Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Abdelsheed, Ismail Gad Ameen (2016) Fractional calculus: numerical methods and SIR models. [Ph.D. thesis]

Full text disponibile come:

[img]
Preview
PDF Document
1559Kb

Abstract (english)

Fractional calculus is ”the theory of integrals and derivatives of arbitrary order, which unify and generalize the notions of integer-order differentiation and n-fold integration”. The idea of generalizing differential operators to a non-integer order, in particular to the order 1/2, first appears in the correspondence of Leibniz with L’Hopital (1695), Johann Bernoulli (1695), and John Wallis (1697) as a mere question or maybe even play of thoughts. In the following three hundred years a lot of mathematicians contributed to the fractional calculus: Laplace (1812), Lacroix (1812), Fourier (1822), Abel (1823-1826), Liouville (1832-1837), Riemann (1847), Grunwald (1867-1872), Letnikov (1868-1872), Sonin (1869), Laurent (1884), Heaviside (1892-1912), Weyl (1917), Davis (1936), Erde`lyi (1939-1965), Gelfand and Shilov (1959-1964), Dzherbashian (1966), Caputo (1969), and many others. Yet, it is only after the First Conference on Fractional Calculus and its applications that the fractional calculus becomes one of the most intensively developing areas of mathematical analysis. Recently, many mathematicians and applied researchers have tried to model real processes using the fractional calculus. This is because of the fact that the realistic modeling of a physical phenomenon does not depend only on the instant time, but also on the history of the previous time which can be successfully achieved by using fractional calculus. In other words, the nature of the definition of the fractional derivatives have provided an excellent instrument for the modeling of memory and hereditary properties of various materials and processes.

Abstract (italian)

Il calcolo frazionario e` ”the theory of integrals and derivatives of arbitrary order, which unify and generalize the notions of integer-order differentiation and n-fold integration”. L’ idea di generalizzare operatori differenziali ad un ordine non intero, in particolare di ordine 1/2, compare per la prima volta in una corrispondenza di Leibniz con L’Hopital (1695), Johann Bernoulli (1695), e John Wallis (1697), come una semplice domanda o forse un gioco di pensieri. Nei successive trecento anni molti matematici hanno contribuito al calcolo frazionario: Laplace (1812), Lacroix (1812), di Fourier (1822), Abel (1823-1826), Liouville (1832-1837), Riemann (1847), Grunwald (1867-1872), Letnikov (1868-1872), Sonin (1869), Laurent (1884), Heaviside (1892-1912), Weyl (1917), Davis (1936), Erde`lyi (1939-1965), Gelfand e Shilov (1959-1964), Dzherbashian (1966), Caputo (1969), e molti altri. Eppure, è solo dopo la prima conferenza sul calcolo frazionario e le sue applicazioni che questo tema diventa una delle le aree più intensamente studiate dell’analisi matematica. Recentemente, molti matematici e ingegneri hanno cercato di modellare i processi reali utilizzando il calcolo frazionario. Questo a causa del fatto che spesso, la modellazione realistica di un fenomeno fisico non è locale nel tempo, ma dipende anche dalla storia, e questo comportamento può essere ben rappresentato attraverso modelli basati sul calcolo frazionario. In altre parole, la definizione dei derivata frazionaria fornisce un eccellente strumento per la modellazione della memoria e delle proprietà ereditarie di vari materiali e processi.

Statistiche Download - Aggiungi a RefWorks
EPrint type:Ph.D. thesis
Tutor:Novati, Paolo
Ph.D. course:Ciclo 29 > Corsi 29 > SCIENZE MATEMATICHE
Data di deposito della tesi:18 January 2017
Anno di Pubblicazione:December 2016
Key Words:Fractional calculus, Fractional differential equation of Caputo type, Fractional linear multistep methods, Fractional backward difference methods, Fractional-order SIR models.
Settori scientifico-disciplinari MIUR:Area 01 - Scienze matematiche e informatiche > MAT/08 Analisi numerica
Struttura di riferimento:Dipartimenti > Dipartimento di Matematica
Codice ID:9848
Depositato il:03 Nov 2017 10:16
Simple Metadata
Full Metadata
EndNote Format

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record