, Hodges JR. Motor neurone disease, dementia and aphasia: coincidence, co-occurrence or continuum? J Neurol (2001) 248:260–70 Cerca con Google

65. Bede P, Elamin M, Byrne S, McLaughlin RL, Kenna K, Vajda A, Pender N, Bradley DG, Hardiman O. Basal ganglia involvement in amyotrophic lateral sclerosis. Neurology (2013) 81:2107–15. doi:10.1212/01.wnl.0000437313.80913.2c Cerca con Google

66. Brettschneider J, Del Tredici K, Toledo JB, Robinson JL, Irwin DJ, Grossman M, Suh E, Van Deerlin VM, Wood EM, Baek Y, et al. Stages of pTDP-43 pathology in amyotrophic lateral sclerosis. Ann Neurol (2013) 74:20–38. doi:10.1002/ana.23937 Cerca con Google

67. Machts J, Bittner V, Kasper E, Schuster C, Prudlo J, Abdulla S, Kollewe K, Petri S, Dengler R, Heinze H-J, et al. Memory deficits in amyotrophic lateral sclerosis are not exclusively caused by executive dysfunction: a comparative neuropsychological study of amnestic mild cognitive impairment. BMC Neurosci (2014) 15:83. doi:10.1186/1471-2202-15-83 Cerca con Google

68. Bak TH, O’Donovan DG, Xuereb JH, Boniface S, Hodges JR. Selective impairment of verb processing associated with pathological changes in Brodmann areas 44 and 45 in the motor neurone disease-dementia-aphasia syndrome. Brain (2001) 124:103–120. doi:10.1093/brain/124.1.103 Cerca con Google

69. Grossman M, Anderson C, Khan A, Avants B, Elman L, McCluskey L. Impaired action knowledge in amyotrophic lateral sclerosis. Neurology (2008) 71:1396–401. doi:10.1212/01.wnl.0000319701.50168.8c Cerca con Google

70. Taylor LJ, Brown RG, Tsermentseli S, Al-Chalabi A, Shaw CE, Ellis CM, Leigh PN, Goldstein LH. Is language impairment more common than executive dysfunction in amyotrophic lateral sclerosis? J Neurol Neurosurg Psychiatry (2013) 84:494–8. doi:10.1136/jnnp-2012-303526 Cerca con Google

71. Abrahams S. Executive dysfunction in ALS is not the whole story. J Neurol Neurosurg Psychiatry (2013) 84:474–475. doi:10.1136/jnnp-2012-303851 Cerca con Google

72. Neumann N, Kotchoubey B. Assessment of cognitive functions in severely paralysed and severely brain-damaged patients: neuropsychological and electrophysiological methods. Brain Res Brain Res Protoc (2004) 14:25–36. doi:10.1016/j.brainresprot.2004.09.001 Cerca con Google

73. Lakerveld J, Kotchoubey B, Kübler A. Cognitive function in patients with late stage amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry (2008) 79:25–9. doi:10.1136/jnnp.2007.116178 Cerca con Google

74. Mistridis P, Taylor KI, Kissler JM, Monsch AU, Kressig RW, Kivisaari SL. Distinct neural systems underlying reduced emotional enhancement for positive and negative stimuli in early Alzheimer’s disease. Front Hum Neurosci (2013) 7:939. doi:10.3389/fnhum.2013.00939 Cerca con Google

75. Chainay H, Sava A, Michael GA, Landré L, Versace R, Krolak-Salmon P. Impaired emotional memory enhancement on recognition of pictorial stimuli in Alzheimer’s disease: No influence of the nature of encoding. Cortex (2014) 50:32–44. doi:10.1016/j.cortex.2013.10.001 Cerca con Google

76. Cadieux NL, Greve KW. Emotion processing in Alzheimer’s disease. J Int Neuropsychol Soc (1997) 3:411–9 Cerca con Google

77. Enrici I, Adenzato M, Ardito RB, Mitkova A, Cavallo M, Zibetti M, Lopiano L, Castelli L. Emotion processing in Parkinson’s disease: a three-level study on recognition, representation, and regulation. PLoS One (2015) 10:e0131470. doi:10.1371/journal.pone.0131470 Cerca con Google

78. Xi C, Zhu Y, Mu Y, Chen B, Dong B, Cheng H, Hu P, Zhu C, Wang K. Theory of mind and decision-making processes are impaired in Parkinson’s disease. Behav Brain Res (2015) 279:226–33. doi:10.1016/j.bbr.2014.11.035 Cerca con Google

79. Garrido-Vásquez P, Pell MD, Paulmann S, Sehm B, Kotz SA. Impaired neural processing of dynamic faces in left-onset Parkinson’s disease. Neuropsychologia (2016) 82:123–33. doi:10.1016/j.neuropsychologia.2016.01.017 Cerca con Google

80. Beer JS, Ochsner KN. Social cognition: a multi level analysis. Brain Res (2006) 1079:98–105. doi:10.1016/j.brainres.2006.01.002 Cerca con Google

81. Baron-Cohen S, Leslie AM, Frith U. Does the autistic child have a “theory of mind”? Cognition (1985) 21:37–46 Cerca con Google

82. Zimmerman EK, Eslinger PJ, Simmons Z, Barrett AM. Emotional perception deficits in amyotrophic lateral sclerosis. Cogn Behav Neurol (2007) 20:79–82. doi:10.1097/WNN.0b013e31804c700b Cerca con Google

83. Staios M, Fisher F, Lindell AK, Ong B, Howe J, Reardon K. Exploring sarcasm detection in amyotrophic lateral sclerosis using ecologically valid measures. Front Hum Neurosci (2013) 7:178. doi:10.3389/fnhum.2013.00178 Cerca con Google

84. Snowden JS, Austin NA, Sembi S, Thompson JC, Craufurd D, Neary D. Emotion recognition in Huntington’s disease and frontotemporal dementia. Neuropsychologia (2008) 46:2638–49. doi:10.1016/j.neuropsychologia.2008.04.018 Cerca con Google

85. Papps B, Abrahams S, Wicks P, Leigh PN, Goldstein LH. Changes in memory for emotional material in amyotrophic lateral sclerosis (ALS). Neuropsychologia (2005) 43:1107–14. doi:10.1016/j.neuropsychologia.2004.11.027 Cerca con Google

86. Lulé D, Kurt A, Jürgens R, Kassubek J, Diekmann V, Kraft E, Neumann N, Ludolph AC, Birbaumer N, Anders S. Emotional responding in amyotrophic lateral sclerosis. J Neurol (2005) 252:1517–1524. doi:10.1007/s00415-005-0907-8 Cerca con Google

87. Lomen-Hoerth C, Murphy J, Langmore S, Kramer JH, Olney RK, Miller B. Are amyotrophic lateral sclerosis patients cognitively normal? Neurology (2003) 60:1094–7 Cerca con Google

88. Grossman AB, Woolley-Levine S, Bradley WG, Miller RG. Detecting neurobehavioral changes in amyotrophic lateral sclerosis. Amyotroph Lateral Scler (2007) 8:56–61. doi:10.1080/17482960601044106 Cerca con Google

89. Murphy J, Factor-Litvak P, Goetz R, Lomen-Hoerth C, Nagy PL, Hupf J, Singleton J, Woolley S, Andrews H, Heitzman D, et al. Cognitive-behavioral screening reveals prevalent impairment in a large multicenter ALS cohort. Neurology (2016) doi:10.1212/WNL.0000000000002305 Cerca con Google

90. Girardi A, Macpherson SE, Abrahams S. Deficits in emotional and social cognition in amyotrophic lateral sclerosis. Neuropsychology (2011) 25:53–65. doi:10.1037/a0020357 Cerca con Google

91. Woolley SC, Zhang Y, Schuff N, Weiner MW, Katz JS. Neuroanatomical correlates of apathy in ALS using 4 Tesla diffusion tensor MRI. Amyotroph Lateral Scler (2011) 12:52–8. doi:10.3109/17482968.2010.521842 Cerca con Google

92. Mouraux A, Iannetti GD. Across-trial averaging of event-related EEG responses and beyond. Magn Reson Imaging (2008) 26:1041–54. doi:10.1016/j.mri.2008.01.011 Cerca con Google

93. Raggi A, Consonni M, Iannaccone S, Perani D, Zamboni M, Sferrazza B, Cappa SF. Auditory event-related potentials in non-demented patients with sporadic amyotrophic lateral sclerosis. Clin Neurophysiol (2008) 119:342–50. doi:10.1016/j.clinph.2007.10.010 Cerca con Google

94. Goldstein LH, Abrahams S. Changes in cognition and behaviour in amyotrophic lateral sclerosis: nature of impairment and implications for assessment. Lancet Neurol (2013) 12:368–80. doi:10.1016/S1474-4422(13)70026-7 Cerca con Google

95. Näätänen R, Picton T. The N1 wave of the human electric and magnetic response to sound: a review and an analysis of the component structure. Psychophysiology (1987) 24:375–425 Cerca con Google

96. García-Larrea L, Lukaszewicz AC, Mauguière F. Revisiting the oddball paradigm. Non-target vs neutral stimuli and the evaluation of ERP attentional effects. Neuropsychologia (1992) 30:723–41 Cerca con Google

97. Näätänen R, Paavilainen P, Rinne T, Alho K. The mismatch negativity (MMN) in basic research of central auditory processing: A review. Clin Neurophysiol (2007) 118:2544–2590. doi:10.1016/j.clinph.2007.04.026 Cerca con Google

98. Näätänen R, Alho K. Mismatch negativity--the measure for central sound representation accuracy. Audiol Neurootol 2:341–53 Cerca con Google

99. Näätänen R, Sussman ES, Salisbury D, Shafer VL. Mismatch negativity (MMN) as an index of cognitive dysfunction. Brain Topogr (2014) 27:451–66. doi:10.1007/s10548-014-0374-6 Cerca con Google

100. Folstein JR, Van Petten C. Influence of cognitive control and mismatch on the N2 component of the ERP: a review. Psychophysiology (2008) 45:152–70. doi:10.1111/j.1469-8986.2007.00602.x Cerca con Google

101. Sutton S, Braren M, Zubin J, John ER. Evoked-potential correlates of stimulus uncertainty. Science (1965) 150:1187–8 Cerca con Google

102. Duncan CC, Barry RJ, Connolly JF, Fischer C, Michie PT, Näätänen R, Polich J, Reinvang I, Van Petten C. Event-related potentials in clinical research: guidelines for eliciting, recording, and quantifying mismatch negativity, P300, and N400. Clin Neurophysiol (2009) 120:1883–908. doi:10.1016/j.clinph.2009.07.045 Cerca con Google

103. Polich J. Updating P300: an integrative theory of P3a and P3b. Clin Neurophysiol (2007) 118:2128–48. doi:10.1016/j.clinph.2007.04.019 Cerca con Google

104. Picton TW, Bentin S, Berg P, Donchin E, Hillyard SA, Johnson R, Miller GA, Ritter W, Ruchkin DS, Rugg MD, et al. Guidelines for using human event-related potentials to study cognition: recording standards and publication criteria. Psychophysiology (2000) 37:127–52 Cerca con Google

105. Polich J, Kok A. Cognitive and biological determinants of P300: an integrative review. Biol Psychol (1995) 41:103–46 Cerca con Google

106. Kutas M, Hillyard SA. Reading senseless sentences: brain potentials reflect semantic incongruity. Science (1980) 207:203–5 Cerca con Google

107. Sitnikova T, Kuperberg G, Holcomb PJ. Semantic integration in videos of real-world events: an electrophysiological investigation. Psychophysiology (2003) 40:160–4. Cerca con Google

108. Kutas M, Federmeier KD. Thirty years and counting: finding meaning in the N400 component of the event-related brain potential (ERP). Annu Rev Psychol (2011) 62:621–47. doi:10.1146/annurev.psych.093008.131123 Cerca con Google

109. Kotchoubey B, Lang S, Bostanov V, Birbaumer N. Is there a mind? Electrophysiology of unconscious patients. News Physiol Sci (2002) 17:38–42 Cerca con Google

110. Gil R, Neau JP, Dary-Auriol M, Agbo C, Tantot AM, Ingrand P. Event-related auditory evoked potentials and amyotrophic lateral sclerosis. Arch Neurol (1995) 52:890–6. Cerca con Google

111. Paulus KS, Magnano I, Piras MR, Solinas MA, Solinas G, Sau GF, Aiello I. Visual and auditory event-related potentials in sporadic amyotrophic lateral sclerosis. Clin Neurophysiol (2002) 113:853–61 Cerca con Google

112. Ogawa T, Tanaka H, Hirata K. Cognitive deficits in amyotrophic lateral sclerosis evaluated by event-related potentials. Clin Neurophysiol (2009) 120:659–64. doi:10.1016/j.clinph.2009.01.013 Cerca con Google

113. Münte TF, Tröger M, Nusser I, Wieringa BM, Matzke M, Johannes S, Dengler R. Recognition memory deficits in amyotrophic lateral sclerosis assessed with event-related brain potentials. Acta Neurol Scand (1998) 98:110–5 Cerca con Google

114. Silvoni S, Volpato C, Cavinato M, Marchetti M, Priftis K, Merico A, Tonin P, Koutsikos K, Beverina F, Piccione F. P300-Based Brain-Computer Interface Communication: Evaluation and Follow-up in Amyotrophic Lateral Sclerosis. Front Neurosci (2009) 3:60. doi:10.3389/neuro.20.001.2009 Cerca con Google

115. Vieregge P, Wauschkuhn B, Heberlein I, Hagenah J, Verleger R. Selective attention is impaired in amyotrophic lateral sclerosis--a study of event-related EEG potentials. Brain Res Cogn Brain Res (1999) 8:27–35 Cerca con Google

116. Kotchoubey B, Lang S, Winter S, Birbaumer N. Cognitive processing in completely paralyzed patients with amyotrophic lateral sclerosis. Eur J Neurol (2003) 10:551–8. Cerca con Google

117. Pinkhardt EH, Jürgens R, Becker W, Mölle M, Born J, Ludolph AC, Schreiber H. Signs of impaired selective attention in patients with amyotrophic lateral sclerosis. J Neurol (2008) 255:532–8. doi:10.1007/s00415-008-0734-9 Cerca con Google

118. Silvoni S, Konicar L, Prats-Sedano MA, Garcia-Cossio E, Genna C, Volpato C, Cavinato M, Paggiaro A, Veser S, De Massari D, et al. Tactile event-related potentials in amyotrophic lateral sclerosis (ALS): Implications for brain-computer interface. Clin Neurophysiol (2015) doi:10.1016/j.clinph.2015.06.029 Cerca con Google

119. Birbaumer N. Breaking the silence: brain-computer interfaces (BCI) for communication and motor control. Psychophysiology (2006) 43:517–32. doi:10.1111/j.1469-8986.2006.00456.x Cerca con Google

120. Vidal JJ. Toward Direct Brain-Computer Communication. Annu Rev Biophys Bioeng (1973) 2:157–180. doi:10.1146/annurev.bb.02.060173.001105 Cerca con Google

121. Bansal AK, Truccolo W, Vargas-Irwin CE, Donoghue JP. Decoding 3D reach and grasp from hybrid signals in motor and premotor cortices: spikes, multiunit activity, and local field potentials. J Neurophysiol (2012) 107:1337–55. doi:10.1152/jn.00781.2011 Cerca con Google

122. So K, Dangi S, Orsborn AL, Gastpar MC, Carmena JM. Subject-specific modulation of local field potential spectral power during brain-machine interface control in primates. J Neural Eng (2014) 11:026002. doi:10.1088/1741-2560/11/2/026002 Cerca con Google

123. Chapin JK, Moxon KA, Markowitz RS, Nicolelis MA. Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex. Nat Neurosci (1999) 2:664–70. doi:10.1038/10223 Cerca con Google

124. Carmena JM, Lebedev MA, Crist RE, O’Doherty JE, Santucci DM, Dimitrov DF, Patil PG, Henriquez CS, Nicolelis MAL. Learning to control a brain-machine interface for reaching and grasping by primates. PLoS Biol (2003) 1:E42. doi:10.1371/journal.pbio.0000042 Cerca con Google

125. Serruya MD, Hatsopoulos NG, Paninski L, Fellows MR, Donoghue JP. Instant neural control of a movement signal. Nature (2002) 416:141–2. doi:10.1038/416141a Cerca con Google

126. Leuthardt EC, Schalk G, Wolpaw JR, Ojemann JG, Moran DW. A brain-computer interface using electrocorticographic signals in humans. J Neural Eng (2004) 1:63–71. doi:10.1088/1741-2560/1/2/001 Cerca con Google

127. Felton EA, Wilson JA, Williams JC, Garell PC. Electrocorticographically controlled brain-computer interfaces using motor and sensory imagery in patients with temporary subdural electrode implants. Report of four cases. J Neurosurg (2007) 106:495–500. doi:10.3171/jns.2007.106.3.495 Cerca con Google

128. Clancy KB, Koralek AC, Costa RM, Feldman DE, Carmena JM. Volitional modulation of optically recorded calcium signals during neuroprosthetic learning. Nat Neurosci (2014) 17:807–9. doi:10.1038/nn.3712 Cerca con Google

129. Birbaumer N, Ghanayim N, Hinterberger T, Iversen I, Kotchoubey B, Kübler A, Perelmouter J, Taub E, Flor H. A spelling device for the paralysed. Nature (1999) 398:297–8. doi:10.1038/18581 Cerca con Google

130. Kübler A, Neumann N, Kaiser J, Kotchoubey B, Hinterberger T, Birbaumer NP. Brain-computer communication: self-regulation of slow cortical potentials for verbal communication. Arch Phys Med Rehabil (2001) 82:1533–9 Cerca con Google

131. Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM. Brain–computer interfaces for communication and control. Clin Neurophysiol (2002) 113:767–791. doi:10.1016/S1388-2457(02)00057-3 Cerca con Google

132. Farwell LA, Donchin E. Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr Clin Neurophysiol (1988) 70:510–523. doi:10.1016/0013-4694(88)90149-6 Cerca con Google

133. Yoo S-S, Kim H, Filandrianos E, Taghados SJ, Park S. Non-invasive brain-to-brain interface (BBI): establishing functional links between two brains. PLoS One (2013) 8:e60410. doi:10.1371/journal.pone.0060410 Cerca con Google

134. Zhu D, Bieger J, Garcia Molina G, Aarts RM. A survey of stimulation methods used in SSVEP-based BCIs. Comput Intell Neurosci (2010)702357. doi:10.1155/2010/702357 Cerca con Google

135. Sitaram R, Caria A, Veit R, Gaber T, Rota G, Kuebler A, Birbaumer N. FMRI brain-computer interface: a tool for neuroscientific research and treatment. Comput Intell Neurosci (2007)25487. doi:10.1155/2007/25487 Cerca con Google

136. Sitaram R, Caria A, Birbaumer N. Hemodynamic brain-computer interfaces for communication and rehabilitation. Neural Netw (2009) 22:1320–8. doi:10.1016/j.neunet.2009.05.009 Cerca con Google

137. Gallegos-Ayala G, Furdea A, Takano K, Ruf CA, Flor H, Birbaumer N. Brain communication in a completely locked-in patient using bedside near-infrared spectroscopy. Neurology (2014) 82:1930–2. doi:10.1212/WNL.0000000000000449 Cerca con Google

138. Chaudhary U, Birbaumer N, Ramos-Murguialday A. Brain–computer interfaces for communication and rehabilitation. Nat Rev Neurol (2016) 12:513–525. doi:10.1038/nrneurol.2016.113 Cerca con Google

139. Piccione F, Giorgi F, Tonin P, Priftis K, Giove S, Silvoni S, Palmas G, Beverina F. P300-based brain computer interface: Reliability and performance in healthy and paralysed participants. Clin Neurophysiol (2006) 117:531–537. doi:10.1016/j.clinph.2005.07.024 Cerca con Google

140. Furdea A, Halder S, Krusienski DJ, Bross D, Nijboer F, Birbaumer N, Kübler A. An auditory oddball (P300) spelling system for brain-computer interfaces. Psychophysiology (2009) 46:617–625. doi:10.1111/j.1469-8986.2008.00783.x Cerca con Google

141. Halder S, Hammer EM, Kleih SC, Bogdan M, Rosenstiel W, Birbaumer N, Kübler A. Prediction of auditory and visual p300 brain-computer interface aptitude. PLoS One (2013) 8:e53513. doi:10.1371/journal.pone.0053513 Cerca con Google

142. Brouwer A-M, van Erp JBF. A tactile P300 brain-computer interface. Front Neurosci (2010) 4:19. doi:10.3389/fnins.2010.00019 Cerca con Google

143. Kübler A, Kotchoubey B. Brain-computer interfaces in the continuum of consciousness. Curr Opin Neurol (2007) 20:643–9. doi:10.1097/WCO.0b013e3282f14782 Cerca con Google

144. Kennedy PR, Bakay RA, Moore MM, Adams K, Goldwaithe J. Direct control of a computer from the human central nervous system. IEEE Trans Rehabil Eng (2000) 8:198–202 Cerca con Google

145. Kennedy P, Andreasen D, Ehirim P, King B, Kirby T, Mao H, Moore M. Using human extra-cortical local field potentials to control a switch. J Neural Eng (2004) 1:72–7. doi:10.1088/1741-2560/1/2/002 Cerca con Google

146. Gilja V, Pandarinath C, Blabe CH, Nuyujukian P, Simeral JD, Sarma AA, Sorice BL, Perge JA, Jarosiewicz B, Hochberg LR, et al. Clinical translation of a high-performance neural prosthesis. Nat Med (2015) 21:1142–5. doi:10.1038/nm.3953 Cerca con Google

147. Kübler A, Birbaumer N. Brain-computer interfaces and communication in paralysis: extinction of goal directed thinking in completely paralysed patients? Clin Neurophysiol (2008) 119:2658–66. doi:10.1016/j.clinph.2008.06.019 Cerca con Google

148. Sellers EW, Vaughan TM, Wolpaw JR. A brain-computer interface for long-term independent home use. Amyotroph Lateral Scler (2010) 11:449–55. doi:10.3109/17482961003777470 Cerca con Google

149. Kuebler A, Kotchoubey B, Salzmann HP, Ghanayim N, Perelmouter J, Hömberg V, Birbaumer N. Self-regulation of slow cortical potentials in completely paralyzed human patients. Neurosci Lett (1998) 252:171–4 Cerca con Google

150. Sellers EW, Ryan DB, Hauser CK. Noninvasive brain-computer interface enables communication after brainstem stroke. Sci Transl Med (2014) 6:257re7. doi:10.1126/scitranslmed.3007801 Cerca con Google

151. De Massari D, Ruf CA, Furdea A, Matuz T, van der Heiden L, Halder S, Silvoni S, Birbaumer N. Brain communication in the locked-in state. Brain (2013) 136:1989–2000. doi:10.1093/brain/awt102 Cerca con Google

152. Niven E, Newton J, Foley J, Colville S, Swingler R, Chandran S, Bak TH, Abrahams S. Validation of the Edinburgh Cognitive and Behavioural Amyotrophic Lateral Sclerosis Screen (ECAS): A cognitive tool for motor disorders. Amyotroph Lateral Scler Frontotemporal Degener (2015) 16:172–9. doi:10.3109/21678421.2015.1030430 Cerca con Google

153. David AS, Gillham RA. Neuropsychological study of motor neuron disease. Psychosomatics (1986) 27:441–5. doi:10.1016/S0033-3182(86)72673-X Cerca con Google

154. Kew JJM, Goldstein LH, Leigh PN, Abrahams S, Cosgrave N, Passingham RE, Frackowiak RSJ, Brooks DJ. The relationship between abnormalities of cognitive function and cerebral activation in amyotrophic lateral sclerosis: A neuropsychological and positron emission tomography study. Brain (1993) 116:1399–1423. doi:10.1093/brain/116.6.1399 Cerca con Google

155. Birbaumer N. Brain-computer-interface research: coming of age. Clin Neurophysiol (2006) 117:479–83. doi:10.1016/j.clinph.2005.11.002 Cerca con Google

156. Hedges D, Janis R, Mickelson S, Keith C, Bennett D, Brown BL. P300 Amplitude in Alzheimer’s Disease: A Meta-Analysis and Meta-Regression. Clin EEG Neurosci (2016) 47:48–55. doi:10.1177/1550059414550567 Cerca con Google

157. Lee M-S, Lee S-H, Moon E-O, Moon Y-J, Kim S, Kim S-H, Jung I-K. Neuropsychological correlates of the P300 in patients with Alzheimer’s disease. Prog Neuropsychopharmacol Biol Psychiatry (2013) 40:62–9. doi:10.1016/j.pnpbp.2012.08.009 Cerca con Google

158. Parra MA, Ascencio LL, Urquina HF, Manes F, Ibáñez AM. P300 and neuropsychological assessment in mild cognitive impairment and Alzheimer dementia. Front Neurol (2012) 3:172. doi:10.3389/fneur.2012.00172 Cerca con Google

159. Silva Lopes M da, Souza Melo A de, Nóbrega AC. Delayed latencies of auditory evoked potential P300 are associated with the severity of Parkinson’s disease in older patients. Arq Neuropsiquiatr (2014) 72:296–300. Cerca con Google

160. Solís-Vivanco R, Rodríguez-Violante M, Rodríguez-Agudelo Y, Schilmann A, Rodríguez-Ortiz U, Ricardo-Garcell J. The P3a wave: A reliable neurophysiological measure of Parkinson’s disease duration and severity. Clin Neurophysiol (2015) 126:2142–9. doi:10.1016/j.clinph.2014.12.024 Cerca con Google

161. Ivica N, Titlic M, Pavelin S. P300 wave changes in patients with multiple sclerosis. Acta Inform medica AIM J Soc Med Informatics Bosnia Herzegovina časopis Društva za Med Inform BiH (2013) 21:205–7. doi:10.5455/aim.2013.21.205-207 Cerca con Google

162. Sundgren M, Wahlin Å, Maurex L, Brismar T. Event related potential and response time give evidence for a physiological reserve in cognitive functioning in relapsing-remitting multiple sclerosis. J Neurol Sci (2015) 356:107–12. doi:10.1016/j.jns.2015.06.025 Cerca con Google

163. Murguialday AR, Hill J, Bensch M, Martens S, Halder S, Nijboer F, Schoelkopf B, Birbaumer N, Gharabaghi A. Transition from the locked in to the completely locked-in state: a physiological analysis. Clin Neurophysiol (2011) 122:925–33. doi:10.1016/j.clinph.2010.08.019 Cerca con Google

164. Nakajima Y, Imamura N. Relationships between attention effects and intensity effects on the cognitive N140 and P300 components of somatosensory ERPs. Clin Neurophysiol (2000) 111:1711–8 Cerca con Google

165. Satomi K, Horai T, Kinoshita Y, Wakazono A. Hemispheric asymmetry of event-related potentials in a patient with callosal disconnection syndrome: a comparison of auditory, visual and somatosensory modalities. Electroencephalogr Clin Neurophysiol (1995) 94:440–9 Cerca con Google

166. Lugo ZR, Rodriguez J, Lechner A, Ortner R, Gantner IS, Laureys S, Noirhomme Q, Guger C. A vibrotactile p300-based brain-computer interface for consciousness detection and communication. Clin EEG Neurosci (2014) 45:14–21. doi:10.1177/1550059413505533 Cerca con Google

167. Kaufmann T, Holz EM, Kübler A. Comparison of tactile, auditory, and visual modality for brain-computer interface use: a case study with a patient in the locked-in state. Front Neurosci (2013) 7:129. doi:10.3389/fnins.2013.00129 Cerca con Google

168. Ludolph AC, Brettschneider J, Weishaupt JH. Amyotrophic lateral sclerosis. Curr Opin Neurol (2012) 25:530–5. doi:10.1097/WCO.0b013e328356d328 Cerca con Google

169. Ross MA, Miller RG, Berchert L, Parry G, Barohn RJ, Armon C, Bryan WW, Petajan J, Stromatt S, Goodpasture J, et al. Toward earlier diagnosis of amyotrophic lateral sclerosis: revised criteria. rhCNTF ALS Study Group. Neurology (1998) 50:768–72. Cerca con Google

170. Cedarbaum JM, Stambler N, Malta E, Fuller C, Hilt D, Thurmond B, Nakanishi A. The ALSFRS-R: a revised ALS functional rating scale that incorporates assessments of respiratory function. BDNF ALS Study Group (Phase III). J Neurol Sci (1999) 169:13–21. Cerca con Google

171. American Psychiatric Association. Diagnostic and statistical manual of mental disorders: DSM-5 (5th ed.). Arlington, VA: American Psychiatric Publishing (2013). Cerca con Google

172. Raven JC. Guide to using the coloured progressive matrice: Sets A. Ab. B.1. London: H. K. Lewis (1965). Cerca con Google

173. SanioFancello G CC. Modified Card Sorting Test (MCST): Adattamento Italiano per L’età Evolutiva del Wisconsin Card Sorting Test. Firenze: Organizzazioni Speciali Cerca con Google

174. Wilson B, Cockburn J, Baddeley A. The Rivermead Behavioural Memory Test. (1985). doi:10.1177/107319119600300410 Cerca con Google

175. Luzzatti C, Willmes K DBR. Aachener Aphasie Test. Versione i. Florence: Organizzazioni Speciali (1991). Cerca con Google

176. Schalk G, McFarland DJ, Hinterberger T, Birbaumer N, Wolpaw JR. BCI2000: a general-purpose brain-computer interface (BCI) system. IEEE Trans Biomed Eng (2004) 51:1034–43. doi:10.1109/TBME.2004.827072 Cerca con Google

177. Wilson JA, Mellinger J, Schalk G, Williams J. A procedure for measuring latencies in brain-computer interfaces. IEEE Trans Biomed Eng (2010) 57:1785–97. doi:10.1109/TBME.2010.2047259 Cerca con Google

178. Holm A, Ranta-aho PO, Sallinen M, Karjalainen PA, Müller K. Relationship of P300 single-trial responses with reaction time and preceding stimulus sequence. Int J Psychophysiol (2006) 61:244–52. doi:10.1016/j.ijpsycho.2005.10.015 Cerca con Google

179. Schreuder M, Blankertz B, Tangermann M. A new auditory multi-class brain-computer interface paradigm: spatial hearing as an informative cue. PLoS One (2010) 5:e9813. doi:10.1371/journal.pone.0009813 Cerca con Google

180. Veit R, Konicar L, Klinzing JG, Barth B, Yilmaz O, Birbaumer N. Deficient fear conditioning in psychopathy as a function of interpersonal and affective disturbances. Front Hum Neurosci (2013) 7:706. doi:10.3389/fnhum.2013.00706 Cerca con Google

181. Spinnler H TG. Standardizzazione taratura italiana dei test neuropsicologici. Ital J Neurol Sci (1987) Suppl. 8:1–120. Cerca con Google

182. Mantovan MC, Baggio L, Dalla Barba G, Smith P, Pegoraro E, Soraru’ G, Bonometto P, Angelini C. Memory deficits and retrieval processes in ALS. Eur J Neurol (2003) 10:221–7. Cerca con Google

183. Kärgel C, Sartory G, Kariofillis D, Wiltfang J, Müller BW. Mismatch negativity latency and cognitive function in schizophrenia. PLoS One (2014) 9:e84536. doi:10.1371/journal.pone.0084536 Cerca con Google

184. Appel SH, Zhao W, Beers DR, Henkel JS. The microglial-motoneuron dialogue in ALS. Acta Myol myopathies cardiomyopathies Off J Mediterr Soc Myol (2011) 30:4–8. Cerca con Google

185. Strong MJ, Grace GM, Freedman M, Lomen-Hoerth C, Woolley S, Goldstein LH, Murphy J, Shoesmith C, Rosenfeld J, Leigh PN, et al. Consensus criteria for the diagnosis of frontotemporal cognitive and behavioural syndromes in amyotrophic lateral sclerosis. Amyotroph Lateral Scler (2009) 10:131–146. doi:Pii 907462414\rDoi 10.1080/17482960802654364 Cerca con Google

186. Raggi A, Iannaccone S, Cappa SF. Event-related brain potentials in amyotrophic lateral sclerosis: A review of the international literature. Amyotroph Lateral Scler (2010) 11:16–26. doi:10.3109/17482960902912399 Cerca con Google

187. Hammer A, Vielhaber S, Rodriguez-Fornells A, Mohammadi B, Münte TF. A neurophysiological analysis of working memory in amyotrophic lateral sclerosis. Brain Res (2011) 1421:90–9. doi:10.1016/j.brainres.2011.09.010 Cerca con Google

188. Westphal KP, Heinemann HA, Grözinger B, Kotchoubey BJ, Diekmann V, Becker W, Kornhuber HH. Bereitschaftspotential in amyotrophic lateral sclerosis (ALS): lower amplitudes in patients with hyperreflexia (spasticity). Acta Neurol Scand (1998) 98:15–21 Cerca con Google

189. Mannarelli D, Pauletti C, Locuratolo N, Vanacore N, Frasca V, Trebbastoni A, Inghilleri M, Fattapposta F. Attentional processing in bulbar- and spinal-onset amyotrophic lateral sclerosis: Insights from event-related potentials. Amyotroph Lateral Scler Front Degener (2014) 15:30–38. doi:10.3109/21678421.2013.787628 Cerca con Google

190. Escera C, Alho K, Winkler I, Näätänen R. Neural Mechanisms of Involuntary Attention to Acoustic Novelty and Change. J Cogn Neurosci (1998) 10:590–604. doi:10.1162/089892998562997 Cerca con Google

191. Näätänen R, Michie PT. Early selective-attention effects on the evoked potential: A critical review and reinterpretation. Biol Psychol (1979) 8:81–136. doi:10.1016/0301-0511(79)90053-X Cerca con Google

192. Donchin E, Coles MGH. Is the P300 component a manifestation of context updating? Behav Brain Sci (1988) 11:355–425. doi:10.1017/S0140525X00058027 Cerca con Google

193. Schröger E, Giard MH, Wolff C. Auditory distraction: event-related potential and behavioral indices. Clin Neurophysiol (2000) 111:1450–60. Cerca con Google

194. Nasreddine ZS, Phillips NA, Bédirian V, Charbonneau S, Whitehead V, Collin I, Cummings JL, Chertkow H. The Montreal Cognitive Assessment, MoCA: A Brief Screening Tool For Mild Cognitive Impairment. J Am Geriatr Soc (2005) 53:695–699. doi:10.1111/j.1532-5415.2005.53221.x Cerca con Google

195. Berti S, Schröger E. A comparison of auditory and visual distraction effects: behavioral and event-related indices. Cogn Brain Res (2001) 10:265–273. doi:10.1016/S0926-6410(00)00044-6 Cerca con Google

196. Berti S. Cognitive control after distraction: Event-related brain potentials (ERPs) dissociate between different processes of atten Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record