Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Yu, Qin - Collavo, Alberto - Zheng, Ming-Qi - Owen, Mechelle - Sattin, Maurizio - Powles, Stephen (2007) Diversity of Acetyl-Coenzyme A Carboxylase Mutations in Resistant Lolium Populations: Evaluation Using Clethodim. [Articolo di periodico (online)]

Full text disponibile come:

Documento PDF

Per gentile concessione di:

Abstract (inglese)

The acetyl-coenzyme A carboxylase (ACCase)-inhibiting cyclohexanedione herbicide clethodim is used to control grass weeds
infesting dicot crops. In Australia clethodim is widely used to control the weed Lolium rigidum. However, clethodim-resistant
Lolium populations have appeared over the last 5 years and now are present in many populations across the western
Australian wheat (Triticum aestivum) belt. An aspartate-2078-glycine (Gly) mutation in the plastidic ACCase enzyme has been
identified as the only known mutation endowing clethodim resistance. Here, with 14 clethodim-resistant Lolium populations
we revealed diversity and complexity in the molecular basis of resistance to ACCase-inhibiting herbicides (clethodim in
particular). Several known ACCase mutations (isoleucine-1781-leucine [Leu], tryptophan-2027-cysteine [Cys], isoleucine-2041-
asparagine, and aspartate-2078-Gly) and in particular, a new mutation of Cys to arginine at position 2088, were identified in
plants surviving the Australian clethodim field rate (60 g ha21). Twelve combination patterns of mutant alleles were revealed in
relation to clethodim resistance. Through a molecular, biochemical, and biological approach, we established that the mutation
2078-Gly or 2088-arginine endows sufficient level of resistance to clethodim at the field rate, and in addition, combinations of
two mutant 1781-Leu alleles, or two different mutant alleles (i.e. 1781-Leu/2027-Cys, 1781-Leu/2041-asparagine), also confer
clethodim resistance. Plants homozygous for the mutant 1781, 2078, or 2088 alleles were found to be clethodim resistant and
cross resistant to a number of other ACCase inhibitor herbicides including clodinafop, diclofop, fluazifop, haloxyfop,
butroxydim, sethoxydim, tralkoxydim, and pinoxaden. We established that the specific mutation, the homo/heterozygous
status of a plant for a specific mutation, and combinations of different resistant alleles plus herbicide rates all are important in
contributing to the overall level of herbicide resistance in genetically diverse, cross-pollinated Lolium species.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Articolo di periodico (online)
Anno di Pubblicazione:Ottobre 2007
Parole chiave (italiano / inglese):herbicide resistance ACCase inhibitors clethodim pinoxaden enzyme activity dCAPS CAPS mutations target site resistance
Settori scientifico-disciplinari MIUR:Area 07 - Scienze agrarie e veterinarie > AGR/02 Agronomia e coltivazioni erbacee
Struttura di riferimento:Dipartimenti > Dipartimento di Agronomia Ambientale e Produzioni Vegetali
Codice ID:987
Depositato il:05 Feb 2008
Simple Metadata
Full Metadata
EndNote Format


I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Brown AC, Moss SR, Wilson ZA, Field LM (2002) An isoleucine to leucine substitution in the ACCase of Alopecurus myosuroides (black grass) is associated with resistance to the herbicide sethoxydim. Pest Biochem Physiol 72: 160-168 Cerca con Google

Christoffers M, Berg ML, Messersmith CG (2002) An isoleucine to leucine mutation in acetyl-CoA carboxylase confers herbicide resistance in wild oat. Genome 45: 1049 — 1056 Cerca con Google

Christoffers MJ, Berg ML, Messersmith CG (2000) Analysis of acetyl-CoA carboxylase gene sequences from fenoxaprop-p-resistant wild oat biotypes. NCWSS Proceedings 55: 67 Cerca con Google

Christoffers MJ, Pederson SN, Kandikonda AV (2005) Herbicide dose-response of wild oat with altered acetyl-CoA carboxylase genes. NCWSS Proceedings 60:35 Cerca con Google

Délye C (2005) Weed resistance to acetyl coenzyme A carboxylase inhibitors: an update. Weed Sci 53: 728 — 746 Cerca con Google

Délye C, Calmes E, Matejicek A (2002a) SNP markers for black-grass (Alopecurus myosuroides Huds.) genotypes resistant to acetyl CoA-carboxylase inhibiting herbicides. Theor Appl Genet 104: 1114 — 1120 Cerca con Google

Délye C, Matejicek A, Gasquez J (2002b) PCR-based detection of resistance to acetyl-CoA carboxylase-inhibiting herbicides in black-grass (Alopecurus myosuroides Huds.) and ryegrass (Lolium rigidum Gaud). Pest Manag Sci 58, 474 — 478 Cerca con Google

Délye C, Michel S (2005) Universal’ primers for PCR-sequencing of grass chloroplastic acetyl-CoA carboxylase domains involved in resistance to herbicides. Weed Res 45, 323 — 330 Cerca con Google

Délye C, Wang TY, Darmency H (2002c) An isoleucine-leucine substitution in chloroplastic acetyl-CoA carboxylase from green foxtail (Setaria viridis L. Beauv.) is responsible for resistance to the cyclohexanedione herbicide sethoxydim. Planta 214: 421 — 427 Cerca con Google

Délye C, Zhang XQ, Chalopin C, Michel S, Powles SB (2003) An isoleucine residue within the carboxyl-transferase domain of multidomain acetyl-coenzyme A carboxylase is a major determinant of sensitivity to aryloxyphenoxypropionate but not to cyclohexanedione inhibitors. Plant Physiol 132: 1716 — 1723 Cerca con Google

Délye C, Zhang XQ, Michel S, Matejicek A, Powles SB (2005) Molecular bases for sensitivity to acetyl-coenzyme A carboxylase inhibitors in black-grass. Plant Physiol 137: 794 — 806 Cerca con Google

Délye C, Menchari Y, Cadet E, Chauvel B, Darmency H (2007) Fitness variation associated with herbicide-resistant acetyl-CoA carboxylase alleles in black-grass (Alopecurus myosuroides Huds.) 14th EWRS Symposium, Hamar, Norway, p144. Cerca con Google

Heap IM, Knight R (1986) The occurrence of herbicide cross-resistance in a population of annual ryegrass, Lolium rigidum, resistant to diclofop-methyl. Aust J Agric. Res 41: 121-128 Cerca con Google

Hochberg O, Sibony M, Tal A, Rubin B (2007) Molecular bases for the resistance to ACCase inhibiting herbicides in Phalaris paradoxa. 14th EWRS Symposium, Hamar, Norway, p150 Cerca con Google

Hofer U, Muehlebach M, Hole S, Zoschke A (2006) Pinoxaden-for broad spectrum grass weed management in ceral crops. J Plant Dis Prot 20: 989-995 Cerca con Google

Holtum JAM, Matthews JM, Liljegren DR, Powles SB (1991) Cross-resistance to herbicides in annual ryegrass (Lolium rigidum). III. On the mechanism of resistance to diclofop-methyl. Plant Physiol 97: 1026-34. Cerca con Google

Kaundun SS, Windass JD (2006) Derived cleaved amplified polymorphic sequence, a simple method to detect a key point mutation conferring acetyl CoA carboxylase inhibitor herbicide resistance in grass weeds. Weed Res 45: 34 - 39 Cerca con Google

Liu WJ, Harrison DK, Chalupska D, Gornicki P, O’Donnell CC, Adkins SW, Haselkorn R, Williams RR (2007) Single-site mutations in the carboxyltransferase domain of plastid acetyl-CoA carboxylase confer resistance to grass-specific herbicides. Proc Natl Acad Sci USA 104: 3627 - 3632 Cerca con Google

Llewellyn R, Powles SB. (2001) High levels of herbicide resistance in rigid ryegrass (Lolium rigidum) across the Western Australian wheatbelt. Weed Technol 15: 242-248 Cerca con Google

Matthews JM, Holtum JAM, Liljegren DR, Furness B, Powles SB (1990) Cross-resistance to herbicides in annual ryegrass (Lolium rigidum). 1. Properties of the herbicide target enzymes acetyl-CoA carboxylase (ACC) and acetolactate synthase (ALS). Plant Physiol 94: 1180-1186. Cerca con Google

Neff MM, Neff JD, Chory J, Pepper AE (1998) dCAPS, a simple technique for the genetic analysis of single nucleotide polymorphisms: experimental applications in Arabidopsis thaliana genetics. Plant J 14: 387 — 392 Cerca con Google

Neve P, Powles SB (2005) Recurrent selection with reduced herbicide rates results in the rapid evolution of herbicide resistance in Lolium rigidum. Theor Appl Genet 110: 1154-1166 Cerca con Google

Nikolau BJ, Ohlrogge JB Wurtele ES (2003) Plant biotin-containing carboxylases. Arch Biochem Biophys 414: 211-222 Cerca con Google

Owen M, Walsh M, Llewellyn R., Powles SB. (2007) Widespread occurrence of multiple herbicide resistance in Western Australian annual ryegrass (Lolium rigidum) populations. Aust J Agric Res (In press). Cerca con Google

Preston C, Powles SB (1998) Amitrole inhibits diclofop metabolism and synergises diclofop-methyl in a diclofop-methyl-resistant biotype of Lolium rigidum. Pest Biochem Physiol 62: 179-189. Cerca con Google

Powles SB, Matthews JM (1992) Multiple herbicide resistance in annual ryegrass (Lolium rigidum): A driving force for the adoption of integrated weed management strategies. In: Resistance 91: Achievements and Developments in Combating Pesticide Resistance. I, Denholm, AL, Devonshire, DW, Hollomon eds, Elsevier, NY. pp. 75-87. Cerca con Google

Preston C, Tardif FJ, Christopher JT, Powles SB (1996) Multiple resistance to dissimilar herbicide chemistries in a biotype of Lolium rigidum due to enhanced activity of several herbicide degrading enzymes. Pestic Biochem Physiol 54: 123-134 Cerca con Google

Roux F, Gasquez J, Rebound X (2004) The dominance of the herbicide resistance cost in several Arabidopsis thaliana mutant lines. Genetics 166: 449-460 Cerca con Google

Seefeldt S, Jensen JE, Fuerst EP (1995) Log-Logist analysis of herbicide dose-response relationships. Weed Technol 9: 218-227 Cerca con Google

Tal A, Rubin B (2004) Molecular characterization and inheritance of resistance to ACCase herbicides in Lolium rigidum. Pest Manag Sci 60:1013 — 1018 Cerca con Google

Tardif FJ, Holtum JAM, Powles SB (1993) Occurrence of a herbicide-resistant acetyl-coenzyme A carboxylase mutant in annual ryegrass (Lolium rigidum) selected by sethoxydim. Planta 190: 176 — 181 Cerca con Google

Tardif FJ, Powles SB (1994) Herbicide multiple-resistance in a Lolium rigidum biotype is endowed by multiple mechanisms: isolation of a subset with resistant acetyl-CoA carboxylase. Physiol Plant 91: 488-494 Cerca con Google

Tardif FJ, Preston C, Holtum JAM, powles, SB (1996) Resistance to acetyl-coenyme A carboxylase-inhibiting herbicides endowed by a single major gene encoding a resistant target site in a biotype of Lolium rigidum. Aust J Plant Physiol 23:15-23 Cerca con Google

Tardif FJ, Rajcan I, Costea M, (2006) A mutation in the herbicide target site acetohydroxyacid synthase produce morphological and structural alterations and reduces fitness in Amaranths powellii. New Phytol 169: 251-264 Cerca con Google

Vila-Aiub MM, Neve P, Powles SB (2005a) Resistance cost of a cytochrome P450 herbicide metabolism mechanism but not an ACCase target site mutation in a multiple resistant Lolium rigidum population. New Phytol 167: 787-796 Cerca con Google

Vila-Aiub MM, Neve P, Steadman KJ, Powles SB (2005b) Ecological fitness of a multiple herbicide-resistant Lolium rigidum population: dynamics of seed germination and seedling emergence of resistant and susceptible phenotypes. J Appl Ecol 42: 288-298 Cerca con Google

White GM, Moss SR, Karp A (2005) Differences in the molecular basis of resistance to the cyclohexanedione herbicide sethoxydim in Lolium multiflorum. Weed Res 45: 440 — 448 Cerca con Google

Yu Q, Friesen LJS, Zhang XQ, Powles SB (2004) Tolerance to acetolactate synthase and acetyl-coenzyme A carboxylase inhibiting herbicides in Vulpia bromoides is conferred by two co-existing resistance mechanisms. Pestic Biochem Physiol 78: 21-30 Cerca con Google

Yu, Q, Cairn A, Powles SB (2007) Glyphosate, paraquat and ACCase multiple herbicide resistance evolved in a Lolium rigidum biotype. Planta 225: 499-513 Cerca con Google

Zagnitko O, Jelenska J, Tevzadze G, Haselkorn R, Gornicki P (2001) An isoleucine/leucine residue in the carboxyltransferase domain of acetyl-CoA carboxylase is critical for interaction with aryloxyphenoxypropionate and cyclohexanedione inhibitors. Proc Natl Acad Sci USA 98: 6617 — 6622 Cerca con Google

Zhang H, Tweel B, Tong L. (2004) Molecular basis for the inhibition of the carboxytransferase domain of acetyl-coenzyme-A carboxylase by haloxyfop and diclofop. Proc Natl Acad Sci USA 101: 5910-5915 Cerca con Google

Zhang XQ, Powles SB (2006a) Six amino acid substitutions in the carboxyl-transferase domain of the plastidic acetyl-CoA carboxylase gene are linked with resistance to herbicides in a Lolium rigidum population. New Phytol 172: 636-645 Cerca con Google

Zhang XQ, Powles SB (2006b) The molecular bases for resistance to acetyl co-enzyme A carboxylase (ACCase) inhibiting herbicides in two target-based resistant biotypes of annual ryegrass (Lolium rigidum). Planta 223: 550 — 557 Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record