Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Dalcanale, Stefano (2017) Reliability analysis of GaN HEMT for space applications and switching converters based on advanced experimental techniques and two dimensional device simulations. [Ph.D. thesis]

Full text disponibile come:

[img]PDF Document
Thesis not accessible until 01 February 2020 for intellectual property related reasons.
Visibile to: nobody

14Mb

Abstract (english)

Gallium Nitride is a promising wide-bandgap material for electronics. With GaN based devices it is possible to achieve higher operative frequencies and power densities in comparison to Silicon. The first GaN-based High Electron Mobility Transistor (HEMT) has been designed in the 1995, and after twenty years this technology start to be ready to compete in the market with Silicon-based devices. There are several reason why it was necessary all this time to obtain a stable technology. Unlike Silicon, it is still not possible to grow a gallium nitride crystal starting from a seed, with reasonable quality dimensions and costs. Thus, itis necessary to grow it on different substrates, like Silicon Carbide, Sapphire
or Silicon. Therefore, the obtained crystals have a high defects concentration that limits the device performances. With the optimization of the process and the introduction suitable nucleation layer on the substrate it is now possible to grow GaN wafers with a tolerable defectivity. The main problems induced by the defects are trap states and reliability issues. The trap states generate problems during dynamic operation, inducing a drop in the output characteristics. In addition to this recoverable phenomena, the GaN-HEMTs can even present problem of reliability, that have been widely explored in the past. Nowadays, the estimated device life time of the last technologies allow to start the production of electronics both for consumer market than for the more demanding space applications.
Within this work it will be presented a summary of the research activity performed during my PhD. In the first part is presented a short summary of the state of the art of GaN-HEMT technology. In the last two years a lot of new results have been demonstrated in literature, showing the last technological improvements. Then, a short summary on the trapping phenomena and reliability issue is presented, that is fundamental to understand all the obtained results.
The research activities involved the two main GaN-based HEMTs applications: the RF devices and the power switching transistors. For the RF applications the transistor is used as an amplifier, in a frequency range from 1 GHz to 100 GHz.
The main applications are radar and telecommunications for mobile phone, radio and satellites. I collaborated in a project of the European Space Agency, with subject “Preliminary Validation of Space Compatible Foundry Processes”. They will be presented all the results of the reliability assessment carried out within this project. The purpose was to validate a GaN-HEMT technology for space applications, trying to estimate the device lifetime and the failure mechanisms. We will see that the two analysed technologies are very stable, and the estimated life time exceed the twenty years. Nevertheless, not all the failure mechanisms are clear, but we found some degradation signatures that can be related to the gate metallization.
On the side of power switching transistors I will report first the results obtained in a collaboration with ON Semiconductor on the development of d-mode MIS-HEMTs. Our role was to give a feedback on the device performance improvement, mainly focused on the on-resistance. It represents indeed one of the main problems of GaN-HEMT working in switching conditions and it is mainly related to trapping phenomena. Then, we developed a new original measurement procedure that allows to test the devices in a condition closer to the operative one. This new setup helps us to demonstrate the impressive stability of the last device generations. Now this technology is ready to work at 600 V in switching operation, with performances better than Silicon.
The second part about the power devices will report the work carried out during the period by the Ferdinand-Braun-Institut, Leibniz-Institut für Hochfrequenztechnik (FBH), in Berlin. The target was to investigate the reliability of the p-GaN devices developed by the research center by means of long term on-state life test. The gate leakage current is suspected to be one of the main problem for the reliability of this kind of device in on-state operation. However, there are not many works in literature that analyse this issue, and we will see how our test helps to consolidate one of the proposed degradation modes. Within this analysis it was fundamental the role of physical based simulations, for which is devoted a separated chapter. The simulations were very helpful for the understanding of the degradation mechanism. They allowed us to have a complete vision of the conduction mechanisms and of the device weakness. In this way we can give fundamental information to the device developers, in particular which device regions need to be improved.

Abstract (italian)

Il nitruro di gallio è un promettente materiale a semiconduttore con ampio energy gap. Tramite dispositivi bastai su GaN è possibile raggiungere frequenze operative e densità di potenza maggiori in confronto al silicio. Il primo transistor HEMT (High Electron Mobility Transistor) basato su GaN è stato sviluppato nel 1995, e dopo vent'anni questa tecnologia inizia ad essere pronta a competere sul mercato con dispositivi basati su silicio. Ci sono diversi motivi per cui è servito del tempo per ottenere una tecnologia stabile. A differenza del silicio, non è possibile crescere cristalli di nitruro di gallio partendo da un seme, non almeno con costi, qualità e dimensioni ragionevoli. Perciò è necessario crescere il nitruro di gallio su substrati diversi, come il carburo di silicio, lo zaffiro o il silicio. Perciò, i cristalli ottenuti hanno una concentrazione di difetti che limita le prestazioni dei dispositivi. Con l'ottimizzazione del processo e l'introduzione di un adeguato strato di transizione, detto nucleation layer, è possibile ottenere dei wafer con una difettività tollerabile. Il problema principale introdotto dai difetti sono gli stati trappola e questioni di affidabilità. Gli stati trappola danno problemi durante il funzionamento dei transistor, creando un calo temporaneo della caratteristica di uscita. Oltre a questo fenomeno temporaneo gli HEMT basati su GaN presentano problemi di affidabilità, ampiamente studiati in passato. Al giorno d'oggi il tempo di vita medio stimato delle ultime generazioni di transistor permette la produzione di dispositivi elettronici sia per il settore commerciale che per applicazioni spaziali.
In questo lavoro sarà presentato un riassunto delle attività di ricerca svolte durante il dottorato. Nella prima parte è presentato un riepilogo dello stato dell'arte della tecnologia GaN-HEMT. Negli ultimi due anni in letteratura sono stati dimostrati nuovi risultati, rivelando un notevole miglioramento tecnologico. Verrà poi presentato un breve riassunto sui fenomeni di trapping e sull'affidabilità, che risulterà fondamentale per comprendere al meglio i risultati ottenuti.
Le attività di ricerca hanno coinvolto le due applicazioni principali dei transistor GaN-HEMT: i dispositivi RF e i transistor di potenza. Per applicazioni RF il transistor è usato come amplificatore, in un range di frequenze tra 1 GHz e 100 GHz. Le applicazioni principali sono radar e telecomunicazioni per telefonia mobile, radio e satellitare. Ho collaborato in un progetto dell'Agenzia Spaziale Europea dal titolo: “Preliminary Validation of Space Compatible Foundry Processes”. Verranno presentati i risultati della valutazione dell'affidabilità svolta in questo progetto. Lo scopo era di validare la tecnologia GaN-HEMT per applicazioni spaziali, provando a stimare il tempo di vita dei dispositivi e i meccanismi di guasto. Vedremo come la tecnologia analizzata sia stabile, con un tempo di vita stimato che oltrepassa i vent'anni. Ciò nonostante, non sono ancora chiari tutti i meccanismi di guasto, ma è stata trovata qualche caratteristica tipica del degrado legata alla metallizzazione di gate.
Dal lato dei transistor di potenza verranno riportati prima i risultati ottenuti nella collaborazione con ON Semiconductor, nello sviluppo di dispositivi MISHEMT normally-on. Il nostro ruolo era di dare un feedback all'azienda riguardo alle performance dei dispositivi, in particolare in termini di resistenza in on-state. Questo rappresenta infatti uno dei problemi maggiori dei transistor GaNHEMT che lavorano in condizioni switching ed è dovuto a fenomeni di trapping. Poi, è stato sviluppata una nuova procedura di misura che permette di testare i dispositivi in condizione vicine a quelle operative. Questo nuovo setup è stato d'aiuto per dimostrare l'eccezionale stabilità delle ultime generazioni di transistor. Ora questa tecnologia è pronta per lavorare a 600 V con prestazioni migliori di quelle del silicio.
La seconda parte relativa ai dispositivi di potenza parlerà del lavoro svolto presso il Ferdinand-Braun-Institut, Leibniz-Institut für Hochfrequenztechnik (FBH), a Berlino. L'obiettivo principale era quello di investigare l'affidabilità dei dispositivi p-GaN sviluppati presso il centro di ricerca, tramite stress in on-state a lungo termine. La corrente di leakage di gate è sospettata di essere uno dei problemi principali per l'affidabilità di questo tipo di dispositivi in on-state. Tuttavia, non ci sono tanti lavori in letteratura che analizzano il problema, e si vedrà come i test svolti aiutano a consolidare uno dei modelli proposti. In questa analisi è stato fondamentale il ruolo delle simulazioni, a cui è stato riservato un capitolo a parte. Le simulazioni sono state di grande aiuto nella comprensione dei meccanismi di guasto e hanno permesso di avere una visione completa dei meccanismi di conduzione e dei punti deboli del dispositivo. In questo modo possono essere date informazioni essenziali a chi sviluppa i transistor, in particolare quali sono le regioni del dispositivo che andrebbero migliorate.

Aggiungi a RefWorks
EPrint type:Ph.D. thesis
Tutor:Zanoni, Enrico
Ph.D. course:Ciclo 29 > Corsi 29 > INGEGNERIA DELL'INFORMAZIONE
Data di deposito della tesi:11 January 2017
Anno di Pubblicazione:11 January 2017
Key Words:Gallium Nitride, HEMT, Power Amplifier, Trapping, Deep Levels, Reliability, Simulations
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-INF/01 Elettronica
Struttura di riferimento:Dipartimenti > Dipartimento di Ingegneria dell'Informazione
Codice ID:9827
Depositato il:17 Nov 2017 08:43
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] U.K. Mishra, L. Shen, T.E. Kazior, and Y.-F. Wu, “GaN-based rf power devices Cerca con Google

and amplifiers,” Proceedings of the IEEE, vol. 96, no. 2, pp. 287-305, 2008. Cerca con Google

[2] http://www.io_e.rssi.ru/SVA/NSM/Semicond/GaN/bandstr.html. (St. Petersburg Vai! Cerca con Google

Polytechnic University). Cerca con Google

[3] O. Ambacher, J. Smart, J.R. Shealy, N.G. Weimann, K. Chu, M. Murphy, Cerca con Google

W.J. Schaff, L.F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, Cerca con Google

and J. Hilsenbeck, “Two-dimensional electron gases induced by spontaneous and Cerca con Google

piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” Cerca con Google

Journal of Applied Physics, vol. 6, no. 85, pp. 3222-3233, 1999. Cerca con Google

[4] S.M. Sze and K. K. Ng, Physiscs of Semiconductor Devices. John Wiley & Sons, Cerca con Google

3rd ed., 2006. Cerca con Google

[5] O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, Cerca con Google

A. J. Sierakowski, W. J. Schaff, L. F. Eastman, R. Dimitrov, A. Mitchell, Cerca con Google

and M. Stutzmann, “Two-dimensional electron gases induced by spontaneous and Cerca con Google

piezoelectric polarization in undoped and doped AlGaN/GaN heterostructure,” Cerca con Google

Journal of Applied Physics, vol. 1, no. 87, pp. 334-344, 2000. Cerca con Google

[6] U.K. Mishra and J. Singh, Semiconductor Devices Physics and Design. Springer, Cerca con Google

2008. Cerca con Google

[7] J. Ibbetson, P. Fini, K. Ness, J.S.S. Den Baars, and U.K. Mishra, “Polarization Cerca con Google

effects, surface states and the source of electrons in AlGaN/GaN heterostructure Cerca con Google

field effect transistors,” Applied Physics Letters, vol. 77, no. 2, pp. 250-252, 2000. Cerca con Google

[8] S. Rajan, A. Chini, M.H. Wong, J.S. Speck, and U.K. Mishra, “N-polar Cerca con Google

GaN/AlGaN/GaN high electron mobility transistors,” Journal of Applied Physics, Cerca con Google

vol. 4, no. 102, p. 044501, 2007. Cerca con Google

[9] G. Ghione, Semiconductor Devices for High Speed Optolectronics. Cambridge Cerca con Google

University Press, 2009. Cerca con Google

[10] K. Shinohara, D. Regan, A. Corrion, D. Brown, S. Burnham, P. J.Willadsen, Cerca con Google

I. Alvarado-Rodriguez, M. Cunningham, C. Butler, A. Schmitz, S. Kim, Cerca con Google

B. Holden, D. Chang, V. Lee, A. Ohoka, P. M. Asbeck, and M. Micovic, “Deeply scaled Cerca con Google

self-aligned-gate GaN DH-HEMTs with ultrahigh cuto_ frequency,” in Cerca con Google

IEEE International Electron Device Meeting, pp. 453-456, 2011. Cerca con Google

[11] J. Guo, G. Li, F. Faria, Y. Cao, R. Wang, J. Verma, X. Gao, S. Guo, E. Beam, Cerca con Google

A. Ketterson, M. Schuette, P. Saunier, M. Wistey, D. Jena, and H. Xing, “MBE regrown Cerca con Google

ohmics in InAlN HEMTs with a regrowth interface resistance of 0.05 Cerca con Google

W-mm,” IEEE Electron Device Letters, vol. 33, no. 4, pp. 525-527, 2012. Cerca con Google

[12] I.P. Smorchkova, S. Keller, S. Heikman, C.R. Elsass, B. Heying, P. Fini, Cerca con Google

J.S. Speck, and U.K. Mishra, “Two-dimensional electron-gas AlN/GaN heterostructures Cerca con Google

with extremely thin AlN barriers,” Apply Physics Letters, vol. 77, Cerca con Google

no. 24, pp. 3998-4000, 2000. Cerca con Google

[13] H. Sun, A.R. Alt, H. Benedickter, E. Feltin, J.-F. Carlin, M. Gonschorek, Cerca con Google

N. Grandjean, and C. R. Bolognesi, “205-GHz (Al,In)N/GaN HEMTs,” IEEE Cerca con Google

Electron Device Letters, vol. 31, no. 9, pp. 957-959, 2010. Cerca con Google

[14] T. Palacios, A. Chakraborty, S. Heikman, S. Keller, S.P. Den Baars, and Cerca con Google

U.K. Mishra, “AlGaN/GaN high electron mobility transistors with InGaN backbarriers,” IEEE Electron Device Letters, vol. 27, no. 1, pp. 13-15, 2006. Cerca con Google

[15] Nidhi, S. Dasgupta, D. F. Brown, S. Keller, J.S. Speck, and U.K. Mishra, “N-polar Cerca con Google

GaN-based highly scaled self-aligned MISHEMTs with state-of-the-art fT LG product Cerca con Google

of 16.8 GHz-μm,” in IEEE International Electron Device Meeting, pp. 955-957, 2009. Cerca con Google

[16] Y.Won, J. Cho, D. Agonafer, M. Asheghi, and K. E. Goodson, “Cooling Limits for Cerca con Google

GaN HEMT Technology,” in IEEE Compound Semiconductor Integrated Circuit Cerca con Google

Symposium, 2013. Cerca con Google

[17] A. Darwish, Andrew J. Bayba, and H. A. Hung, “Channel Temperature Analysis Cerca con Google

of GaN HEMTs With Nonlinear Thermal Conductivity,” IEEE Transactions on Cerca con Google

Electron Devices, vol. 62, no. 3, pp. 840-846, 2015. Cerca con Google

[18] J. Cho, E. Bozorg-Grayeli, D. H. Altman, M. Asheghi, and K. E. Goodson, “Low Cerca con Google

thermal resistances at GaN-SiC interfaces for HEMT technology,” IEEE Electron Cerca con Google

Device Letters, vol. 33, no. 3, pp. 378-380, 2012. Cerca con Google

[19] D. Marcon, J. Viaene, F. Vanaverbeke, X. Kang, S. Lenci, S. Stoffels, R. Venegas, Cerca con Google

P. Srivastava, and S. Decoutere, “GAN-on-Si HEMTs for 50V RF Applications,” Cerca con Google

in European Microwave Integrated Circuits Conference, 2012. Cerca con Google

[20] D.C. Dumka, T.M. Chou, J.L. Jimenez, D.M. Fanning, D. Francisa, F. Failia, Cerca con Google

F. Ejeckama, M. Bernardonib, J.W. Pomeroyb, and M. Kuballb, “Electrical and Cerca con Google

Thermal Performance of AlGaN/GaN HEMTs on Diamond Substrate for RF Cerca con Google

Applications,” in IEEE Compound Semiconductor Integrated Circuit Symposium, Cerca con Google

2013. Cerca con Google

[21] Y.-F. Wu, A. Saxler, M. Moore, R. P. Smith, S. Sheppard, P. M. Chavarkar, Cerca con Google

T. Wisleder, U. K. Mishra, and P. Parikh, “30-W/mm GaN HEMTs by Field Cerca con Google

Plate Optimization,” IEEE Electron Device Letters, vol. 25, no. 3, pp. 117-119, Cerca con Google

2004. Cerca con Google

[22] J. Custer, G. Formicone, and J. L.B.Walker, “Recent Advances in kW-level Pulsed Cerca con Google

GaN Transistors with Very High Efficiency,” in International Conference on Microwave, Radar and Wireless Communications, 2016. Cerca con Google

[23] O. Jardel, M. Olivier, D. Lancereau, R. Aubry, E. Chartier, N. Sarazin, M.-A. Cerca con Google

Di Forte Poisson, S. Piotrowicz, M. Stanislawiak, D. Rimbert, S.L. Delage, P. Cerca con Google

Eudeline, “A 30W, 46% PAE S-band GaN HEMT MMIC power amplifier for Cerca con Google

radar applications,” in European Microwave Conference, pp. 1019-1022, 2012. Cerca con Google

[24] Y. Lu, B.C. Zhao, J.X. Zheng, H.S. Zhang, X.F. Zheng, X.H. Ma, Y. Hao and Cerca con Google

P.J. Ma, “A high efficiency C-band internally-matched harmonic tuning GaN Cerca con Google

power amplifier,” Solid-State Electronics, vol. 123, pp. 96-100, 2016. Cerca con Google

[25] M-S. Lee, D. Kim, S. Eom, H-Y. Cha, and K.-S. Seo, “A Compact 30-W Al- Cerca con Google

GaN/GaN HEMTs on Silicon Substrate With Output Power Density of 8.1 W/mm Cerca con Google

at 8 GHz,” IEEE Electron Device Letters, vol. 35, no. 10, pp. 995-997, 2014. Cerca con Google

[26] Y. Kobayashi, S. Kawasaki, “X-band, 15-W-class, highly efficient deep-space GaN Cerca con Google

SSPA for PROCYON mission,” IEEE Transactions on Aerospace and Electronic Cerca con Google

Systems, vol. 3, no. 52, pp. 1340-1351, 2016. Cerca con Google

[27] A. Barnes, “Development of Gallium Nitride technology for future ESA missions, Cerca con Google

current status and next steps,” in Workshop on Compound Semiconductor Devices Cerca con Google

and Integrated Circuits, 2016. Cerca con Google

[28] C. Friesicke, P. Feuerschütz, R. Quay, O. Ambacher, A. F. Jacob, “A 40 dBm Cerca con Google

AlGaN/GaN HEMT power amplifier MMIC for SatCom applications at K-band,” Cerca con Google

in IEEE MTT-S International Microwave Symposium, 2016. Cerca con Google

[29] M. Mikulla, A. Leuther, P. Brückner, D. Schwantuschke, A. Tessmann, Cerca con Google

M. Schlechtweg, O. Ambacher, and M. Caris, “High-speed technologies based Cerca con Google

on III-V compound semiconductors at Fraunhofer IAF,” in European Microwave Cerca con Google

Integrated Circuits Conference, pp. 169-171, 2013. Cerca con Google

[30] Y. Niida, Y. Kamada, T. Ohki, S. Ozaki, K. Makiyama, Y. Minoura, N. Okamoto, Cerca con Google

M. Sato, K. Joshin, and K. Watanab, “3.6 W/mm High Power Density W-band Cerca con Google

InAlGaN/GaN HEMT MMIC Power Amplifier,” in IEEE Topical Conference on Cerca con Google

Power Amplifiers for Wireless and Radio Applications, pp. 24-26, 2016. Cerca con Google

[31] D. Marti, L. Lugani, J-F. Carlin, M. Malinverni, N. Grandjean, and C.R. Bolognesi, Cerca con Google

“W-Band MMIC Ampli_ers Based on AlInN/GaN HEMTs Grown on Silicon,” IEEE Electron Device Letters, vol. 37, no. 8, pp. 1025-1028, 2016. Cerca con Google

[32] Y. Tang, K. Shinohara, D. Regan, A. Corrion, D. Brown, J. Wong, A. Schmitz, Cerca con Google

H. Fung, S. Kim, and M. Micovic, “Ultrahigh-Speed GaN High-Electron-Mobility Cerca con Google

Transistors With fT /fmax of 454/444 GHz,” IEEE Electron Device Letters, vol. 36, Cerca con Google

no. 6, pp. 549-551, 2015. Cerca con Google

[33] P. Moens, C. Liu, A. Banerjee, P. Vanmeerbeek, P. Coppens, H. Ziad, A. Constant, Cerca con Google

Z. Li, H. De Vleeschouwer, J. Roig-Guitart, P. Gassot, F. Bauwens, E. De Backer, Cerca con Google

B. Padmanabhan, A. Salih, J. Parsey, and M. Tack, “An Industrial Process for Cerca con Google

650V rated GaN-on-Si Power Devices using in-situ SiN as a Gate Dielectric,” in Cerca con Google

IEEE International Symposium on Power Semiconductor Devices & IC's, pp. 374-377, 2014. Cerca con Google

[34] Z. Zhang, G. Yu, X. Zhang, X. Deng, S. Li, Y. Fan, S. Sun, L. Song, S. Tan, Cerca con Google

D. Wu, W. Li, W. Huang, K. Fu, Y. Cai, Q. Sun, and B. Zhang, “Studies on Cerca con Google

High-Voltage GaN-on-Si MIS-HEMTs Using LPCVD Si3N4 as Gate Dielectric Cerca con Google

and Passivation Layer,” IEEE Transactions on Electron Devices, vol. 63, no. 2, Cerca con Google

pp. 730-738, 2016. Cerca con Google

[35] M. Ishida, T. Ueda, T. Tanaka, and D. Ueda, “GaN on Si Technologies for Power Cerca con Google

Switching Devices,” IEEE Transactions on Electron Devices, vol. 60, no. 10, Cerca con Google

pp. 3053-3059, 2013. Cerca con Google

[36] O. Hilt, E. Bahat-Treidel, F. Brunner, A. Knauer, R. Zhytnytska, P. Kotara, and Cerca con Google

J. Würfl, “Normally-off GaN Transistors for Power Switching Applications,” ECS Cerca con Google

Transactions, vol. 58, no. 4, pp. 145-154, 2013. Cerca con Google

[37] E. A. Jones, F. Wang, and B. Ozpineci, “Application-Based Review of GaN Cerca con Google

HFETs,” in IEEE Workshop on Wide Bandgap Power Devices and Applications, Cerca con Google

pp. 24-29, 2014. Cerca con Google

[38] H. Nie, Q. Diduck, B. Alvarez, A. P. Edwards, B. M. Kayes, M. Zhang, G. Ye, Cerca con Google

T. Prunty, D. Bour, and I. C. Kizilyalli, “1.5-kV and 2.2-mΩ-cm2 Vertical GaN Cerca con Google

Transistors on Bulk-GaN Substrates,” IEEE Electron Device Letters, vol. 35, no. 9, Cerca con Google

pp. 939-941, 2014. Cerca con Google

[39] Y. Uemoto, M. Hikita, H. Ueno, H. Matsuo, H. Ishida, M. Yanagihara, T. Ueda, Cerca con Google

T. Tanaka, and D. Ueda, “Gate Injection Transistor (GIT) - A Normally-Off Al- Cerca con Google

GaN/GaN Power Transistor Using Conductivity Modulation,” IEEE Transactions Cerca con Google

on Electron Devices, vol. 54, no. 12, pp. 3393-3399, 2007. Cerca con Google

[40] I. Rossetto, M. Meneghini, O. Hilt, E. Bahat-Treidel, C. De Santi, S. Dalcanale, Cerca con Google

J. Würfl, E. Zanoni and G. Meneghesso, “Time-Dependent Failure of GaN-on Si Power HEMTs With p-GaN Gate,” IEEE Transactions on Electron Devices, vol. 63, no. 6, pp. 2334-2339, 2016. Cerca con Google

[41] J-H. Lin, S-J. Huang, C-H. Lai, and Y-K. Su, “Normally-off AlGaN/GaN high electron- Cerca con Google

mobility transistor on Si(111) by recessed gate and fluorine plasma treatment,” Japanese Journal of Applied Physics, vol. 55, pp. 01AD05/1-4, 2016. Cerca con Google

[42] T.J. Anderson, M.J. Tadjer, M.A. Mastro, J.K. Hite, K.D. Hobart, C.R. Eddy, and Cerca con Google

F.J. Kub, “Characterization of Recessed-Gate AlGaN/GaN HEMTs as a Function Cerca con Google

of Etch Depth,” Journal of Electronic Materials, vol. 36, no. 5, pp. 478-481, 2010. Cerca con Google

[43] R. Chu, B. Hughes, M. Chen, D. Brown, R. Li, S. Khalil, D. Zehnder, S. Chen, Cerca con Google

A. Williams, A. Garrido, M. Musni and K. Boutros, “Normally-Off GaN-on-Si Cerca con Google

transistors enabling nanosecond power switching at one kilowatt,” in Annual Device Research Conference, pp. 23-26, 2013. Cerca con Google

[44] N. Ikeda, R. Tamura, T. Kokawa, H. Kambayashi, Y. Sato, T. Nomura and Cerca con Google

S. Kato, _Over 1.7 kV normally-o_ GaN hybrid MOS-HFETs with a lower on resistance Cerca con Google

on a Si substrate,_ in IEEE International Symposium on Power Semi- Cerca con Google

conductor Devices & IC's, pp. 284-287, 2011. Cerca con Google

[45] Z. Zhang, G. Yu, X. Zhang, X. Deng, S. Li, Y. Fan, S. Sun, L. Song, S. Tan, Cerca con Google

D. Wu, W. Li, W. Huang, K. Fu, Y. Cai, Q. Sun, and B. Zhang, „W. Zhang, Cerca con Google

X. Huang, Z. Liu, F. C. Lee, S. She, W. Du, and Q. Li,” IEEE Transactions on Cerca con Google

Power Electronics, vol. 31, no. 2, pp. 1344-1353, 2016. Cerca con Google

[46] H-Y. Wu, M-C. Lin, N-Y. Yang, C.T. Tsai, C.B. Wu, Y.S. Lin, Y.C. Chang, Cerca con Google

P.C. Chen, K.Y. Wong, M. H. Kwan, C.Y. Chan, F.W. Yao, M.W. Tsai, C.L. Cerca con Google

Yeh, R.Y. Su, J.L. Yu, F.J. Yang, J.L. Tsai, H.C. Tuan, and A. Kalnitsky, „GaN Cerca con Google

Cascode Performance Optimization for High Efficient Power Applications,” in Cerca con Google

IEEE International Symposium on Power Semiconductor Devices & IC's,pp. 255-258, 2016. Cerca con Google

[47] M. Meneghini, I. Rossetto, D. Bisi, M. Ruzzarin, M. Van Hove, S. Stoffels, TL. Cerca con Google

Wu, D. Marcon, S. Decoutere, G. Meneghesso, and E. Zanoni, “Negative Bias- Cerca con Google

Induced Threshold Voltage Instability in GaN-on-Si Power HEMTs,” IEEE Electron Device Letters, vol. 37, no. 4, pp. 474-477, 2016. Cerca con Google

[48] N. Ronchi, B. De Jaeger, M. Van Hove, R. Roelofs, T-L. Wu, J. Hu, X. Kang, and Cerca con Google

S. Decoutere, “Combined plasma-enhanced-atomic-layer-deposition gate dielectric Cerca con Google

and in situ SiN cap layer for reduced threshold voltage shift and dynamic ON resistance Cerca con Google

dispersion of AlGaN/GaN high electron mobility transistors on 200mm Cerca con Google

Si substrates,” Japanese Journal of Applied Physics, vol. 54, pp. 04DF02/1-4,2015. Cerca con Google

[49] S. Huang, X. Liu, K. Wei, G. Liu, X. Wang, B. Sun, X. Yang, B. Shen, Cerca con Google

C. Liu, S. Liu, M. Hua, S. Yang, and K. J. Chen, _O3-sourced atomic layer Cerca con Google

deposition of high quality Al2O3 gate dielectric for normally-off GaN metalinsulator- Cerca con Google

semiconductor high-electron-mobility transistors,” Applied Pyhisics Let- Cerca con Google

ters, vol. 106, no. 3, p. 033507, 2015. Cerca con Google

[50] E. Bahat-Treidel, F. Brunner, O. Hilt, E. Cho, J. Würfl, and G. Tränkle, “Al- Cerca con Google

GaN/GaN/GaN:C Back-Barrier HFETs With Breakdown Voltage of Over 1 kV Cerca con Google

and Low RON × A,” IEEE Transactions on Electron Devices, vol. 57, no. 11, Cerca con Google

pp. 3050-3058, 2010. Cerca con Google

[51] Y. Baltynov, V. Unni, E. M. S. Narayanan, “The world's first high voltage Cerca con Google

GaN-on-Diamond power semiconductor devices,” Solid-State Electronics, vol. 125, Cerca con Google

pp. 111-117, 2016. Cerca con Google

[52] O. Hilt, R. Zhytnytska, J. Böcker, E. Bahat-Treidel, F. Brunner, A. Knauer, Cerca con Google

S. Dieckerhoff and J. Würfl, “70 mΩ / 600 V Normally-o_ GaN Transistors on SiC Cerca con Google

and Si Substrates,” in IEEE International Symposium on Power Semiconductor Cerca con Google

Devices & IC's, pp. 237-240, 2015. Cerca con Google

[53] P. Moens, A. Banerjee, P. Coppens, F. Declercq and M. Tack, “AlGaN/GaN Power Cerca con Google

Device Technology for High Current (100+ A) and High Voltage (1.2 kV),” in Cerca con Google

IEEE International Symposium on Power Semiconductor Devices & IC's, pp. 455-458, 2016. Cerca con Google

[54] R. Ramachandran and M. Nymand, “A 98.8% efficient bidirectional full-bridge Cerca con Google

isolated dc-dc GaN converter,” in IEEE Applied Power Electronics Conference Cerca con Google

and Exposition, pp. 609.-614, 2016. Cerca con Google

[55] Y. Lei, C. Barth, S. Qin, W-C. Liu, I. Moon, A. Stillwell, D. Chou, T. Foulkes, Cerca con Google

Z. Ye, Z. Liao and R. C. N. Pilawa-Podgurski, “A 2 kW, Single-Phase, 7-Level, Cerca con Google

GaN Inverter with an Active Energy Buffer Achieving 216 W/in3 Power Density and Cerca con Google

97.6% Peak Efficiency,” in IEEE Applied Power Electronics Conference Cerca con Google

and Exposition, pp. 1512-1519, 2016. Cerca con Google

[56] S.C. Binari, P. Klein, and T.E. Kazior, “Trapping effects in GaN and SiC microwave Cerca con Google

FETs,” Proceedings of the IEEE, vol. 90, no. 6, pp. 1048-1058, 2002. Cerca con Google

[57] R. Vetury, N.Q. Zhang, S. Keller, and U.K. Mishra, “The Impact of Surface States Cerca con Google

on the DC and RF Characteristics of AlGaN/GaN HFETs,” IEEE Transaction Cerca con Google

on Electron Devices, vol. 48, pp. 560-566, March 2001. Cerca con Google

[58] G. Meneghesso, G. Verzellesi, R. Pierobon, F. Rampazzo, A. Chini, U.K. Mishra, Cerca con Google

C. Canali, and E. Zanoni, “Surface-Related Drain Current Dispersion Effects in Cerca con Google

AlGaN/GaN HEMTs,” IEEE Transactions on Electron Devices, vol. 51, no. 1, Cerca con Google

pp. 1554-1561, 2004. Cerca con Google

[59] T. Oku, Y. Kamo and M. Totsuka, “AlGaN/GaN HEMTs passivated by Cat-CVD Cerca con Google

SiN Film,” Thin Solid Films, vol. 516, pp. 545-547, 2008. Cerca con Google

[60] K. Horio, A. Nakajima and K. Itagaki, “Analysis of field-plate effects on buffer related Cerca con Google

lag phenomena and current collapse in GaN MESFETs and AlGaN/GaN Cerca con Google

HEMTs,” Semiconductor Science and Technology, vol. 24, pp. 1-7, 2009. Cerca con Google

[61] N. Ronchi, “Characterization and comparison of AlGaN/GaN HEMTs grown on Cerca con Google

different hybrid substrates,” Master's thesis, University of Padova, June 2008. Cerca con Google

[62] C. Zhou, Q. Jiang, S. Huang, and K. J. Chen, “Vertical Leakage/Breakdown Mechanisms Cerca con Google

in AlGaN/GaN-on-Si Devices,” IEEE Electron Device Letters, vol. 33, Cerca con Google

no. 8, pp. 1132-1134, 2012. Cerca con Google

[63] G. Meneghesso, M. Meneghini, D. Bisi, I. Rossetto, A. Cester, U. K. Mishra, Cerca con Google

and E. Zanoni, “Trapping phenomena in AlGaN/GaN HEMTs: a study based Cerca con Google

on pulsed and transient measurements,” Semiconductor Science and Technology, Cerca con Google

vol. 28, pp. 1-8, 2013. Cerca con Google

[64] D.V. Lang, “Deeplevel transient spectroscopy: A new method to characterize Cerca con Google

traps in semiconductors,” Journal of Applied Physics, vol. 45, no. 7, pp. 3023-3032, 1974. Cerca con Google

[65] D. Bisi, M. Meneghini, C. de Santi, A. Chini, M. Dammann, P. Brückner, Cerca con Google

M. Mikulla, G. Meneghesso, and E. Zanoni, “Deep-Level Characterization in GaN Cerca con Google

HEMTs-Part I: Advantages and Limitations of Drain Current Transient Measurements,” IEEE Transactions on Electron Devices, vol. 60, no. 10, pp. 3166-3175, 2013. Cerca con Google

[66] A. Benvegnù, S. Laurent, M. Meneghini, D. Barataud, G. Meneghesso, E. Zanoni, Cerca con Google

and R. Quere, “On-wafer Singl Pulse Thermal Load-pull RF Characterization Cerca con Google

Trapping Phenomena in AlGaN/GaN HEMTs,” IEEE Transaction on Microwave Cerca con Google

Theory and Techniques, vol. 64, no. 3, pp. 767-775, 2016. Cerca con Google

[67] M. Meneghini, D. Bisi, D. Marcon, S. Stoffels, M. Van Hove, T-L. Wu, S. Decoutere, Cerca con Google

G. Meneghesso, and E. Zanoni, “Trapping and Reliability assessment in Cerca con Google

d-mode GaN-based MIS-HEMTs for Power Applications,” IEEE Transactions on Cerca con Google

Power Electronics, vol. 29, no. 5, pp. 2199-2207, 2014. Cerca con Google

[68] D. Bisi, M. Meneghini, F. A. Marino, D. Marcon, S. Stoffels, M. Van Hove, Cerca con Google

S. Decoutere, G. Meneghesso, and E. Zanoni, “Kinetics of Buffer-Related RON Increase Cerca con Google

in GaN-on-Silicon MIS-HEMTs,” IEEE Electron Device Letters, vol. 35, Cerca con Google

no. 10, pp. 1004-1006, 2014. Cerca con Google

[69] M. Meneghini, P. Vanmeerbeek, R. Silvestri, S. Dalcanale, A. Banerjee, D. Bisi, Cerca con Google

E. Zanoni, G. Meneghesso, and P. Moens, “Temperature-Dependent Dynamic RON in GaN-Based MIS-HEMTs: Role of Surface Traps and Buffer Leakage,” Cerca con Google

IEEE Transactions on Electron Devices, vol. 62, no. 3, pp. 782-787, 2015. Cerca con Google

[70] J. Joh, N. Tipirneni, S. Pendharkar, and S. Krishnan, “Current Collapse in GaN Cerca con Google

Heterojunction Field E_ect Transistors for High-voltage Switching Applications,” Cerca con Google

in IEEE International Reliability Physics Symposium, 2014. Cerca con Google

[71] G. Meneghesso, M. Meneghini, A. Stocco, D. Bisi, C. De Santi, I. Rossetto, Cerca con Google

A. Zanandrea, F. Rampazzo, E. Zanoni, “Degradation of AlGaN/GaN HEMT Cerca con Google

devices: Role of reverse-bias and hot electron stress,” Microelectronics Engineering, vol. 109, pp. 257-261, 2013. Cerca con Google

[72] D.A. Cullen, D. J. Smith, A. Passaseo, V. Tasco, A. Stocco, M. Meneghini, Cerca con Google

G. Meneghesso, and E. Zanoni, “Electroluminescence and Transmission Electron Cerca con Google

Microscopy Characterization of Reverse-Biased AlGaN/GaN Devices,” IEEE Cerca con Google

Transactions on Device and Materials Reliability, vol. 13, pp. 126-135, 2013. Cerca con Google

[73] J. Joh, F. Gao, T. Palacios, and J.A. del Alamo, “A model for the critical voltage Cerca con Google

for electrical degradation of GaN high electron mobility transistors,” Microelectronics Reliability, vol. 50, pp. 767-773, 2010. Cerca con Google

[74] M. Meneghini, A. Stocco, M. Bertin, D. Marcon, A. Chini, G. Meneghesso, and Cerca con Google

E. Zanoni, “Time-dependent degradation of AlGaN/GaN high electron mobility Cerca con Google

transistors under reverse bias,” Applied Physics Letters, vol. 100, no. 3, p. 033505,2012. Cerca con Google

[75] P. Makaram, J. Joh, J.A. del Alamo, T. Palacios, and C.V. Thompson, “Evolution Cerca con Google

of structural defects associated with electrical degradation in AlGaN/GaN high Cerca con Google

electron mobility transistors,” Applied Physics Letters, vol. 96, no. 23, p. 233509, 2010. Cerca con Google

[76] M. Meneghini, N. Ronchi, A. Stocco, G. Meneghesso, U.K. Mishra, Y. Pei, and Cerca con Google

E. Zanoni, “Investigation of Trapping and Hot-Electron Effects in GaN HEMTs Cerca con Google

by Means of a Combined Electrooptical Method,” IEEE Transactions on Electron Cerca con Google

Devices, vol. 58, no. 9, pp. 2996-3003, 2011. Cerca con Google

[77] G. Meneghesso, G. Verzellesi, F. Danesin, F. Rampazzo, F. Zanon, A. Tazzoli, Cerca con Google

M. Meneghini, and E. Zanoni, “Reliability of GaN High-Electron-Mobility Transistors: Cerca con Google

State of the Art and Perspectives,” IEEE Transactions on Device and Cerca con Google

Materials Reliability, vol. 8, no. 2, pp. 332-343, 2008. Cerca con Google

[78] M. Meneghini, A. Stocco, R. Silvestri, G. Meneghesso, and E. Zanoni, “Degradation Cerca con Google

of AlGaN/GaN high electron mobility transistors related to hot electrons,” Cerca con Google

Applied Physics Letters, vol. 100, no. 23, p. 233508, 2012. Cerca con Google

[79] Y. Puzyrev, S. Mukherjee, J. Chen, T. Roy, M. Silvestri, R.D. Schrimpf, Cerca con Google

D.M. Fleetwood, J. Singh, J.M. Hinckley, A. Paccagnella, and S.T. Pantelidesi, Cerca con Google

“Gate Bias Dependence of Defect-Mediated Hot-Carrier Degradation in GaN Cerca con Google

HEMTs,” IEEE Transactions on Electron Devices, vol. 61, no. 5, pp. 1316-1320, 2014. Cerca con Google

[80] F. Vitobello and A. R. Barnes, “Long duration high temperature storage test on Cerca con Google

GaN HEMTs,” in IEEE International Reliability Physics Simposium, 2012. Cerca con Google

[81] M. Zhao, X.Wang, X. Liu, J. Huang, Y. Zheng, and K.Wei, “Thermal Storage of Cerca con Google

AlGaN/GaN High-Electron-Mobility Transistors,” IEEE Transactions on Devices Cerca con Google

and Materials Reliability, vol. 10, no. 3, pp. 360-365, 2010. Cerca con Google

[82] M. Kuball, M. Tapajna, R.J.T. Simms, M. Faqir, and U.K. Mishra, “AlGaN/GaN Cerca con Google

HEMT device reliability and degradation evolution: Importance of diffusion processes,” Microelectronics Reliability, vol. 51, no. 2, pp. 195_200, 2011. Cerca con Google

[83] M. Tapajna, U.K. Mishra, and M. Kuball, “Importance of impurity diffusion for Cerca con Google

early stage degradation in AlGaN/GaNhigh electron mobility transistors upon Cerca con Google

electrical stress,” Applied Physics Letters, vol. 97, no. 2, p. 023503, 2010. Cerca con Google

[84] P. Lagger, P. Steinschifter, M. Reiner, M. Stadtmüller, G. Denifl, A. Naumann, Cerca con Google

J. Müller, L. Wilde, J. Sundqvist, D. Pogany, and C. Ostermaier, “Role of the Cerca con Google

dielectric for the charging dynamics of the dielectric/barrier interface in Al- Cerca con Google

GaN/GaN based metal-insulator-semiconductor structures under forward gate Cerca con Google

bias stress,” Applied Physics Letters, vol. 105, no. 3, p. 033512, 2014. Cerca con Google

[85] M. Meneghini, O. Hilt, C. Fleury, R. Silvestri, M. Capriotti, G. Strasser, Cerca con Google

D. Pogany, E. Bahat-Treidel, F. Brunner, A. Knauer, J.Würfl, I. Rossetto, Cerca con Google

E. Zanoni, G. Meneghesso, and S. Dalcanale, “Normally-off GaN-HEMTs with Cerca con Google

p-type gate: Off-state degradation, forward gate stress and ESD failure,” Micro- Cerca con Google

electronics Reliability, vol. 58, pp. 177-184, 2016. Cerca con Google

[86] K.V. Smith, J. Haller, J. Guerrero, R.P. Smith, R. Lal, and Y.-F. Wu, “Lifetime Cerca con Google

tests of 600-V GaN-on-Si power switches and HEMTs,” Microelectronics Reliability, vol. 58, Cerca con Google

pp. 197-203, 2016. Cerca con Google

[87] E. Bahat-Treidel, GaN-Based HEMTs for High Voltage Operation: Design, Technology and characterization. PhD thesis, Ferdinand-Braun-Institut Leibniz- Cerca con Google

Institut für Höchstfrequenztechnik, March 2012. Cerca con Google

[88] Silvaco, Inc., Atlas User Manual, Device Simulation Software, 2014. Cerca con Google

[89] G.K. Wachutka, “Rigorous thermodynamic treatment of heat generation and conduction Cerca con Google

in semiconductor device modeling,” IEEE Transactions on Computer- Cerca con Google

Aided Design of Integrated Circuits and Systems, vol. 9, no. 11, pp. 1141-1149, 1990. Cerca con Google

[90] I. Vurgaftman, J.R. Meyer and M. Ram, “Band parameters for III-V compound Cerca con Google

semiconductors and their alloys,” Journal of Applied Physics, vol. 89, no. 11, Cerca con Google

pp. 5815-5875, 2001. Cerca con Google

[91] J. Pripek, Semiconductor Optoelectronic Devices: Introduction to Physics and Cerca con Google

Simulation, pp. 13-48. UCSB: Academic Press, 2003. Cerca con Google

[92] S.L. Chuang and C.S. Chang, “k*p method for strained wurtzite semiconductors,” Cerca con Google

Physical Review B, vol. 32, no. 10, p. 2491, 1996. Cerca con Google

[93] M. Kumagai, S.L. Chuang, and H. Ando, “Analytical solutions of the block-diagonalized Cerca con Google

Hamiltonian for strained wurtzite semiconductors,” Physical Review Cerca con Google

B, vol. 57, no. 24, p. 15303, 1998. Cerca con Google

[94] G. Sabui, P.J. Parbrook, M. Arredondo-Arechavala, and Z.J. Shen, “Modeling and Cerca con Google

simulation of bulk gallium nitride power semiconductor devices,” AIP Advances, Cerca con Google

no. 6, p. 055006, 2016. Cerca con Google

[95] J.D. Albrecht, R.P. Wang, P.P. Ruden, M. Farahmand, and K.F. Brennan, “Electron Cerca con Google

transport characteristics of GaN for high temperature device modeling,” Cerca con Google

Journal of Applied Physics, vol. 83, no. 9, pp. 4777_4781, 1998. Cerca con Google

[96] P. Kozodoy, H. Xing, S.P. DenBaars, U.K. Mishra, A. Saxler, R. Perrin, S. Elhamri, Cerca con Google

and W.C. Mitchel, “Heavy doping effects in Mg-doped GaN,” Journal of Cerca con Google

Applied Physics, vol. 87, no. 4, pp. 1832-1835, 2000. Cerca con Google

[97] M. Farahmand, C. Garetto, E. Bellotti, K.F. Brennan, M. Goano, E. Ghillino, Cerca con Google

G. Ghione, J.D. Albrecht, and P.P. Ruden, “Monte Carlo Simulation of Electron Cerca con Google

Transport in the III-Nitride Wurtzite Phase Materials System: Binaries and Cerca con Google

Ternaries,” IEEE Transactions on Electron Devices, vol. 48, no. 3, pp. 535-542, 2001. Cerca con Google

[98] H. Morkoç, Handbook of Nitride Semiconductors and Devices, vol. 2: Electronic Cerca con Google

and Optical processes in Nitrides, pp. 132-135. WILEY-VCH, 2008. Cerca con Google

[99] J.A. Freitas, M. Gowda, J.G. Tischler, J.-H. Kim, L. Liu, and D. Hanser, “Semiinsulating Cerca con Google

GaN substrates for high-frequency device fabrication,” Journal of Crystal Growth, vol. 310, pp. 3968-3962, 2008. Cerca con Google

[100] G. Koley and M.G. Spencer, “Surface potential measurements on GaN and Al- Cerca con Google

GaN/GaN heterostructures by scanning Kelvin probe microscopy,” Journal of Cerca con Google

Applied Physics, vol. 90, no. 1, pp. 337-344, 2001. Cerca con Google

[101] R. Heitz, P. Maxim, L. Eckey, P. Thurian, A. Hoffmann, and I. Broser, “Excited Cerca con Google

states of Fe3+ in GaN,” Physical Review B, vol. 55, no. 7, pp. 4382_4387, 1997. Cerca con Google

[102] G.A. Umana-Membreno, G. Parish, N. Fichtenbaum, S. Keller, U.K. Mishra, Cerca con Google

and B.D. Nener, “Electrically Active Defects in GaN Layers Grown With and Cerca con Google

Without Fe-doped Buffers by Metal-organic Chemical Vapor Deposition,” Journal Cerca con Google

of electronic materials, vol. 37, no. 5, pp. 569-572, 2007. Cerca con Google

[103] P. Kordos, M. Morvic, J. Betko, and J. Novák, J. Flynn, and G. R. Brandes, Cerca con Google

“Conductivity and Hall effect of free-standing highly resistive epitaxial GaN:Fe Cerca con Google

substrates,” Applied Physics Letters, vol. 85, no. 23, pp. 5616-5618, 2004. Cerca con Google

[104] A.Y. Polyakov, N.B. Smirnov, A.V. Govorkov, T.G. Yugova, A. V. Markov, Cerca con Google

A.M. Dabiran, A.M. Wowchak, B. Cui, J. Xie, A.V. Osinsky, P.P. Chow, and Cerca con Google

S.J. Peartona, “Electrical properties of GaN(Fe) buffers for AlGaN/GaN high Cerca con Google

electron mobility transistor structures,” Applied Physics Letters, vol. 92, no. 4, Cerca con Google

p. 042110, 2008. Cerca con Google

[105] M. Silvestri, M.J. Uren, D. Marcon, and M. Kuball, “GaN Buffer Design: Cerca con Google

Electrical Characterization and prediction of the effect of deep level centers in Cerca con Google

GaN/AlGaN HEMTs,” in CS Mantech Conference, pp. 195_198, 2013. Cerca con Google

[106] J.W. Huang, T.F. Kuech, H. Lu and I. Bhat, “Electrical characterization of Mg-doped Cerca con Google

GaN grown by metalorganic vapor phase epitaxy,” Applied Physics Letters, Cerca con Google

vol. 68, no. 17, pp. 2392-2394, 1996. Cerca con Google

[107] Y. Nakano, T. Jimbo, ”Electrical characterization of acceptor levels in Mg-doped Cerca con Google

GaN,” Journal of Applied Physics, vol. 92, no. 9, pp. 5590_5592, 2002. Cerca con Google

[108] H.B. Michaelson, “The work function of the elements and its periodicity,” Journal Cerca con Google

of Applied Physics, vol. 48, no. 11, pp. 4729-4733, 1977. Cerca con Google

[109] J.-K. Ho, C.-S. Jong, C.C. Chiu, C.-N. Huang, K.-K. Shih, L.-C. Chen, F.- Cerca con Google

R. Chen, and J.-J. Kai, “Low-resistance ohmic contacts to p-type GaN achieved Cerca con Google

by the oxidation of Ni/Au films,” Journal of Applied Physics, vol. 89, no. 8, Cerca con Google

pp. 4491-4497, 1999. Cerca con Google

[110] J.-H. Bae, S. Hwang, J. Shin, H.-I. Kwon, C.H. Park, H. Choi, J.-B. Park, J. Kim, Cerca con Google

J. Ha, K. Park, J. Oh, J. Shin, U-I. Chung, K.-S. Seo, and J.-H. Lee, “Analysis Cerca con Google

of DC/Transient Current and RTN Behaviors Related to Traps in p-GaN Gate Cerca con Google

HEMT,” in IEEE International Electron Devices Meeting, 2013. Cerca con Google

[111] U. Honda, Y. Yamada, Y. Tokuda, and K. Shiojima, “Deep levels in n-GaN Cerca con Google

Doped with Carbon Studied by Deep Level and Minority Carrier Transient Spectroscopies,” Japanese Journal of Applied Physics, vol. 51, p. 04DF4, 2012. Cerca con Google

[112] A. Stocco, S. Gerardin, D. Bisi, S. Dalcanale, F. Rampazzo, M. Meneghini, Cerca con Google

G. Meneghesso, J. Grünenpütt, B. Lambert, H. Blanck, and E. Zanoni, “Proton Cerca con Google

induced trapping effect on space compatible GaN HEMTs,” Microelectronics Cerca con Google

Reliability, vol. 54, pp. 2213-2216, 2014. Cerca con Google

[113] F.D. Auret, S.A. Goodman, F.K. Koschnik, J.M. Spaeth, B. Beaumont, and Cerca con Google

P. Gibart, “Electrical characterization of two deep electron traps induced in epitaxially Cerca con Google

grown n-GaN during He-ion irradiation,” Applied Physics Letters, vol. 73, Cerca con Google

no. 25, pp. 3745_3747, 1998. Cerca con Google

[114] N.M. Shmidt, D.V. Davydov, V.V. Emtsev, I.L. Krestnikov, A.A. Lebedev, Cerca con Google

W.V. Lundin, D.S. Poloskin, A.V. Sakharov, A.S. Usikov, and A.V. Osinsky, “Effect Cerca con Google

of Annealing on Defects in As-Grown and γ-Ray Irradiated n-GaN Layers,” Cerca con Google

Physica Status Solidi (b), vol. 216, no. 533, pp. 533-536, 1999. Cerca con Google

[115] Z.-Q. Fang, L. Polenta, J.W. Hemsky, and D.C. Look, “Deep centers in as-grown Cerca con Google

and electron-irradiated n-GaN,” in IEEE International Semiconducting and Insulating Materials Conference, pp. 35-42, 2000. Cerca con Google

[116] A.R. Arehart, A. Sasikumar, G.D. Via, B. Poling, E.R. Heller, S.A. Ringel, “Evidence Cerca con Google

for causality between GaN RF HEMT degradation and the EC-0.57 eV trap Cerca con Google

in GaN,” Microelectronics Reliability, vol. 56, pp. 45-48, 2016. Cerca con Google

[117] A.R. Arehart, T. Homan, M.H. Wong, C. Poblenz, J.S. Speck, and S.A. Ringel, Cerca con Google

“Impact of N- and Ga-face polarity on the incorporation of deep levels in n-type Cerca con Google

GaN grown by molecular beam epitaxy,” Applied Physics Letters, vol. 96, no. 24, Cerca con Google

p. 242112, 2010. Cerca con Google

[118] M. Marso, M. Wolter, P. Javorka, P. Kordos, and H. Lüth, “Investigation of Cerca con Google

buffer traps in an AlGaN/GaN/Si high electron mobility transistor by backgating Cerca con Google

current deep level transient spectroscopy,” Applied Physics Letters, vol. 82, no. 4, Cerca con Google

pp. 633-635, 2003. Cerca con Google

[119] O. Mitrofanov and M. Manfra, “Mechanisms of gate lag in GaN/AlGaN/GaN Cerca con Google

high electron mobility transistors,” Superlattice Microstructures, vol. 34, pp. 33-53, 2003. Cerca con Google

[120] M. Tapajna, J.L. Jimenez, and M. Kuball, “On the discrimination between bulk Cerca con Google

and surface traps in AlGaN/GaN HEMTs from trapping characteristics,” Physica Cerca con Google

Status Solidi (a), vol. 2, no. 209, pp. 386-389, 2012. Cerca con Google

[121] P. Lagger, M. Reiner, D. Pogany, and C. Ostermaier, “Comprehensive study of Cerca con Google

the complex dynamics of forward bias-induced threshold voltage drifts in GaN Cerca con Google

based MIS-HEMTs by stress/recovery experiments,” IEEE Transactions on Electron Devices, Cerca con Google

vol. 61, no. 4, pp. 1022_1030, 2014. Cerca con Google

[122] A. Sasikumar, A.R. Arehart, D.W. Cardwell, C.M. Jackson, W. Sun, Z. Zhang, Cerca con Google

and S.A. Ringel, “Deep trap-induced dynamic on-resistance degradation in GaN on- Cerca con Google

Si power MISHEMTs,” Microelectronics Reliability, vol. 56, pp. 37-44, 2016. Cerca con Google

[123] D. Jin, J. Joh, S. Krishnan, N. Tipirneni, S. Pendharkar and J.A. del Alamo, Cerca con Google

“Total current collapse in High-Voltage GaN MIS-HEMTs induced by Zener trapping,” in IEEE International Electron Devices Meeting, 2013. Cerca con Google

[124] J. Kotani, M. Tajima, S. Kasai, and T. Hashizume, “Mechanism of surface conduction Cerca con Google

in the vicinity of Schottky gates on AlGaN/GaN heterostructures,” Applied Cerca con Google

Physics Letters, vol. 91, no. 9, p. 093501, 2007. Cerca con Google

[125] N.F. Mott and E.A. Davis, Electronic Process in Non-Crystalline Materials, p. 32. Cerca con Google

Clarendon, Oxford, 2nd ed., 1979. Cerca con Google

[126] F. Jiménez-Molinos, A. Palma, F. Gámiz, J. Banqueri, and J. A. López-Villanueva, “Physical model for trap-assisted inelastic tunneling in metal-oxide semiconductor structures,” Journal of Applied Physics, vol. 90, no. 7, pp. 3396-3404, 2001. Cerca con Google

[127] M. Herrmann and A. Schenk, “Field and high-temperature dependence of the long Cerca con Google

term charge loss in erasable programmable read only memories: Measurements Cerca con Google

and modeling,” Journal of Applied Physics, vol. 77, no. 9, pp. 4522-4540, 1995. Cerca con Google

[128] H. Zhang, E.J. Miller, and E.T. Yu, “Analysis of leakage current mechanisms Cerca con Google

in Schottky contacts to GaN and Al0.25Ga0.75N/GaN grown by molecular-beam Cerca con Google

epitaxy,” Journal of Applied Physics, vol. 99, no. 2, p. 023703, 2006. Cerca con Google

[129] D.N. Nath, Z.C. Yang, C.-Y. Lee, P.S. Park, Y.-R. Wu, and S. Rajan, “Unipolar Cerca con Google

vertical transport in GaN/AlGaN/GaN heterostructures,” Applied Physics Letters, vol. 103, no. 2, Cerca con Google

p. 022102, 2013. Cerca con Google

[130] C.-K. Wu, C.-K. Li, Y.-R. Wu, “Percolation transport study in nitride based Cerca con Google

LED by considering the random alloy fluctuation,” Journal of Computational Cerca con Google

Electronics, vol. 14, pp. 416-424, 2015. Cerca con Google

[131] X. Li, G. Xie, C. Tang, and K. Sheng, “Charge trapping related channel modulation Cerca con Google

instability in P-GaN gate HEMTs,” Microelectronics Reliability, vol. 65, Cerca con Google

pp. 35-40, 2016. Cerca con Google

[132] M. Tapajna, O. Hilt, E. Bahat-Treidel, J. Würfl, and J. Kuzmík, “Gate Reliability Cerca con Google

Investigation in Normally-Off p-Type-GaN Cap/AlGaN/GaN HEMTs Under Cerca con Google

Forward Bias Stress,” IEEE Electron Device Letters, vol. 37, no. 4, pp. 385-388, Cerca con Google

2016. Cerca con Google

[133] M. Tapajna, O. Hilt, E. Bahat-Treidel, J. Würfl, and J. Kuzmík, “Investigation of Cerca con Google

gate-diode degradation in normally-off p-GaN/AlGaN/GaN high electron-mobility Cerca con Google

transistors,” Applied Physics Letters, vol. 107, no. 19, p. 193506, 2007. Cerca con Google

[134] T.-L. Wu, D. Marcon, S. You, N. Posthuma, B. Bakeroot, S. Stoffels, M. Van Cerca con Google

Hove, G. Groeseneken, and S. Decoutere, “Forward Bias Gate Breakdown Mechanism Cerca con Google

in Enhancement-Mode p-GaN Gate AlGaN/GaN High-Electron Mobility Cerca con Google

Transistors,” IEEE Electron Device Letters, vol. 36, no. 10, pp. 1001-1003, 2015 Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record