Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Kanshin, Kirill (2017) The Goldstone Boson Higgs and the effective Lagrangian(s). [Ph.D. thesis]

Full text disponibile come:

[img]
Preview
PDF Document
7Mb

Abstract (english)

The Goldstone boson nature of the observed Higgs scalar particle represents a tempting possible solution for the Standard Model hierarchy problem.
We first discuss the essence of the problem in the context of low energy QCD and the Higgs sector of the Standard Model.
As a step towards the solution we construct a UV complete model of the Goldstone Higgs based on the global $SO(5)/SO(4)$ symmetry breaking.
The scalar sector of the theory is a linear sigma model extended by a scalar singlet $\sigma$, with mass $m_\sigma>500$ GeV. In order to give mass to the SM fermions through the partial compositeness mechanism, the fermion sector is extended by heavy vectorlike fermions. We study in detail the possible direct detection of $\sigma$ and the impact of the new scalar and fermion states on Electroweak Precision Tests. We conclude in particular that any reasonable contribution of the scalar sector can in principle be compensated by a fermionic one.
At low energies any extension of the Standard Model results in a set of effective operators, describing the deviations of the couplings from their predicted values.
%This description is incorporated in the Effective Field Theory (EFT) language.
Depending on how the electroweak symmetry is realised, two intrinsically different effective descriptions are possible: linear and non-linear one.
Varying the $\sigma$ mass allows to sweep from the regime of the perturbative linear UV completion to the non-linear one. The latter one is typically assumed in models in which the Higgs particle is a low-energy remnant of some strong dynamics at a higher scale. In the limit of large but finite masses of the new states we derive the benchmark non-linear effective Lagrangian. Furthermore the first order linear corrections originating from large, but finite mass of the additional scalar to the Higgs couplings have been derived and they are found to be suppressed by the scalar masses ratio.
Finally, we consider the renormalization of the custodial preserving scalar sector of the non-linear effective Lagrangian in a general Goldstone bosons matrix parametrisation and identify the physical counterterms as well as the chiral-noninvariant divergences. The latter ones are shown to be unphysical as they can be removed by a field redefinition. The procedure allows to check the consistency of the non-linear effective Lagrangian at one loop. The results confirm the completeness of the scalar sector of NLO Lagrangian previously identified in the literature.

Abstract (italian)

Una particella di Higgs la cui natura sia di tipo Goldstone rappresenta una possibile soluzione al problema della gerarchia nel Modello Standard. Dapprima discutiamo l'essenza del problema nel contesto della QCD di bassa energia e del settore di Higgs del Modello Standard. Come passo successivo verso la soluzione, si costruisce un modello UV-completo del Goldstone Higgs, basato sulla rottura di simmetria globale $SO(5)/SO(4)$. Il settore scalare della teoria è un modello sigma lineare, esteso da un singoletto scalare $\sigma$, con massa $m_\sigma>500$ GeV. Per dare massa ai fermioni del Modello Standard attraveso il meccanismo di compositezza parziale, il settore fermionico viene esteso da fermioni pesanti vectorlike. Si studia in dettaglio la possibile osservazione diretta di $\sigma$ e l'impatto del nuovo scalare e dei nuovi stati fermionici sui test di precisione elettrodeboli. Si conclude, in particolare, che ogni ragionevole contributo dal settore scalare può, in linea di principio, essere compensato dal settore fermionico. A basse energie ogni estensione del Modello Standard risulta in un insieme di operatori effettivi che descrivono le deviazioni dei coupling dai loro valori predetti. A seconda di come la simmetria elettrodebole è realizzata, sono possibili due descrizioni effettive intrinsicamente differenti: lineare e non lineare. Variando la massa dell'$\sigma$ passiamo con continuità dal regime in cui il completamento è perturbativo a quello non lineare. Quest'ultimo è in genere un presupposto di modelli nei quali la particella di Higgs è un residuo a bassa energia of dinamiche forti ad una scala superiore. Nel limite in cui le masse dei nuovi stati sono grandi, ma finite, deriviamo la Lagrangiana effettiva non lineare che può essere utilizzata come benchmark. Inoltre vengono derivate le correzioni lineari al primo ordine causate dalla massa -- grande ma finita -- degli scalari addizionali ai coupling dell'Higgs, dimostrando che sono soppresse di un fattore proporzionale al rapporto degli scalari della teoria. Infine, consideriamo la rinormalizzazione del settore scalare che preserva la simmetria custodial in una parametrizzazione matriciale dei bosoni di Goldstone e identifichiamo i controtermini fisici e le divergenze non-invarianti sotto trasformazioni chirali. Si dimostra che quest'ultime sono non fisiche, dal momento che possono essere rimosse da una ridefinizione dei campi. La procedura consente di controllare la consistenza della Lagrangiana effettiva non lineare a livello one-loop. I risultati confermano la completezza del settore scalare della Lagrangiana NLO precedentemente identificata in letteratura.

Statistiche Download - Aggiungi a RefWorks
EPrint type:Ph.D. thesis
Tutor:Rigolin, Stefano
Supervisor:Rigolin, Stefano
Ph.D. course:Ciclo 28 > Scuole 28 > FISICA
Data di deposito della tesi:30 January 2017
Anno di Pubblicazione:30 January 2017
Key Words:Higgs boson, Hierarchy problem, Goldstone boson, Composite Higgs, HEFT, EWChL, chiral Lagrangian
Settori scientifico-disciplinari MIUR:Area 02 - Scienze fisiche > FIS/04 Fisica nucleare e subnucleare
Struttura di riferimento:Dipartimenti > Dipartimento di Fisica e Astronomia "Galileo Galilei"
Codice ID:9907
Depositato il:03 Nov 2017 14:13
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] ATLAS collaboration, G. Aad et al., Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B716 (2012) 1–29, [1207.7214]. Cerca con Google

[2] CMS collaboration, S. Chatrchyan et al., Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B716 (2012) 30–61, [1207.7235]. Cerca con Google

[3] D. B. Kaplan, H. Georgi and S. Dimopoulos, Composite Higgs Scalars, Phys. Lett. B136 (1984) 187–190. Cerca con Google

[4] D. B. Kaplan and H. Georgi, SU(2) x U(1) Breaking by Vacuum Misalignment, Phys. Lett. B136 (1984) 183–186. Cerca con Google

[5] H. Georgi and D. B. Kaplan, Composite Higgs and Custodial SU(2), Phys. Lett. B145 (1984) 216–220. Cerca con Google

[6] H. Georgi, D. B. Kaplan and P. Galison, Calculation of the Composite Higgs Mass, Phys. Lett. B143 (1984) 152–154. Cerca con Google

[7] T. Banks, Constraints on SU(2) x U(1) breaking by vacuum misalignment, Nucl. Phys. B243 (1984) 125–130. Cerca con Google

[8] M. J. Dugan, H. Georgi and D. B. Kaplan, Anatomy of a Composite Higgs Model, Nucl. Phys. B254 (1985) 299–326. Cerca con Google

[9] K. Agashe, R. Contino and A. Pomarol, The Minimal composite Higgs model, Nucl. Phys. B719 (2005) 165–187, [hep-ph/0412089]. Cerca con Google

[10] R. Contino, L. Da Rold and A. Pomarol, Light custodians in natural composite Higgs models, Phys. Rev. D75 (2007) 055014, [hep-ph/0612048]. Cerca con Google

[11] B. Gripaios, A. Pomarol, F. Riva and J. Serra, Beyond the Minimal Composite Higgs Model, JHEP 04 (2009) 070, [0902.1483]. Cerca con Google

[12] H. Gertov, A. Meroni, E. Molinaro and F. Sannino, Theory and phenomenology of the elementary Goldstone Higgs boson, Phys. Rev. D92 (2015) 095003, [1507.06666]. Cerca con Google

[13] M. Frigerio, A. Pomarol, F. Riva and A. Urbano, Composite Scalar Dark Matter, JHEP 07 (2012) 015, [1204.2808]. Cerca con Google

[14] D. Marzocca and A. Urbano, Composite Dark Matter and LHC Interplay, JHEP 07 (2014) 107, [1404.7419]. Cerca con Google

[15] G. Panico, M. Redi, A. Tesi and A. Wulzer, On the Tuning and the Mass of the Composite Higgs, JHEP 03 (2013) 051, [1210.7114]. Cerca con Google

[16] M. Carena, L. Da Rold and E. Pontón, Minimal Composite Higgs Models at the LHC, JHEP 06 (2014) 159, [1402.2987]. Cerca con Google

[17] R. Contino, D. Marzocca, D. Pappadopulo and R. Rattazzi, On the effect of resonances in composite Higgs phenomenology, JHEP 10 (2011) 081, [1109.1570]. Cerca con Google

[18] D. Marzocca, M. Serone and J. Shu, General Composite Higgs Models, JHEP 08 (2012) 013, [1205.0770]. Cerca con Google

[19] M. Redi and A. Tesi, Implications of a Light Higgs in Composite Models, JHEP 10 (2012) 166, [1205.0232]. Cerca con Google

[20] A. Carmona and F. Goertz, A naturally light Higgs without light Top Partners, JHEP 05 (2015) 002, [1410.8555]. Cerca con Google

[21] G. von Gersdorff, E. Pontón and R. Rosenfeld, The Dynamical Composite Higgs, JHEP 06 (2015) 119, [1502.07340]. Cerca con Google

[22] R. Barbieri, B. Bellazzini, V. S. Rychkov and A. Varagnolo, The Higgs boson from an extended symmetry, Phys. Rev. D76 (2007) 115008, [0706.0432]. Cerca con Google

[23] T. Alanne, H. Gertov, A. Meroni and F. Sannino, Vacuum alignment with and without elementary scalars, Phys. Rev. D94 (2016) 075015, [1608.07442]. Cerca con Google

[24] G. Buchalla, O. Cata, A. Celis and C. Krause, Standard Model Extended by a Heavy Singlet: Linear vs. Nonlinear EFT, 1608.03564. Cerca con Google

[25] S. Fichet, G. von Gersdorff, E. Pontón and R. Rosenfeld, The Global Higgs as a Signal for Compositeness at the LHC, JHEP 01 (2017) 012, [1608.01995]. Cerca con Google

[26] S. Fichet, G. von Gersdorff, E. Pontón and R. Rosenfeld, The Excitation of the Global Symmetry-Breaking Vacuum in Composite Higgs Models, JHEP 09 (2016) 158, [1607.03125]. Cerca con Google

[27] K. Kannike, G. M. Pelaggi, A. Salvio and A. Strumia, The Higgs of the Higgs and the diphoton channel, JHEP 07 (2016) 101, [1605.08681]. Cerca con Google

[28] M. Gell-Mann and M. Levy, The axial vector current in beta decay, Nuovo Cim. 16 (1960) 705. Cerca con Google

[29] D. B. Kaplan, Flavor at SSC energies: A New mechanism for dynamically generated fermion masses, Nucl. Phys. B365 (1991) 259–278. Cerca con Google

[30] M. B. Gavela, K. Kanshin, P. A. N. Machado and S. Saa, On the renormalization of the electroweak chiral Lagrangian with a Higgs, JHEP 03 (2015) 043, [1409.1571]. Cerca con Google

[31] F. Feruglio, B. Gavela, K. Kanshin, P. A. N. Machado, S. Rigolin and S. Saa, The minimal linear sigma model for the Goldstone Higgs, JHEP 06 (2016) 038, [1603.05668]. Cerca con Google

[32] M. B. Gavela, K. Kanshin, P. A. N. Machado and S. Saa, The linear–non-linear frontier for the Goldstone Higgs, Eur. Phys. J. C76 (2016) 690, [1610.08083]. Cerca con Google

[33] S. L. Glashow, Partial Symmetries of Weak Interactions, Nucl. Phys. 22 (1961) 579–588. Cerca con Google

[34] S. Weinberg, A Model of Leptons, Phys. Rev. Lett. 19 (1967) 1264–1266. Cerca con Google

[35] A. Salam, Weak and Electromagnetic Interactions, Conf. Proc. C680519 (1968) 367–377. Cerca con Google

[36] P. W. Higgs, Broken symmetries, massless particles and gauge fields, Phys. Lett. 12 (1964) 132–133. Cerca con Google

[37] P. W. Higgs, Broken Symmetries and the Masses of Gauge Bosons, Phys. Rev. Lett. 13 (1964) 508–509. Cerca con Google

[38] F. Englert and R. Brout, Broken Symmetry and the Mass of Gauge Vector Mesons, Phys. Rev. Lett. 13 (1964) 321–323. Cerca con Google

[39] G. S. Guralnik, C. R. Hagen and T. W. B. Kibble, Global Conservation Laws and Massless Particles, Phys. Rev. Lett. 13 (1964) 585–587. Cerca con Google

[40] J. C. Romao and J. P. Silva, A resource for signs and Feynman diagrams of the Standard Model, Int. J. Mod. Phys. A27 (2012) 1230025, [1209.6213]. Cerca con Google

[41] ATLAS, CMS collaboration, G. Aad et al., Combined Measurement of the Higgs Boson Mass in pp Collisions at √s = 7 and 8 TeV with the ATLAS and CMS Experiments, Phys. Rev. Lett. 114 (2015) 191803, [1503.07589]. Cerca con Google

[42] P. Sikivie, L. Susskind, M. B. Voloshin and V. I. Zakharov, Isospin Breaking in Technicolor Models, Nucl. Phys. B173 (1980) 189–207. Cerca con Google

[43] G. ’t Hooft, Renormalizable Lagrangians for Massive Yang-Mills Fields, Nucl. Phys. B35 (1971) 167–188. Cerca con Google

[44] M. Schmaltz, Physics beyond the standard model (theory): Introducing the little Higgs, Nucl. Phys. Proc. Suppl. 117 (2003) 40–49, [hep-ph/0210415]. Cerca con Google

[45] L. Susskind, Dynamics of Spontaneous Symmetry Breaking in the Weinberg-Salam Theory, Phys. Rev. D20 (1979) 2619–2625. Cerca con Google

[46] G. ’t Hooft and M. J. G. Veltman, Regularization and Renormalization of Gauge Fields, Nucl. Phys. B44 (1972) 189–213. Cerca con Google

[47] A. Salvio and A. Strumia, Agravity, JHEP 06 (2014) 080, [1403.4226]. 121 Cerca con Google

[48] G. ’t Hooft, Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking, NATO Sci. Ser. B 59 (1980) 135–157. Cerca con Google

[49] Y. Nambu, Quasiparticles and Gauge Invariance in the Theory of Superconductivity, Phys. Rev. 117 (1960) 648–663. Cerca con Google

[50] J. Goldstone, Field Theories with Superconductor Solutions, Nuovo Cim. 19 (1961) 154–164. Cerca con Google

[51] J. Goldstone, A. Salam and S. Weinberg, Broken Symmetries, Phys. Rev. 127 (1962) 965–970. Cerca con Google

[52] H. Yukawa, On the Interaction of Elementary Particles I, Proc. Phys. Math. Soc. Jap. 17 (1935) 48–57. Cerca con Google

[53] J. F. Donoghue, E. Golowich and B. R. Holstein, Dynamics of the standard model, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 2 (1992) 1–540. Cerca con Google

[54] Particle Data Group collaboration, C. Patrignani et al., Review of Particle Physics, Chin. Phys. C40 (2016) 100001. Cerca con Google

[55] S. Weinberg, Nonlinear realizations of chiral symmetry, Phys. Rev. 166 (1968) 1568–1577. Cerca con Google

[56] J. Gasser and H. Leutwyler, Chiral Perturbation Theory to One Loop, Annals Phys. 158 (1984) 142. Cerca con Google

[57] S. Weinberg, Phenomenological Lagrangians, Physica A96 (1979) 327–340. Cerca con Google

[58] A. Manohar and H. Georgi, Chiral Quarks and the Nonrelativistic Quark Model, Nucl. Phys. B234 (1984) 189–212. Cerca con Google

[59] H. Georgi, Weak Interactions and Modern Particle Theory. 1984. Cerca con Google

[60] T. Das, G. S. Guralnik, V. S. Mathur, F. E. Low and J. E. Young, Electromagnetic mass difference of pions, Phys. Rev. Lett. 18 (1967) 759–761. Cerca con Google

[61] S. Weinberg, Implications of Dynamical Symmetry Breaking, Phys. Rev. D13 (1976) 974–996. Cerca con Google

[62] S. Weinberg, Implications of Dynamical Symmetry Breaking: An Addendum, Phys. Rev. D19 (1979) 1277–1280. Cerca con Google

[63] E. Eichten and K. D. Lane, Dynamical Breaking of Weak Interaction Symmetries, Phys. Lett. B90 (1980) 125–130. Cerca con Google

[64] S. Dimopoulos and L. Susskind, Mass Without Scalars, Nucl. Phys. B155 (1979) 237–252. Cerca con Google

[65] M. E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D46 (1992) 381–409. Cerca con Google

[66] B. Holdom and J. Terning, Large corrections to electroweak parameters in technicolor theories, Phys. Lett. B247 (1990) 88–92. Cerca con Google

[67] M. Golden and L. Randall, Radiative Corrections to Electroweak Parameters in Technicolor Theories, Nucl. Phys. B361 (1991) 3–23. Cerca con Google

[68] R. Contino, The Higgs as a Composite Nambu-Goldstone Boson, in Physics of the large and the small, TASI 09, proceedings of the Theoretical Advanced Study Institute in Elementary Particle Physics, Boulder, Colorado, USA, 1-26 June 2009, pp. 235–306, 2011. 1005.4269. DOI. Cerca con Google

[69] G. Panico and A. Wulzer, The Composite Nambu-Goldstone Higgs, Lect. Notes Phys. 913 (2016) pp.1–316, [1506.01961]. Cerca con Google

[70] R. Alonso, I. Brivio, B. Gavela, L. Merlo and S. Rigolin, Sigma Decomposition, JHEP 12 (2014) 034, [1409.1589]. Cerca con Google

[71] S. R. Coleman and E. J. Weinberg, Radiative Corrections as the Origin of Spontaneous Symmetry Breaking, Phys. Rev. D7 (1973) 1888–1910. Cerca con Google

[72] S. R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 1., Phys. Rev. 177 (1969) 2239–2247. Cerca con Google

[73] C. G. Callan, Jr., S. R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 2., Phys. Rev. 177 (1969) 2247–2250. Cerca con Google

[74] N. Arkani-Hamed, A. G. Cohen and H. Georgi, Electroweak symmetry breaking from dimensional deconstruction, Phys. Lett. B513 (2001) 232–240, [hep-ph/0105239]. Cerca con Google

[75] N. Arkani-Hamed, A. G. Cohen, T. Gregoire and J. G. Wacker, Phenomenology of electroweak symmetry breaking from theory space, JHEP 08 (2002) 020, [hep-ph/0202089]. Cerca con Google

[76] M. Schmaltz and D. Tucker-Smith, Little Higgs review, Ann. Rev. Nucl. Part. Sci. 55 (2005) 229–270, [hep-ph/0502182]. Cerca con Google

[77] G. Ferretti and D. Karateev, Fermionic UV completions of Composite Higgs models, JHEP 03 (2014) 077, [1312.5330]. Cerca con Google

[78] G. Ferretti, UV Completions of Partial Compositeness: The Case for a SU(4) Gauge Group, JHEP 06 (2014) 142, [1404.7137]. Cerca con Google

[79] G. Cacciapaglia and F. Sannino, Fundamental Composite (Goldstone) Higgs Dynamics, JHEP 04 (2014) 111, [1402.0233]. Cerca con Google

[80] T. Appelquist and J. Carazzone, Infrared Singularities and Massive Fields, Phys. Rev. D11 (1975) 2856. Cerca con Google

[81] B. Henning, X. Lu and H. Murayama, How to use the Standard Model effective field theory, JHEP 01 (2016) 023, [1412.1837]. Cerca con Google

[82] LHC Higgs Cross Section Working Group collaboration, D. de Florian et al., Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector, 1610.07922. Cerca con Google

[83] S. Weinberg, Baryon and Lepton Nonconserving Processes, Phys. Rev. Lett. 43 (1979) 1566–1570. Cerca con Google

[84] G. Passarino, Field reparametrization in effective field theories, Eur. Phys. J. Plus 132 (2017) 16, [1610.09618]. Cerca con Google

[85] W. Buchmuller and D. Wyler, Effective Lagrangian Analysis of New Interactions and Flavor Conservation, Nucl. Phys. B268 (1986) 621–653. Cerca con Google

[86] K. Hagiwara, S. Ishihara, R. Szalapski and D. Zeppenfeld, Low-energy effects of new interactions in the electroweak boson sector, Phys. Rev. D48 (1993) 2182–2203. Cerca con Google

[87] G. F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The Strongly-Interacting Light Higgs, JHEP 06 (2007) 045, [hep-ph/0703164]. Cerca con Google

[88] B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-Six Terms in the Standard Model Lagrangian, JHEP 10 (2010) 085, [1008.4884]. Cerca con Google

[89] T. Appelquist and C. W. Bernard, Strongly Interacting Higgs Bosons, Phys. Rev. D22 (1980) 200. Cerca con Google

[90] A. C. Longhitano, Heavy Higgs Bosons in the Weinberg-Salam Model, Phys. Rev. D22 (1980) 1166. Cerca con Google

[91] A. C. Longhitano, Low-Energy Impact of a Heavy Higgs Boson Sector, Nucl. Phys. B188 (1981) 118–154. Cerca con Google

[92] F. Feruglio, The Chiral approach to the electroweak interactions, Int. J. Mod. Phys. A8 (1993) 4937–4972, [hep-ph/9301281]. Cerca con Google

[93] R. Alonso, M. B. Gavela, L. Merlo, S. Rigolin and J. Yepes, The Effective Chiral Lagrangian for a Light Dynamical "Higgs Particle", Phys. Lett. B722 (2013) 330–335, [1212.3305]. Cerca con Google

[94] B. Grinstein and M. Trott, A Higgs-Higgs bound state due to new physics at a TeV, Phys. Rev. D76 (2007) 073002, [0704.1505]. Cerca con Google

[95] R. Contino, C. Grojean, M. Moretti, F. Piccinini and R. Rattazzi, Strong Double Higgs Production at the LHC, JHEP 05 (2010) 089, [1002.1011]. Cerca con Google

[96] A. Azatov, R. Contino and J. Galloway, Model-Independent Bounds on a Light Higgs, JHEP 04 (2012) 127, [1202.3415]. Cerca con Google

[97] G. Buchalla, O. Catà and C. Krause, Complete Electroweak Chiral Lagrangian with a Light Higgs at NLO, Nucl. Phys. B880 (2014) 552–573, [1307.5017]. Cerca con Google

[98] M. B. Gavela, J. Gonzalez-Fraile, M. C. Gonzalez-Garcia, L. Merlo, S. Rigolin and J. Yepes, CP violation with a dynamical Higgs, JHEP 10 (2014) 044, [1406.6367]. Cerca con Google

[99] L. Merlo, S. Saa and M. S. Barbero, Baryon Non-Invariant Couplings in Higgs Effective Field Theory, 1612.04832. Cerca con Google

[100] A. G. Cohen, D. B. Kaplan and A. E. Nelson, Counting 4 pis in strongly coupled supersymmetry, Phys. Lett. B412 (1997) 301–308, [hep-ph/9706275]. Cerca con Google

[101] M. A. Luty, Naive dimensional analysis and supersymmetry, Phys. Rev. D57 (1998) 1531–1538, [hep-ph/9706235]. Cerca con Google

[102] B. M. Gavela, E. E. Jenkins, A. V. Manohar and L. Merlo, Analysis of General Power Counting Rules in Effective Field Theory, Eur. Phys. J. C76 (2016) 485, [1601.07551]. Cerca con Google

[103] I. Brivio, T. Corbett, O. J. P. Éboli, M. B. Gavela, J. Gonzalez-Fraile, M. C. Gonzalez-Garcia et al., Disentangling a dynamical Higgs, JHEP 03 (2014) 024, [1311.1823]. Cerca con Google

[104] R. Alonso, M. B. Gavela, L. Merlo, S. Rigolin and J. Yepes, Minimal Flavour Violation with Strong Higgs Dynamics, JHEP 06 (2012) 076, [1201.1511]. Cerca con Google

[105] G. Buchalla, O. Cata and C. Krause, A Systematic Approach to the SILH Lagrangian, Nucl. Phys. B894 (2015) 602–620, [1412.6356]. Cerca con Google

[106] I. M. Hierro, L. Merlo and S. Rigolin, Sigma Decomposition: The CP-Odd Lagrangian, JHEP 04 (2016) 016, [1510.07899]. Cerca con Google

[107] I. Brivio, J. Gonzalez-Fraile, M. C. Gonzalez-Garcia and L. Merlo, The complete HEFT Lagrangian after the LHC Run I, Eur. Phys. J. C76 (2016) 416, [1604.06801]. Cerca con Google

[108] O. J. P. Éboli and M. C. Gonzalez–Garcia, Classifying the bosonic quartic couplings, Phys. Rev. D93 (2016) 093013, [1604.03555]. Cerca con Google

[109] L. J. Dixon and Y. Li, Bounding the Higgs Boson Width Through Interferometry, Phys. Rev. Lett. 111 (2013) 111802, [1305.3854]. Cerca con Google

[110] Particle Data Group collaboration, K. A. Olive et al., Review of Particle Physics, Chin. Phys. C38 (2014) 090001. Cerca con Google

[111] J. F. Gunion, H. E. Haber, G. L. Kane and S. Dawson, The Higgs Hunter’s Guide, Front. Phys. 80 (2000) 1–404. Cerca con Google

[112] K. Agashe, R. Contino, L. Da Rold and A. Pomarol, A Custodial symmetry for Zb ̄b, Phys. Lett. B641 (2006) 62–66, [hep-ph/0605341]. Cerca con Google

[113] ATLAS, CMS collaboration, Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at √s = 7 and 8 TeV, . Cerca con Google

[114] C. Anastasiou, E. Furlan and J. Santiago, Realistic Composite Higgs Models, Phys. Rev. D79 (2009) 075003, [0901.2117]. Cerca con Google

[115] D. Ghosh, M. Salvarezza and F. Senia, Extending the Analysis of Electroweak Precision Constraints in Composite Higgs Models, Nucl. Phys. B914 (2017) 346–387, [1511.08235]. Cerca con Google

[116] G. Altarelli and R. Barbieri, Vacuum polarization effects of new physics on electroweak processes, Phys. Lett. B253 (1991) 161–167. Cerca con Google

[117] M. Ciuchini, E. Franco, S. Mishima, M. Pierini, L. Reina and L. Silvestrini, Update of the electroweak precision fit, interplay with Higgs-boson signal strengths and model-independent constraints on new physics, Nucl. Part. Phys. Proc. 273-275 (2016) 2219–2225, [1410.6940]. Cerca con Google

[118] V. A. Novikov, L. B. Okun and M. I. Vysotsky, On the Electroweak one loop corrections, Nucl. Phys. B397 (1993) 35–83. Cerca con Google

[119] A. Orgogozo and S. Rychkov, The S parameter for a Light Composite Higgs: a Dispersion Relation Approach, JHEP 06 (2013) 014, [1211.5543]. Cerca con Google

[120] H. E. Haber and D. O’Neil, Basis-independent methods for the two-Higgs-doublet model III: The CP-conserving limit, custodial symmetry, and the oblique parameters S, T, U, Phys. Rev. D83 (2011) 055017, [1011.6188]. Cerca con Google

[121] L. Lavoura and J. P. Silva, The Oblique corrections from vector - like singlet and doublet quarks, Phys. Rev. D47 (1993) 2046–2057. Cerca con Google

[122] ATLAS collaboration, G. Aad et al., Search for production of vector-like quark pairs and of four top quarks in the lepton-plus-jets final state in pp collisions at √s = 8 TeV with the ATLAS detector, JHEP 08 (2015) 105, [1505.04306]. Cerca con Google

[123] CMS collaboration, C. Collaboration, Search for top quark partners with charge 5/3 at √s = 13 TeV, . Cerca con Google

[124] S. Dawson and E. Furlan, A Higgs Conundrum with Vector Fermions, Phys. Rev. D86 (2012) 015021, [1205.4733]. Cerca con Google

[125] LHC Higgs Cross Section Working Group collaboration, J. R. Andersen et al., Handbook of LHC Higgs Cross Sections: 3. Higgs Properties, 1307.1347. Cerca con Google

[126] ATLAS collaboration, G. Aad et al., Search for Scalar Diphoton Resonances in the Mass Range 65 − 600 GeV with the ATLAS Detector in pp Col lision Data at √s = 8 T eV , Phys. Rev. Lett. 113 (2014) 171801, [1407.6583]. Cerca con Google

[127] CMS collaboration, V. Khachatryan et al., Search for diphoton resonances in the mass range from 150 to 850 GeV in pp collisions at √s = 8 TeV, Phys. Lett. B750 (2015) 494–519, [1506.02301]. Cerca con Google

[128] ATLAS collaboration, G. Aad et al., Search for a high-mass Higgs boson decaying to a W boson pair in pp collisions at √s = 8 TeV with the ATLAS detector, JHEP 01 (2016) 032, [1509.00389]. Cerca con Google

[129] ATLAS collaboration, G. Aad et al., Search for an additional, heavy Higgs boson in the H → ZZ decay channel at √s = 8 TeV in pp collision data with the ATLAS detector, Eur. Phys. J. C76 (2016) 45, [1507.05930]. Cerca con Google

[130] CMS collaboration, Properties of the Higgs-like boson in the decay H to ZZ to 4l in pp collisions at sqrt s =7 and 8 TeV, . Cerca con Google

[131] CMS collaboration, Update on the search for the standard model Higgs boson in pp collisions at the LHC decaying to W + W in the fully leptonic final state, . Cerca con Google

[132] CMS collaboration, V. Khachatryan et al., Search for resonant pair production of Higgs bosons decaying to two bottom quark–antiquark pairs in proton–proton collisions at 8 TeV, Phys. Lett. B749 (2015) 560–582, [1503.04114]. Cerca con Google

[133] ATLAS collaboration, G. Aad et al., Searches for Higgs boson pair production in the hh → bbττ,γγWW∗,γγbb,bbbb channels with the ATLAS detector, Phys. Rev. D92 (2015) 092004, [1509.04670]. Cerca con Google

[134] ATLAS, CMS collaboration, A. Holzner, Beyond standard model Higgs physics: prospects for the High Luminosity LHC, 1411.0322. Cerca con Google

[135] V. Martín Lozano, J. M. Moreno and C. B. Park, Resonant Higgs boson pair production in the hh → bb WW → bbl+νl−ν decay channel, JHEP 08 (2015) 004, [1501.03799]. Cerca con Google

[136] ATLAS collaboration, Search for resonances decaying to photon pairs in 3.2 fb−1 of pp collisions at √s = 13 TeV with the ATLAS detector, . Cerca con Google

[137] CMS collaboration, C. Collaboration, Search for new physics in high mass diphoton events in proton-proton collisions at 13TeV, . Cerca con Google

[138] ATLAS collaboration, G. Aad et al., Evidence for Electroweak Production of W±W±jj in pp Collisions at √s = 8 TeV with the ATLAS Detector, Phys. Rev. Lett. 113 (2014) 141803, [1405.6241]. Cerca con Google

[139] ATLAS collaboration, G. Aad et al., Measurements of W±Z production cross sections in pp collisions at √s = 8 TeV with the ATLAS detector and limits on anomalous gauge boson self-couplings, Phys. Rev. D93 (2016) 092004, [1603.02151]. Cerca con Google

[140] R. S. Chivukula and H. Georgi, Composite Technicolor Standard Model, Phys. Lett. B188 (1987) 99–104. Cerca con Google

[141] G. D’Ambrosio, G. F. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: An Effective field theory approach, Nucl. Phys. B645 (2002) 155–187, [hep-ph/0207036]. Cerca con Google

[142] B. Grinstein, M. Redi and G. Villadoro, Low Scale Flavor Gauge Symmetries, JHEP 11 (2010) 067, [1009.2049]. Cerca con Google

[143] R. L. Delgado, A. Dobado and F. J. Llanes-Estrada, One-loop WLWL and ZLZL scattering from the electroweak Chiral Lagrangian with a light Higgs-like scalar, JHEP 02 (2014) 121, [1311.5993]. Cerca con Google

[144] D. Espriu, F. Mescia and B. Yencho, Radiative corrections to WL WL scattering in composite Higgs models, Phys. Rev. D88 (2013) 055002, [1307.2400]. Cerca con Google

[145] R. L. Delgado, A. Dobado, M. J. Herrero and J. J. Sanz-Cillero, One-loop γγ → W+L W−L and γγ → ZL ZL from the Electroweak Chiral Lagrangian with a light Higgs-like scalar, JHEP 07 (2014) 149, [1404.2866]. Cerca con Google

[146] F.-K. Guo, P. Ruiz-Femenía and J. J. Sanz-Cillero, One loop renormalization of the electroweak chiral Lagrangian with a light Higgs boson, Phys. Rev. D92 (2015) 074005, [1506.04204]. Cerca con Google

[147] E. E. Jenkins, A. V. Manohar and M. Trott, Naive Dimensional Analysis Counting of Gauge Theory Amplitudes and Anomalous Dimensions, Phys. Lett. B726 (2013) 697–702, [1309.0819]. Cerca con Google

[148] T. Appelquist and C. W. Bernard, The Nonlinear σ Model in the Loop Expansion, Phys. Rev. D23 (1981) 425. Cerca con Google

[149] I. S. Gerstein, R. Jackiw, S. Weinberg and B. W. Lee, Chiral loops, Phys. Rev. D3 (1971) 2486–2492. Cerca con Google

[150] J. M. Charap, Closed-loop calculations using a chiral-invariant lagrangian, Phys. Rev. D2 (1970) 1554–1561. Cerca con Google

[151] D. I. Kazakov, V. N. Pervushin and S. V. Pushkin, Invariant Renormalization for the Field Theories with Nonlinear Symmetry, Teor. Mat. Fiz. 31 (1977) 169–176. Cerca con Google

[152] D. I. Kazakov, V. N. Pervushin and S. V. Pushkin, An Invariant Renormalization Method for Nonlinear Realizations of the Dynamical Symmetries, Theor. Math. Phys. 31 (1977) 389. Cerca con Google

[153] B. de Wit and M. T. Grisaru, On-shell Counterterms and Nonlinear Invariances, Phys. Rev. D20 (1979) 2082. Cerca con Google

[154] J. Honerkamp, Chiral multiloops, Nucl. Phys. B36 (1972) 130–140. Cerca con Google

[155] R. Alonso, E. E. Jenkins and A. V. Manohar, A Geometric Formulation of Higgs Effective Field Theory: Measuring the Curvature of Scalar Field Space, Phys. Lett. B754 (2016) 335–342, [1511.00724]. Cerca con Google

[156] R. Alonso, E. E. Jenkins and A. V. Manohar, Geometry of the Scalar Sector, JHEP 08 (2016) 101, [1605.03602]. Cerca con Google

[157] R. Mertig, M. Bohm and A. Denner, FEYN CALC: Computer algebraic calculation of Feynman amplitudes, Comput. Phys. Commun. 64 (1991) 345–359. Cerca con Google

[158] A. Alloul, N. D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 - A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250–2300, [1310.1921]. Cerca con Google

[159] J. Kublbeck, M. Bohm and A. Denner, Feyn Arts: Computer Algebraic Generation of Feynman Graphs and Amplitudes, Comput. Phys. Commun. 60 (1990) 165–180. Cerca con Google

[160] T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun. 140 (2001) 418–431, [hep-ph/0012260]. Cerca con Google

[161] T. Hahn and M. Perez-Victoria, Automatized one loop calculations in four-dimensions and D-dimensions, Comput. Phys. Commun. 118 (1999) 153–165, [hep-ph/9807565]. Cerca con Google

[162] M. Ostrogradsky, Mémoire sur les équations différentielles relatives an probléme des isopérimétres. 1850. Cerca con Google

[163] C. Grosse-Knetter, Effective Lagrangians with higher derivatives and equations of motion, Phys. Rev. D49 (1994) 6709–6719, [hep-ph/9306321]. Cerca con Google

[164] S. Scherer and H. W. Fearing, Field transformations and the classical equation of motion in chiral perturbation theory, Phys. Rev. D52 (1995) 6445–6450, [hep-ph/9408298]. Cerca con Google

[165] C. Arzt, Reduced effective Lagrangians, Phys. Lett. B342 (1995) 189–195, [hep-ph/9304230]. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record