Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Mingardi, Damiano (2017) Analysis, design and test of high efficiency electrical machines with a rotor winding. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF (tesi di dottorato) - Versione accettata
11Mb

Abstract (inglese)

This thesis deals with the analysis, design and test of three-phase high efficiency electrical motors, with particular reference to motors with a rotor winding. At first, the background and the motivations of this work are described. The bibliography on the subjects is deeply examined and a selection of the most relevant papers can be found in the reference. In this scenario, the main objective of this thesis are illustrated.
The Line-Start (LS) Synchronous Machine (SyM) design is a subject under investigation since the beginning of the last century, when solid state power converters was not available to drive SyMs. The LS SyM diffusion was limited by the intrinsic difficulties in its design and by the availability of the cheaper and more robust Induction Machine (IM). The working principle of IM and LS SyM are briefly described, as well as the state of the art of the techniques of analysis. Recently, there is a renewed interest on LS SyMs due to the new efficiency requirements and fast analysis techniques are required for the LS SyM design.
A Finite-Element (FE) aided analytical model is developed to simulate the LS SyM dynamic. The aim is to develop a model that gives reliable solutions with limited computational efforts compared with other analysis techniques. With this procedure, the LS SyM rotor parameters can be quickly calibrated to fulfill the dynamic load requirements.
An innovative analysis technique of LS SyM steady state condition is described. Such an analysis is carried out in the same reference frame used for classical SyMs. It is shown that the analysis can be used to optimize some machine parameters.
The issues in LS SyM manufacturing are introduced, with particular reference to the die casting process. The possibility to apply the recent improvements in the SRM design to LS SyM is discussed from the manufacturing point of view. Stochastic optimization has been adopted for the design of electrical motors to reduce the torque ripple, increase the average torque and reduce the losses. The LS SyM torque ripple reduction, achieving at the same time a high average torque, is an important issue even though this topic is not treated extensively in the literature for LS SyM. For this reason, a stochastic optimization is considered in this thesis for the design of a new LS SyM lamination. The analysis is applied on a small size, 2-pole, three-phase LS SyM as this category is still not found in the motor market. The optimization is carried out considering the necessity to achieve a robust design, suitable for the industrial production, as such a LS SyM must be competitive with the workhorse of electrical motors, the IM. One of the most promising design is prototyped. Its performance are compared with the corresponding IM. To demonstrate the feasibility in adopting LS SyM in the large-scale production, an innovative LS SyM design is proposed. The main aim is to use the same lamination for motors of different number of poles so as to reduce the manufacturing cost. A tradeoff between contrasting aspects is necessary in the design step. The performance achievable by these rotor structures are quantified.
An analytical model that describes the mutual interaction between coupled electrical circuits in machines with complex rotor structure is developed. Such a model is useful to analyze the parasitic torques in the torque characteristic of motors with rotor cage such as IM and LS SyM. The literature reveals that this topic has been discussed extensively for IM. As regards LS SyM, there is a lack of theoretical studies regarding harmonic phenomena due to the complex machine structure. This part of the thesis aims to fill this gap.
The high and unstable cost of rare-earth PMs, together with the advances in solid-state control technology, leads designers to reconsider IM for variable speed drive (VSD) applications. To the aim of making the IM suitable for the full-speed sensorless control, a particular cage design is considered. An intentionally created saliency is introduced in the rotor so as to allow the rotor position to be estimated by means of a high frequency
(HF) injected signal in the stator winding also at zero-speed. Different experimental tests are carried out on IMs with asymmetrical rotor cage to validate the analysis techniques and quantify the achievable performance.
As far as the HF signal injection sensorless technique is concerned, the cross-saturation differential inductance of SyMs represents an issue. It causes a rotor position estimation error, reducing the region in which such technique is effective. The proper-ties of the cross-saturation inductance are deeply discussed. It is originally shown that the cross-saturation inductance depends from certain machine parameters. With such
an analysis, a designer can consider the effect of the cross-saturation inductance in any model-based control algorithm.
A rotor winding is added in Surface-mounted permanent-magnet machine (SPM) to create a HF anisotropy that is useful to detect the rotor position by means of a HF signal injection. Such a configuration is called ”ringed-pole”. In literature, this technique has been used on small-size machines. In certain configuration, the presence of the additional rotor winding causes significant rotor losses. This part of the thesis studies the rotor losses in ringed pole machines by means of FE analysis and analytical
models. The aim is to investigate if the ringed-pole technique can be adopted also for large machines from the point of view of additional losses. With few exceptions, the work described in this thesis is always supported by means of experimental measurements. Dedicated experiments has been designed. Their results are compared with those achieved with analytical models or FE analysis.

Abstract (italiano)

Questo lavoro di tesi è incentrato sull’analisi, la progettazione e la prototipazione di macchine elettriche trifase ad alto rendimento, con particolare riferimento a motori dotati di avvolgimenti rotorici. Inizialmente si descrivono le motivazioni di questo lavori di tesi e il contesto in cui essa si inserisce, illustrandone i principali obiettivi. Una dettagliata analisi bibliografica è alla base del lavoro svolto. Una selezione di questi lavori si trova nelle referenze. I motori sincroni autoavvianti (LS SyM) sono stati introdotti nella prima metà del novecento e la loro progettazione è soggetto di ricerca sin da allora. Essi non si sono mai affermati a causa della loro difficile progettazione e per la disponibilità del più robusto ed economico motore ad induzione (IM). Dopo aver descritto il principio di
funzionamento di IM e LS SyM, se ne illustrano le tecniche di analisi sviluppate fino al giorno d’oggi. Negli ultimi anni vi è un rinnovato interesse verso i LS SyM grazie agli stringenti requisiti di rendimento. Vi è quindi la necessità di tecniche di progettazione veloci ed affidabili per LS SyM.
I risultati di simulazioni agli elementi finiti sono stati combinati a modelli analitici per descrivere la complessa dinamica di LS SyM. L’obiettivo è quello di ottenere una risposta sufficientemente precisa in tempi molto più brevi rispetto ad altre tecniche di analisi. In questo modo si rende possibile una rapida e precisa calibrazione dei parametri rotorici necessari per soddisfare determinati requisiti di carico dinamico.
Parte di questa tesi è dedicata allo sviluppo di una tecnica di analisi per LS SyM in condizioni di regime. Tale analisi `e condotta nello stesso sistema di riferimento usato nei classici modelli per macchine sincrone non autoavvianti. Si mostra che l’analisi proposta permette anche di ottimizzare alcuni parametri di macchina.
Negli ultimi anni vi sono stati numerosi sviluppi nella progettazione di macchine sincrone a riluttanza, con o senza l’assistenza di magneti permanenti. In questa tesi si è voluto investigare sulla possibilità di applicare tali sviluppi ai LS SyM, tenendo in considerazione i vincoli costruttivi legati alla presenza della gabbia rotorica. Lo scopo è quello di ridurre il volume di magneti permanenti utilizzati per contenere i costi
di produzione. Si è affrontato il problema dell’industrializzazione dei LS SyM, con particolare riferimento al processo di pressofusione del rotore. Nell’intento di ridurre il ripple di coppia, incrementare la coppia media e ridurre le perdite dei motori elettrici, recenti lavori propongono l’utilizzo di algoritmi di ottimizzazione stocastica nella fase di progettazione. I suddetti obiettivi sono basilari anche per LS SyM, anche se per questo tipo di motori la letteratura è meno fornita. Per questo motivo si è voluto utilizzare un algoritmo di ottimizzazione nella fase di progettazione della lamiera di un LS SyM. L’analisi è applicata ad un LS SyM trifase a 2 poli di piccola taglia, dato che ancora non si trovano nei cataloghi dei principali costruttori. L’ottimizzazione è sviluppata considerando la necessità di ottenere un progetto robusto e comunque adatto alla produzione industriale, dato che tale LS SyM deve essere competitivo con l’ormai consolidato IM. Una promettente struttura rotorica è stata prototipata. Le prestazioni ottenute sono confrontate con quelle del corrispondente IM. Si è proposta un innovativa configurazione di LS SyM per dimostrare la fattibilità del loro utilizzo su scala industriale. Lo scopo è quello di utilizzare la stessa lamiera per motori con un diverso numero di poli, riducendo di conseguenza il costo di produzione. Per fare ciò è necessario un compromesso tra aspetti contrastanti nel progetto. In questa parte di tesi, si è voluto quantificare le prestazioni ottenibili da tali geometrie nelle diverse configurazioni.
In questa tesi si è sviluppato un modello analitico per caratterizzare l’interazione di circuiti elettrici accoppiati in strutture complesse quali quelle dei LS SyM. Questa analisi mira ad essere uno strumento per la determinazione analitica delle coppie parassite in motori dotati di gabbia rotorica come LS SyM e IM. La letteratura riporta un gran numero di lavori riguardanti la descrizione di coppie parassite nella caratteristica di coppia di motori IM. In LS SyM, l’analisi delle coppie parassite è molto più complessa a causa della struttura di macchina. In letteratura, gli studi analitici riguardanti gli effetti di armoniche di MMF in motori LS SyM sono pochi ed incompleti.
L’elevato ed instabile prezzo dei magneti permanenti, assieme allo straordinario sviluppo dell’elettronica allo stato solido, ha spinto a riconsiderare il motore ad induzione per applicazioni a velocità variabile. In questo scenario, si è considerato un avvolgimento rotorico a gabbia di scoiattolo in cui i conduttori sono asimmetrici. Tale asimmetria permette il riconoscimento sensorless della posizione rotorica tramite iniezione di segnali ad alta frequenza negli avvolgimenti di statore anche a velocità molto basse. Sono stati condotti test sperimentali su prototipi di IM con gabbia asimmetrica allo scopo di verificare le tecniche di analisi e di quantificare le prestazioni ottenibili da tali geometrie.
Proseguendo l’analisi delle problematiche riscontrate in controlli di tipo sensorless con iniezione di segnale, si sono approfondite le proprietà della mutua induttanza differenziale causata dal fenomeno della saturazione incrociata tra asse d e q in macchine sincrone. Essa causa un errore nella stima della posizione rotorica, riducendo di fatto l’applicabilità del controllo sensorless con iniezione di segnale. Dopo aver discusso in dettaglio le propriet`a di tale induttanza, si `e dimostrato che essa dipende
da alcuni parametri di macchina. Con i risultati ottenuti, può essere intrapresa una serie di accorgimenti nel controllo della macchina volta a mitigare l’effetto negativo dell’induttanza mutua dovuta alla saturazione incrociata.
Uno o più avvolgimenti rotorici possono essere introdotti anche in motori sincroni a magneti permanenti superficiali, allo scopo di estendere l’applicabilità del controllo sensorless con iniezione di segnale anche a questo tipo di motori. In questo tipo di macchine, denominate ”ringed-pole”, tali avvolgimenti rotorici possono essere sede di perdite importanti nel funzionamento a regime. In letteratura, questa tecnologia è stata applicata a motori di piccola taglia. In questo contesto, si sono studiate le perdite rotoriche di macchine ”ringed-pole” tramite analisi agli elementi finiti e modelli analitici. Lo scopo è quello di verificare se l’uso di tale tecnologia può essere esteso a macchine di taglia superiore dal punto di vista delle perdite rotoriche.
Con poche eccezioni, gli argomenti di questa tesi sono validati tramite misure sperimentali. I risultati delle prove sperimentali sono confrontati con quelli provenienti da modelli analitici o da analisi agli elementi finiti.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Bianchi, Nicola
Dottorato (corsi e scuole):Ciclo 29 > Corsi 29 > INGEGNERIA INDUSTRIALE
Data di deposito della tesi:24 Gennaio 2017
Anno di Pubblicazione:24 Gennaio 2017
Parole chiave (italiano / inglese):Line start, Efficiency, Power factor, Induction motor, Synchronous motor, Machine parameters, Inductance, Differential inductance, Cross saturation, Optimization, Reluctance motor, Reluctance assisted motor, Permanent Magnet, Starting performance, Steady state, Torque characteristic, Torque dip, Synchronous torque, Asynchronous torque, Losses, Rotor losses, Analytical model, Ringed pole, Sensorless, High frequency injection
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-IND/32 Convertitori, macchine e azionamenti elettrici
Struttura di riferimento:Dipartimenti > Dipartimento di Ingegneria Industriale
Codice ID:9908
Depositato il:14 Nov 2017 16:03
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] J. C. et al, “Consensus on consensus: a synthesis of consensus estimates on human-caused global warming,” environmental Research Letters, vol. 11, no. 4, 2016. Cerca con Google

[2] US president Barack Obama State of the Union speech, January 20, 2015. Cerca con Google

[3] Laudato si’ [Internet]. Available at: http://w2.vatican.va/ content/ francesco/en/ encyclicals/ documents/ papa-francesco 20150524 enciclica-laudato-si.html . Vai! Cerca con Google

[4] Islamic Declaration on Global Climate Change [Internet]. Available at: http://islamicclimatedeclaration.org/ islamic-declaration-on-global-climate-change/ . Vai! Cerca con Google

[5] P. F. et al, “Climate carbon cycle feedback analysis: Results from the c4mip model intercomparison,” Journal of Climate, vol. 19, no. 14, pp. 3337–3353, 2006. Cerca con Google

[6] M. G. Flanner, K. M. Shell, M. Barlage, D. K. Perovich, and M. A. Tschudi, “Radiative forcing and albedo feedback from the northern hemisphere cryosphere between 1979 and 2008,” Nature Geoscience, vol. 4, pp. 151–155, 2011. Cerca con Google

[7] B. D. Stocker, R. Roth, F. Joos, R. Spahni, M. Steinacher, S. Zaehle, L. Bouw-man, Xu-Ri, and I. C. Prentice, “Multiple greenhouse-gas feedbacks from the land biosphere under future climate change scenarios,” Nature Climate Change, vol. 3, pp. 666–672, 2013. Cerca con Google

[8] S. A. N. Ion Boldea, The Induction Machines Design Handbook, 2nd Ed. CRC Press. ISBN 978-1-4200-6668-5, 2010. Cerca con Google

[9] P. Vas, Sensorless Vector and Direct Torque Control. Oxford University Press. ISBN: 9780198564652, 1998. Cerca con Google

[10] N. Bianchi, S. Bolognani, and P. Frare, “Design criteria for high-efficiency spm synchronous motors,” IEEE Transactions on Energy Conversion, vol. 21, no. 2, pp. 396–404, June 2006. Cerca con Google

[11] E. Fornasiero, L. Alberti, N. Bianchi, and S. Bolognani, “Considerations on selecting fractional-slot nonoverlapped coil windings,” IEEE Transactions on Industry Applications, vol. 49, no. 3, pp. 1316–1324, May 2013. Cerca con Google

[12] M. Barcaro, A. Faggion, L. Sgarbossa, N. Bianchi, and S. Bolognani, “Performance evaluation of an integrated starter alternator using an interior permanent magnet machine,” IET Electric Power Applications, vol. 4, no. 7, pp. 539–546, Cerca con Google

August 2010. Cerca con Google

[13] M. Ferrari, N. Bianchi, and E. Fornasiero, “Analysis of rotor saturation in synchronous reluctance and pm-assisted reluctance motors,” IEEE Transactions on Industry Applications, vol. 51, no. 1, pp. 169–177, Jan 2015. Cerca con Google

[14] P. Guglielmi, B. Boazzo, E. Armando, G. Pellegrino, and A. Vagati, “Permanent-magnet minimization in pm-assisted synchronous reluctance motors for wide speed range,” IEEE Transactions on Industry Applications, vol. 49, no. 1, pp. Cerca con Google

31–41, Jan 2013. Cerca con Google

[15] J. K. Kostko, “Polyphase reaction synchronous motors,” Journal of the American Institute of Electrical Engineers, vol. 42, no. 11, pp. 1162–1168, Nov 1923. Cerca con Google

[16] R. R. Moghaddam, F. Magnussen, and C. Sadarangani, “Theoretical and experimental reevaluation of synchronous reluctance machine,” IEEE Transactions on Industrial Electronics, vol. 57, no. 1, pp. 6–13, Jan 2010. Cerca con Google

[17] A. de Almeida, F. Ferreira, and A. Quintino Duarte, “Technical and economical considerations on super high-efficiency three-phase motors,” IEEE Transactions on Industry Applications, vol. 50, no. 2, pp. 1274–1285, March 2014. Cerca con Google

[18] P. Lawrenson, R. M. Mathur, and J. Stephenson, “Transient performance of reluctance machines,” Proceedings of the Institution of Electrical Engineers, vol. 118, no. 6, pp. 777–783, June 1971. Cerca con Google

[19] V. Honsinger, “Permanent magnet machines: Asychronous operation,” IEEE Transactions on Power Apparatus and Systems, vol. PAS-99, no. 4, pp. 1503–1509, July 1980. Cerca con Google

[20] “Rotating electrical machines: Part 2-1: Standard methods for determining losses and efficiency from tests (excluding machines for traction vehicles), international standard IEC 60034-2-1, 2014.” Cerca con Google

[21] “Rotating electrical machines: Part 2-3: Specific test methods for determining losses and efficiency of converter-fed ac induction motors, international standard IEC 60034-2-3, 2013.” Cerca con Google

[22] “Rotating electrical machines: Part 30-1: Efficiency classes of line operated ac motors, international standard IEC 60034-30-1, 2014.” Cerca con Google

[23] A. de Almeida, F. Ferreira, and G. Baoming, “Beyond induction motors - technology trends to move up efficiency,” in IEEE/IAS 49th Industrial Commercial Power Systems Technical Conf (ICPS), Lakeview Drive Stone Mountain, GA, USA, 2013, pp. 1–13. Cerca con Google

[24] N. Tesla, “A new system of alternate current motors and transformers,” Transactions of the American Institute of Electrical Engineers, vol. V, no. 10, pp. 308–327, July 1888. Cerca con Google

[25] C. C. W. M. Liwschitz-Garik, Alternating-current machines, 2nd Ed. D. Van nostrand company, Inc., 2010. Cerca con Google

[26] V. H. B. Heller, Harmonic field effects in induction machines. elsevier scientific publishing company, ISBN: 978-0444998569, 1977. Cerca con Google

[27] K. J. Binns, R. Hindmarsh, and B. P. Short, “Effect of skewing slots on flux distribution in induction machines,” Proceedings of the Institution of Electrical Engineers, vol. 118, no. 3.4, pp. 543–549, March 1971. Cerca con Google

[28] J. Haataja and J. Pyrhonen, “Improving three-phase induction motor efficiency in europe,” Power Engineering Journal, vol. 12, no. 2, pp. 81–86, April 1998. Cerca con Google

[29] L. Alberti, N. Bianchi, A. Boglietti, and A. Cavagnino, “Core axial lengthening as effective solution to improve the induction motor efficiency classes,” IEEE Transactions on Industry Applications, vol. 50, no. 1, pp. 218–225, Jan 2014. Cerca con Google

[30] S. Williamson and C. I. McClay, “Optimization of the geometry of closed rotor slots for cage induction motors,” IEEE Transactions on Industry Applications, vol. 32, no. 3, pp. 560–568, May 1996. Cerca con Google

[31] S. Lie and C. D. Pietro, “Copper die-cast rotor efficiency improvement and economic consideration,” IEEE Transactions on Energy Conversion, vol. 10, no. 3, pp. 419–424, Sep 1995. Cerca con Google

[32] A. Boglietti, A. Cavagnino, L. Feraris, and M. Lazzari, “Energy-efficient motors,” IEEE Industrial Electronics Magazine, vol. 2, no. 4, pp. 32–37, December 2008. Cerca con Google

[33] T. J. E. Miller, “Synchronization of line-start permanent-magnet ac motors,” IEEE Transactions on Power Apparatus and Systems, vol. PAS-103, no. 7, pp. 1822–1828, 1984. Cerca con Google

[34] E. Richter, T. J. E. Miller, T. W. Neumann, and T. L. Hudson, “The ferrite permanent magnet ac motor—a technical and economical assessment,” IEEE Transactions on Industry Applications, vol. IA-21, no. 3, pp. 644–650, May 1985. Cerca con Google

[35] A. R. Munoz and T. A. Lipo, “Complex vector model of the squirrel-cage induction machine including instantaneous rotor bar currents,” IEEE Transactions on Industry Applications, vol. 35, no. 6, pp. 1332–1340, Nov 1999. Cerca con Google

[36] C. P. Steinmetz, “The alternating current induction motor,” Transactions of the American Institute of Electrical Engineers, vol. XIV, no. 1, pp. 183–217, Jan 1897. Cerca con Google

[37] G. Kron, Equivalent circuits of electric machinery, first edition. ed. New York: John Wiley, 1951. Cerca con Google

[38] D. G. Dorrell, T. J. E. Miller, and C. B. Rasmussen, “Inter-bar currents in induction machines,” IEEE Transactions on Industry Applications, vol. 39, no. 3, pp. 677–684, May 2003. Cerca con Google

[39] A. Boglietti, A. Cavagnino, and M. Lazzari, “Computational algorithms for induction-motor equivalent circuit parameter determination; part i: Resistances and leakage reactances,” IEEE Transactions on Industrial Electronics, vol. 58, no. 9, pp. 3723–3733, Sept 2011. Cerca con Google

[40] A. Boglietti, A. Cavagnino, and M. Lazzari,, “Computational algorithms for induction motor equivalent circuit parameter determination; part ii: Skin effect and magnetizing characteristics,” IEEE Transactions on Industrial Electronics, vol. 58, no. 9, pp. 3734–3740, Sept 2011. Cerca con Google

[41] L. Alberti, N. Bianchi, and S. Bolognani, “A very rapid prediction of im performance combining analytical and finite-element analysis,” IEEE Transactions on Industry Applications, vol. 44, no. 5, pp. 1505–1512, Sept 2008. Cerca con Google

[42] K. Delaere, R. Belmans, and K. Hameyer, “Influence of rotor slot wedges on stator currents and stator vibration spectrum of induction machines: a transient finite-element analysis,” IEEE Transactions on Magnetics, vol. 39, no. 3, pp. 1492–1494, May 2003. Cerca con Google

[43] L. Alberti, N. Bianchi, and S. Bolognani, “Variable-speed induction machine performance computed using finite-element,” IEEE Transactions on Industry Applications, vol. 47, no. 2, pp. 789–797, March 2011. Cerca con Google

[44] A. Knight and C. McClay, “The design of high-efficiency line-start motors,” IEEE Transactions on Industry Applications, vol. 36, no. 6, pp. 1555–1562, Nov 2000. Cerca con Google

[45] A. Aliabad, M. Mirsalim, and N. Ershad, “Line-start permanent-magnet motors: Significant improvements in starting torque, synchronization, and steady-state performance,” IEEE Transactions on Magnetics, vol. 46, no. 12, pp. 4066–4072, Dec 2010. Cerca con Google

[46] A. Isfahani and S. Vaez-Zadeh, “Effects of magnetizing inductance on start-up and synchronization of line-start permanent-magnet synchronous motors,” IEEE Transactions on Magnetics, vol. 47, no. 4, pp. 823–829, April 2011. Cerca con Google

[47] A. Takahashi, S. Kikuchi, H. Mikami, K. Ide, and A. Binder, “Reluctance torque utility for line-starting permanent magnet motors,” IEEE Transactions on Energy Conversion, vol. 28, no. 4, pp. 805–814, 2013. Cerca con Google

[48] M. Popescu, T. J. E. Miller, M. McGilp, G. Strappazzon, N. Trivillin, and R. Santarossa, “Line-start permanent-magnet motor: single-phase starting performance analysis,” IEEE Transactions on Industry Applications, vol. 39, no. 4, pp. 1021–1030, 2003. Cerca con Google

[49] T. Miller, M. Popescu, C. Cossar, M. McGilp, G. Strappazzon, N. Trivillin, and R. Santarossa, “Line-start permanent-magnet motor single-phase steady-state performance analysis,” IEEE Transactions on Industry Applications, vol. 40, no. 2, pp. 516–525, March 2004. Cerca con Google

[50] M. Popescu, T. J. E. Miller, M. McGilp, G. Strappazzon, R. Santarossa, and N. Trivillin, “Asynchronous performance analysis of a single-phase capacitor-start, capacitor-run permanent magnet motor,” IEEE Transactions on Energy Conversion, vol. 20, no. 1, pp. 142–150, March 2005. Cerca con Google

[51] B. taek Kim and B.-I. Kwon, “Influence of space harmonics on starting performance of a single-phase line start permanent-magnet motor,” IEEE Transactions on Magnetics, vol. 44, no. 12, pp. 4668–4672, 2008. Cerca con Google

[52] K. Kurihara, T. Kubota, and M. Hori, “Steady-state and transient performance analysis for a single-phase capacitor-run permanent-magnet motor with skewed rotor slots,” IEEE Transactions on Industrial Electronics, vol. 57, no. 1, pp. 44–51, Jan 2010. Cerca con Google

[53] M. A. Rahman, A. M. Osheiba, K. Kurihara, M. A. Jabbar, H.W. Ping, K.Wang, and H. M. Zubayer, “Advances on single-phase line-start high efficiency interior permanent magnet motors,” IEEE Transactions on Industrial Electronics, vol. 59, no. 3, pp. 1333–1345, March 2012. Cerca con Google

[54] S. F. Rabbi and M. A. Rahman, “Critical criteria for successful synchronization of line-start ipm motors,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 2, no. 2, pp. 348–358, June 2014. Cerca con Google

[55] R. T. Ugale and B. N. Chaudhari, “Rotor configurations for improved starting and synchronous performance of line start permanent magnet synchronous motor,” IEEE Transactions on Industrial Electronics, vol. PP, no. 99, pp. 1–1, 2016. Cerca con Google

[56] M. Popescu, T. J. E. Miller, M. McGilp, D. M. Ionel, and S. J. Dellinger, “A unified approach to the synchronous performance analysis of single and poly-phase line-fed interior permanent magnet motors,” in Conference Record of the 42nd IEEE Industry Applications Annual Meeting, Sept 2007, pp. 148–153. Cerca con Google

[57] M. Popescu, T. J. E. Miller, M. McGilp, F. J. H. Kalluf, C. da Silva, and L. Von Dokonal, “Effect of winding harmonics on the asynchronous torque of a single-phase line-start permanent-magnet motor,” in Conference Record of the Fourtieth IEEE Industry Applications Annual Meeting, vol. 4, Oct 2005, pp. 2820–2827. Cerca con Google

[58] H.-P. Nee, L. Lefevre, P. Thelin, and J. Soulard, “Determination of d and q reactances of permanent-magnet synchronous motors without measurements of the rotor position,” IEEE Transactions on Industry Applications, vol. 36, no. 5, pp. 1330–1335, Sep 2000. Cerca con Google

[59] T. Marcic, G. Stumberger, B. Stumberger, M. Hadziselimovic, and P. Virtic, “Determining parameters of a line-start interior permanent magnet synchronous motor model by the differential evolution,” IEEE Transactions on Magnetics, vol. 44, no. 11, pp. 4385–4388, Nov 2008. Cerca con Google

[60] S. Boroujeni, N. Bianchi, and L. Alberti, “Fast estimation of line-start reluctance machine parameters by finite element analysis,” IEEE Transactions on Energy Conversion, vol. 26, no. 1, pp. 1–8, 2011. Cerca con Google

[61] G.-H. Kang, J. Hur, H. Nam, J.-P. Hong, and G.-T. Kim, "Analysis of irreversible magnet demagnetization in line-start motors based on the finite-element method" IEEE Transactions on Magnetics, vol. 39, no. 3, pp. 1488–1491, May 2003. Cerca con Google

[62] C. K. Lee, B. I. Kwon, B. T. Kim, K. I. Woo, and M. G. Han, “Analysis of magnetization of magnet in the rotor of line start permanent magnet motor,” IEEE Transactions on Magnetics, vol. 39, no. 3, pp. 1499–1502, May 2003. Cerca con Google

[63] K. Kurihara and M. A. Rahman, “High-efficiency line-start interior permanent-magnet synchronous motors,” IEEE Transactions on Industry Applications,vol. 40, no. 3, pp. 789–796, May 2004. Cerca con Google

[64] C. K. Lee and B. I. Kwon, “Design of post-assembly magnetization system of line start permanent-magnet motors using fem,” IEEE Transactions on Magnetics, vol. 41, no. 5, pp. 1928–1931, May 2005. Cerca con Google

[65] T. Hosoi, H. Watanabe, K. Shima, T. Fukami, R. Hanaoka, and S. Takata, “Demagnetization analysis of additional permanent magnets in salient-pole synchronous machines with damper bars under sudden short circuits,” IEEE Transactions on Industrial Electronics, vol. 59, no. 6, pp. 2448–2456, June 2012. Cerca con Google

[66] P. J. Lawrenson and R. M. Mathur, “Pull-in criterion for reluctance motors,” Proceedings of the Institution of Electrical Engineers, vol. 120, no. 9, pp. 982–986, September 1973. Cerca con Google

[67] A. Takahashi, S. Kikuchi, K. Miyata, and A. Binder, “Asynchronous torque of line-starting permanent-magnet synchronous motors,” IEEE Transactions on Energy Conversion, vol. 30, no. 2, pp. 498–506, June 2015. Cerca con Google

[68] G. F. T. Widger and B. Adkins, “Starting performance of synchronous motors with solid salient poles,” Proceedings of the Institution of Electrical Engineers, vol. 115, no. 10, pp. 1471–1484, October 1968. Cerca con Google

[69] P. K. Kovacs, Transient phenomena in electrical machines. Elsevier Science Ltd, ISBN: 978-0444996633, 1984. Cerca con Google

[70] H. L. Garbarino and E. T. B. Gross, “The Goerges phenomenon-induction motors with unbalanced rotor impedances,” Transactions of the American Institute of Electrical Engineers, vol. 69, no. 2, pp. 1569–1575, Jan 1950. Cerca con Google

[71] J. M. Stephenson and P. J. Lawrenson, “Average asynchronous torque of synchronous machines, with particular reference to reluctance machines,” Electrical Engineers, Proceedings of the Institution of, vol. 116, no. 6, pp. 1049–1051, June 969. Cerca con Google

[72] M. Gamba, G. Pellegrino, A. Vagati, and F. Villata, “Design of a line-start synchronous reluctance motor,” in IEEE International Electric Machines Drives Conference (IEMDC), 12-15 may, 2013, pp. 648–655. Cerca con Google

[73] L. Alberti, N. Bianchi, and S. Bolognani, “A very rapid prediction of IM performance combining analytical and finite-element analysis,” IEEE Transactions on Industry Applications, vol. 44, no. 5, pp. 1505–1512, Sept 2008. Cerca con Google

[74] G. Yang, J. Ma, J.-X. Shen, and Y. Wang, “Optimal design and experimental verification of a line-start permanent magnet synchronous motor,” in International Conference on Electrical Machines and Systems, ICEMS, Oct 2008, pp.3232–3236. Cerca con Google

[75] M. Morandin, S. Bolognani, and A. Faggion, “Active torque damping for an ice-based domestic chp system with an spm machine drive,” IEEE Transactions on Industry Applications, vol. 51, no. 4, pp. 3137–3146, July 2015. Cerca con Google

[76] L. Alberti, N. Bianchi, and S. Bolognani, “Lamination design of a set of induction motors for elevator systems,” in IEEE International Electric Machines Drives Conference, Antalya, Turkey, May, vol. 1, May 2007, pp. 514–518. Cerca con Google

[77] F. Ferreira, G. Baoming, and A. de Almeida, “Stator winding connection-mode management in line-start permanent magnet motors to improve their efficiency and power factor,” IEEE Transactions on Energy Conversion, vol. 28, no. 3, pp. 523–534, Sept 2013. Cerca con Google

[78] C. Debruyne, M. Polikarpova, S. Derammelaere, P. Sergeant, J. Pyrhonen, J. Desmet, and L. Vandevelde, “Evaluation of the efficiency of line-start permanent-magnet machines as a function of the operating temperature,” IEEE Transactions on Industrial Electronics, vol. 61, no. 8, pp. 4443–4454, Aug 2014. Cerca con Google

[79] M. Barcaro and N. Bianchi, “Interior pm machines using ferrite to replace rare-earth surface pm machines,” IEEE Transactions on Industry Applications, vol. 50, no. 2, pp. 979–985, March 2014. Cerca con Google

[80] T. Miller, M. Popescu, C. Cossar, M. McGilp, G. Strappazzon, N. Trivillin, and R. Santarossa, “Line-start permanent magnet motor-single-phase steady-state performance analysis,” in Conference Record of the 38th IEEE Industry Applications Annual Meeting., vol. 3, Oct 2003, pp. 1962–1969. Cerca con Google

[81] M. J. Melfi, S. D. Umans, and J. E. Atem, “Viability of highly efficient multi-horsepower line-start permanent-magnet motors,” IEEE Transactions on Industry Applications, vol. 51, no. 1, pp. 120–128, Jan 2015. Cerca con Google

[82] J. Li, J. Song, and Y. Cho, “High performance line start permanent magnet synchronous motor for pumping system,” in IEEE International Symposium on Industrial Electronics (ISIE), July 2010, pp. 1308–1313. Cerca con Google

[83] G. Y. Sizov, P. Zhang, D. M. Ionel, N. A. O. Demerdash, and M. Rosu, “Automated multi-objective design optimization of pm ac machines using computationally efficient fea and differential evolution,” IEEE Transactions on Industry Applications, vol. 49, no. 5, pp. 2086–2096, Sept 2013. Cerca con Google

[84] R. R. Moghaddam and F. Gyllensten, “Novel high-performance synrm design method: An easy approach for a complicated rotor topology,” IEEE Transactions on Industrial Electronics, vol. 61, no. 9, pp. 5058–5065, Sept 2014. Cerca con Google

[85] F. Cupertino, G. Pellegrino, and C. Gerada, “Design of synchronous reluctance motors with multiobjective optimization algorithms,” IEEE Transactions on Industry Applications, vol. 50, no. 6, pp. 3617–3627, Nov 2014. Cerca con Google

[86] G. Pellegrino, F. Cupertino, and C. Gerada, “Automatic design of synchronous reluctance motors focusing on barrier shape optimization,” IEEE Transactions on Industry Applications, vol. 51, no. 2, pp. 1465–1474, March 2015. Cerca con Google

[87] M. Gamba, E. Armando, G. Pellegrino, A. Vagati, B. Janjic, and J. Schaab, “Line-start synchronous reluctance motors: Design guidelines and testing via active inertia emulation,” in IEEE Energy Conversion Congress and Exposition (ECCE), Sept 2015, pp. 4820–4827. Cerca con Google

[88] L. Gasparin and R. Fiser, “Intensity of the native and additional harmonic components in cogging torque due to design parameters of permanent-magnet motors,” in International Conference on Power Electronics and Drive Systems (PEDS), Nov 2009, pp. 1062–1067. Cerca con Google

[89] A. Vagati, M. Pastorelli, G. Francheschini, and S. Petrache, “Design of low-torque-ripple synchronous reluctance motors,” IEEE Transactions on Industry Applications, vol. 34, no. 4, pp. 758–765, Jul 1998. Cerca con Google

[90] R. Ugale, B. Chaudhari, S. Baka, S. Dambhare, and A. Pramanik, “Induced pole rotor structure for line start permanent magnet synchronous motors,” Electric Power Applications (IET), vol. 8, no. 4, pp. 131–140, April 2014. Cerca con Google

[91] A. Arkkio, “Synchronous torques of a cage induction motor from time-discretized finite element analysis,” in International Conference on Electrical Machines and Systems (ICEMS), Aug 2011, pp. 1–5. Cerca con Google

[92] R. B. Robinson, “Harmonics in a.c. rotating machines,” Proceedings of the IEE - Part C: Monographs, vol. 109, no. 16, pp. 380–387, September 1962. Cerca con Google

[93] R. B. Robinson, “Inductance coefficients of rotating machines expressed in terms of winding Cerca con Google

space harmonic,” Electrical Engineers, Proceedings of the Institution of, vol. 111, no. 4, pp. 769–774, April 1964. Cerca con Google

[94] T. H. Barton and J. C. Dunfield, “Inductances of a practical slip-ring primitive i - an analytical study,” IEEE Transactions on Power Apparatus and Systems, vol. PAS-85, no. 2, pp. 140–145, Feb 1966. Cerca con Google

[95] B. Wymeersch, F. D. Belie, C. B. Rasmussen, F. Jensen, and L. Vandevelde, “Mutual-inductance modelling in line-start permanent-magnet synchronous machines based on winding-function theory,” in International Electric Machines Drives Conference (IEMDC), May 2013, pp. 607–611. Cerca con Google

[96] P. J. Lawrenson and R. M. Mathur, “Asynchronous performance of reluctance machines allowing for irregular distributions of rotor conductors,” Proceedings of the Institution of Electrical Engineers, vol. 119, no. 3, pp. 318–324, March 1972. Cerca con Google

[97] H. R. Fudeh and C. M. Ong, “Modeling and analysis of induction machines containing space harmonics, part i: Modeling and transformation,” IEEE Power Engineering Review, vol. PER-3, no. 8, pp. 41–42, Aug 1983. Cerca con Google

[98] J. Holtz, “Sensorless control of induction motor drives,” Proceedings of the IEEE, vol. 90, no. 8, pp. 1359–1394, 2002. Cerca con Google

[99] J. Holtz, “Sensorless control of induction machines; with or without signal injection" IEEE Transactions on Industrial Electronics, vol. 53, no. 1, pp. 7–30, 2005. Cerca con Google

[100] M. Degner and R. Lorenz, “Using multiple saliencies for the estimation of flux, position, and velocity in ac machines,” IEEE Transactions on Industry Applications, vol. 34, no. 5, pp. 1097–1104, 1998. Cerca con Google

[101] J.-I. Ha and S.-K. Sul, “Physical understanding of high frequency injection method to sensorless drives of an induction machine,” in Conference Record of the IEEE Industry Applications, vol. 3, 2000, pp. 1802–1808. Cerca con Google

[102] A. Consoli, G. Bottiglieri, G. Scarcella, and G. Scelba, “Flux and voltage calculations of induction motors supplied by low- and high-frequency currents,” IEEE Transactions on Industry Applications, vol. 45, no. 2, pp. 737–746, March 2009. Cerca con Google

[103] L. Alberti, N. Bianchi, M. Morandin, and J. Gyselinck, “Finite-element analysis of electrical machines for sensorless drives with high-frequency signal injection,” IEEE Transactions on Industry Applications, vol. 50, no. 3, pp. 1871–1879, May 2014. Cerca con Google

[104] Y.-D. Yoon and S.-K. Sul, “Sensorless control for induction machines based on square-wave voltage injection,” IEEE Transactions on Power Electronics, vol. 29, no. 7, pp. 3637–3645, July 2014. Cerca con Google

[105] J. Cilia, G. Asher, K. Bradley, and M. Sumner, “Sensorless position detection for vector-controlled induction motor drives using an asymmetric outer-section cage,” IEEE Transactions on Industry Applications, vol. 33, no. 5, pp. 1162–1169, Sep 1997. Cerca con Google

[106] P. Jansen and R. Lorenz, “Transducerless field orientation concepts employing saturation-induced saliencies in induction machines,” IEEE Transactions on Industry Applications, vol. 32, no. 6, pp. 1380–1393, 1996. Cerca con Google

[107] M. Degner and R. Lorenz, “Position estimation in induction machines utilizing rotor bar slot harmonics and carrier-frequency signal injection,” IEEE Transactions on Industry Applications, vol. 36, no. 3, pp. 736–742, May 2000. Cerca con Google

[108] N. Teske, G. Asher, M. Sumner, and K. Bradley, “Encoderless position estimation for symmetric cage induction machines under loaded conditions,” IEEE Transactions on Industry Applications, vol. 37, no. 6, pp. 1793–1800, Nov 2001. Cerca con Google

[109] S. Nandi, S. Ahmed, H. Toliyat, and R. Mohan Bharadwaj, “Selection criteria of induction machines for speed-sensorless drive applications,” IEEE Transactions on Industry Applications, vol. 39, no. 3, pp. 704–712, May 2003. Cerca con Google

[110] P. Jansen and R. Lorenz, “Transducerless position and velocity estimation in induction and salient ac machines,” IEEE Transactions on Industry Applications, vol. 31, no. 2, pp. 240–247, 1995. Cerca con Google

[111] J. Holtz, “Sensorless position control of induction motors-an emerging technology,” IEEE Transactions on Industrial Electronics, vol. 45, no. 6, pp. 840–851, 1998. Cerca con Google

[112] N. Teske, G. Asher, M. Sumner, and K. Bradley, “Suppression of saturation saliency effects for the sensorless position control of induction motor drives under loaded conditions,” IEEE Transactions on Industrial Electronics, vol. 47, no. 5, pp. 1142–1150, Oct 2000. Cerca con Google

[113] J. Holtz and H. Pan, “Elimination of saturation effects in sensorless position-controlled induction motors,” IEEE Transactions on Industry Applications, vol. 40, no. 2, pp. 623–631, March 2004. Cerca con Google

[114] F. Briz, M. Degner, A. Diez, and R. Lorenz, “Measuring, modeling, and decoupling of saturation-induced saliencies in carrier-signal injection-based sensorless ac drives,” IEEE Transactions on Industry Applications, vol. 37, no. 5, pp. 1356–1364, Sep 2001. Cerca con Google

[115] N. Teske, G. Asher, K. Bradley, and M. Summer, “Analysis and suppression of inverter clamping saliency in sensorless position controlled induction machine drives,” in Conference Record of the Thirty-Sixth IEEE IAS Annual Meeting, vol. 4, Sept 2001, pp. 2629–2636 vol.4. Cerca con Google

[116] M. Samonig and T. Wolbank, “Prediction of slotting saliency in induction machines with respect to high-frequency-excitation based sensorless control,” in 40th Annual Conference of the IEEE Industrial Electronics Society (IECON), Oct 2014, pp. 794–799. Cerca con Google

[117] M. Cirrincione, M. Pucci, G. Cirrincione, and A. Miraoui, “Space-vector state model of induction machines including rotor slotting effects: Toward a new category of observers,” IEEE Transactions on Industry Applications, vol. 44, no. 6, pp. 1683–1692, Nov 2008. Cerca con Google

[118] L. Alberti, N. Bianchi, and S. Boroujeni, “Finite element estimation of induction motor parameters for sensorless applications,” COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. Vol. 31 No. 1, pp. pp. 191–205, 2012. Cerca con Google

[119] L. Alberti, N. Bianchi, and S. Bolognani, “High frequency d-q model of synchronous machines for sensorless control,” IEEE Transactions on Industry Applications, vol. PP, no. 99, pp. 1–1, 2015. Cerca con Google

[120] N. Bianchi, M. Degano, and E. Fornasiero, “Sensitivity analysis of torque ripple reduction of synchronous reluctance and interior pm motors,” IEEE Transactions on Industry Applications, vol. 51, no. 1, pp. 187–195, Jan 2015. Cerca con Google

[121] J. Barral, R. Bonnefille, S. Henry, and J. Mesiere, “Contribution to the modelisation of satured synchronous machines,” in Conference Proceedings of the first International Conference of Electrical Machines (ICEM), Helsinki, Finland, October 1980. Cerca con Google

[122] N. Bianchi, D. Durello, and A. Fasolo, “Relationship between rotor losses and size of permanent-magnet machines,” IEEE Transactions on Industry Applications, vol. 49, no. 5, pp. 2015–2023, Sept 2013. Cerca con Google

[123] P. Guglielmi, M. Pastorelli, and A. Vagati, “Cross-saturation effects in IPM motors and related impact on sensorless control,” IEEE Trans. on Industry Applications, vol. 42, no. 6, pp. 1516–1522, Nov 2006. Cerca con Google

[124] M. Morandin, A. Faggion, and S. Bolognani, “Integrated starter/alternator with sensorless ringed-pole PM synchronous motor drive,” IEEE Transactions on Industry Applications, vol. 51, no. 2, pp. 1485–1493, March 2015. Cerca con Google

[125] E. Capecchi, P. Guglielmi, M. Pastorelli, and A. Vagati, “Position-sensorless control of the transverse-laminated synchronous reluctance motor,” IEEE Trans. on Industry Applications, vol. 37, no. 6, pp. 1768–1776, Nov 2001. Cerca con Google

[126] P. Guglielmi, M. Pastorelli, G. Pellegrino, and A. Vagati, “Position-sensorless control of permanent-magnet-assisted synchronous reluctance motor,” IEEE Trans. on Industry Applications, vol. 40, no. 2, pp. 615–622, March 2004. Cerca con Google

[127] M. Seilmeier, S. Ebersberger, and B. Piepenbreier, “PMSM model for sensorless control considering saturation induced secondary saliencies,” in IEEE International Symposium on Sensorless Control for Electrical Drives and Predictive Control of Electrical Drives and Power Electronics (SLED/PRECEDE), Munich, Germany, October 2013, pp. 1–8. Cerca con Google

[128] P. Guglielmi, M. Pastorelli, and A. Vagati, “Impact of cross-saturation in sensorless control of transverse-laminated synchronous reluctance motors,” IEEE Transactions on Industrial Electronics, vol. 53, no. 2, pp. 429–439, April 2006. Cerca con Google

[129] P. Garcia, F. Briz, D. Raca, and R. Lorenz, “Saliency-tracking-based sensorless control of ac machines using structured neural networks,” IEEE Trans. on Industry Applications, vol. 43, no. 1, pp. 77–86, Jan 2007. Cerca con Google

[130] N. Bianchi, E. Fornasiero, and S. Bolognani, “Effect of stator and rotor saturation on sensorless rotor position detection,” IEEE Trans. on Industry Applications, vol. 49, no. 3, pp. 1333–1342, May 2013. Cerca con Google

[131] L. Alberti, N. Bianchi, M. Morandin, and S. Bolognani, “Analysis and tests of the sensorless rotor position detection of ringed-pole permanent-magnet motor,” IEEE Transactions on Industry Applications, vol. 50, no. 5, pp. 3278–3284, Sept 2014. Cerca con Google

[132] D. Reigosa, P. Garcia, D. Raca, F. Briz, and R. Lorenz, “Measurement and adaptive decoupling of cross-saturation effects and secondary saliencies in sensorless controlled IPM synchronous machines,” IEEE Trans. on Industry Applications, vol. 44, no. 6, pp. 1758–1767, Nov 2008. Cerca con Google

[133] N. Bianchi, S. Bolognani, J.-H. Jang, and S.-K. Sul, “Comparison of PM motor structures and sensorless control techniques for zero-speed rotor position detection,” IEEE Trans. on Power Electronics, vol. 22, no. 6, pp. 2466–2475, Nov 2007. Cerca con Google

[134] L. Alberti, N. Bianchi, and S. Bolognani, “Comparison of different synchronous machines for sensorless drives,” in 39th Annual Conference of the IEEE Industrial Electronics Society (IECON), Vienna, Austria, Nov. 2013, pp. 8220–8226. Cerca con Google

[135] P. Sergeant, F. De Belie, and J. Melkebeek, “Rotor geometry design of interior PMSMs with and without flux barriers for more accurate sensorless control,” IEEE Trans. on Industrial Electronics, vol. 59, no. 6, pp. 2457–2465, June 2012. Cerca con Google

[136] Y. Kano, T. Kosaka, N. Matsui, and T. Nakanishi, “Design of saliency-based sensorless drive IPM motors for general industrial applications,” in IEEE Industry Applications Society (IAS) Annual Meeting, Edmonton, Canada, October 2008, pp. 1–6. Cerca con Google

[137] N. Bianchi and S. Bolognani, “Influence of rotor geometry of an interior pm motor on sensorless control feasibility,” in Conference Record of the Fourtieth IEEE IAS Annual Meeting, Hong Kong, October 2005, pp. 2553–2560. Cerca con Google

[138] V. Manzolini, M. Morandin, and S. Bolognani, “D-axis polarity detection for IPM synchronous motor drives by high frequency voltage injection,” in accepted for publication in the proceedings of The 42nd Annual Conference of IEEE Industrial Electronics Society (IECON), Firenze, October 2016. Cerca con Google

[139] N. Bianchi, S. Bolognani, A. Faggion, and E. Fornasiero, “Analysis and experimental tests of the sensorless capability of a fractional-slot inset PM motor,” IEEE Trans. on Industry Applications, vol. 51, no. 1, pp. 224–231, Jan 2015. Cerca con Google

[140] M. Barcaro, M. Morandin, T. Pradella, N. Bianchi, and I. Furlan, “Iron saturation impact on high frequency sensorless control of synchronous permanent magnets motor,” in XXII International Conference on Electrical Machines (ICEM), Lausanne, Switzerland, September 2016. Cerca con Google

[141] J. Melkebeek and J. Willems, “Reciprocity relations for the mutual inductances between orthogonal axis windings in saturated salient-pole machines,” IEEE Trans. on Industry Applications, vol. 26, no. 1, pp. 107–114, Jan 1990. Cerca con Google

[142] M. Morandin and S. Bolognani, “Locked rotor characterization tests of ipm/rel synchronous machine for sensorless drives,” in 8th IET International Conference on Power Electronics, Machines and Drives (PEMD), Glasgow, Scotland, UK, April 2016, pp. 1–6. Cerca con Google

[143] J.-H. Jang, S.-K. Sul, J.-I. Ha, K. Ide, and M. Sawamura, “Sensorless drive of SMPM motor by high frequency signal injection,” in Seventeenth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Dallas, Texas, October 2002, pp. 279–285. Cerca con Google

[144] J.-I. Ha, K. Ide, T. Sawa, and S.-K. Sul, “Sensorless rotor position estimation of an Cerca con Google

interior permanent-magnet motor from initial states,” IEEE Trans. on Industry Applications, vol. 39, no. 3, pp. 761–767, May 2003. Cerca con Google

[145] N. Bedetti, S. Calligaro, and R. Petrella, “Accurate modeling, compensation and self-commissioning of inverter voltage distortion for high-performance motor drives,” in IEEE Applied Power Electronics Conference Exposition (APEC), Texas, USA, March 2014, pp. 1550–1557. Cerca con Google

[146] T. Nondahl, C. Ray, P. Schmidt, and M. Gasperi, “A permanent-magnet rotor containing an electrical winding to improve detection of rotor angular position,” IEEE Transactions on Industry Applications, vol. 35, no. 4, pp. 819–824, Jul 1999. Cerca con Google

[147] N. Bianchi, S. Bolognani, and A. Faggion, “Rotor design arrangement of SPM motors for the sensorless control at low speed and standstill,” in 14th International on Power Electronics and Motion Control Conference (EPE/PEMC), Sept 2010, pp. S1–23–S1–28. Cerca con Google

[148] A. Faggion, N. Bianchi, and S. Bolognani, “Ringed-pole permanent-magnet synchronous motor for position sensorless drives,” IEEE Transactions on Industry Applications, vol. 47, no. 4, pp. 1759–1766, July 2011. Cerca con Google

[149] M. Morandin, S. Bolognani, and A. Faggion, “Outer-rotor ringed-pole SPM starter-alternator suited for sensorless drives,” in 2011 Symposium on Sensorless Control for Electrical Drives (SLED), 2011, pp. 96–101. Cerca con Google

[150] M. Morandin, A. Faggion, and S. Bolognani, “Integrated starter alternator with sensorless ringed-pole pm synchronous motor drive,” IEEE Transactions on Industry Applications, vol. 51, no. 2, pp. 1485–1493, March 2015. Cerca con Google

[151] J. Graus and I. Hahn, “Modelling and optimization of a short-circuited rotor winding of a PMSM for saliency tracking,” in 5th IEEE International Symposium on Sensorless Control for Electrical Drives (SLED), May 2014, pp. 1–8. Cerca con Google

[152] N. Bianchi and E. Fornasiero, “Impact of MMF Space Harmonic on Rotor Losses in Fractional-slot Permanent-magnet Machines,” IEEE Transactions on Energy Conversion, vol. 24, no. 2, pp. 323–328, Jun. 2009. Cerca con Google

[153] N. Bianchi, S. Bolognani, and E. Fornasiero, “An overview of rotor losses determination in three-phase fractional-slot PM machines,” IEEE Transactions on Industry Applications, vol. 46, no. 6, pp. 2338–2345, Nov 2010. Cerca con Google

[154] E. Fornasiero, N. Bianchi, and S. Bolognani, “Slot harmonic impact on rotor losses in fractional-slot permanent-magnet machines,” IEEE Transactions on Industrial Electronics, vol. 59, no. 6, pp. 2557–2564, June 2012. Cerca con Google

[155] J. Wang, K. Atallah, R. Chin, W. Arshad, and H. Lendenmann, “Rotor eddy-current loss in permanent-magnet brushless ac machines,” IEEE Transactions on Magnetics, vol. 46, no. 7, pp. 2701–2707, July 2010. Cerca con Google

[156] H. V. Xuan, D. Lahaye, M. Hoeijmakers, H. Polinder, and J. Ferreira, “Studying rotor eddy current loss of PM machines using nonlinear FEM including rotor motion,” in XIX International Conference on Electrical Machines (ICEM), Sept 2010, pp. 1–7. Cerca con Google

[157] L. Alberti, E. Fornasiero, N. Bianchi, and S. Bolognani, “Rotor losses measurements in an axial flux permanent magnet machine,” IEEE Transactions on Energy Conversion, vol. 26, no. 2, pp. 639–645, June 2011. Cerca con Google

[158] L. Alberti, E. Fornasiero, and N. Bianchi, “Impact of the rotor yoke geometry on rotor losses in permanent-magnet machines,” IEEE Transactions on Industry Applications, vol. 48, no. 1, pp. 98–105, Jan 2012. Cerca con Google

[159] L. Wu, Z. Zhu, D. Staton, M. Popescu, and D. Hawkins, “Analytical model for predicting magnet loss of surface-mounted permanent magnet machines accounting for slotting effect and load,” IEEE Trans. on Magnetics, vol. 48, no. 1, pp. 107–117, Jan 2012. Cerca con Google

[160] D. Ishak, Z. Zhu, and D. Howe, “Eddy-current loss in the rotor magnets of permanent-magnet brushless machines having a fractional number of slots per pole,” IEEE Transactions on Magnetics, vol. 41, no. 9, pp. 2462–2469, Sept 2005. Cerca con Google

[161] N. Bianchi, S. Bolognani, and A. Faggion, “A ringed-pole SPM motor for sensorless drives - electromagnetic analysis, prototyping and tests,” in 2010 IEEE International Symposium on Industrial Electronics (ISIE), 2010, pp. 1193–1198. Cerca con Google

[162] S. Sharkh, A. Qazalbash, N. T. Irenji, and R. G. Wills, “Effect of slot configuration and airgap and magnet thicknesses on rotor electromagnetic loss in surface PM synchronous machines,” in International Conference on Electrical Machines and Systems (ICEMS), Aug 2011, pp. 1–6. Cerca con Google

[163] D. Wills and M. Kamper, “Analytical prediction of rotor eddy current loss due to stator slotting in PM machines,” in IEEE Energy Conversion Congress and Exposition (ECCE), Sept 2010, pp. 992–995. Cerca con Google

[164] J. Pyrhonen, H. Jussila, Y. Alexandrova, P. Rafajdus, and J. Nerg, “Harmonic loss calculation in rotor surface PM - new analytic approach,” IEEE Trans. On Magnetics, vol. 48, no. 8, pp. 2358–2366, Aug 2012. Cerca con Google

[165] H. V. Xuan, D. Lahaye, H. Polinder, and J. Ferreira, “Influence of stator slotting on the performance of PM machines with concentrated windings,” IEEE Trans. on Magnetics, vol. 49, no. 2, pp. 929–938, Feb 2013. Cerca con Google

[166] F. Martin, M.-H. Zaim, A. Tounzi, and N. Bernard, “Improved analytical determination of eddy current losses in surface mounted PM of synchronous machine,” IEEE Trans. on Magnetics, vol. 50, no. 6, pp. 1–9, June 2014. Cerca con Google

[167] M. Andriollo, G. Bettanini, A. Morini, G. Martinelli, and A. Tortella, “Efficiency comparison of in-wheel PM motors for bus propulsion,” in XVII International Conference on Electrical Machines (ICEM), 2006. Cerca con Google

[168] H. Polinder and M. Hoeijmakers, “Eddy-current losses in the segmented surface-mounted magnets of a PM machine,” IEE Proceedings on Electric Power Applications, vol. 146, no. 3, pp. 261–266, May 1999. Cerca con Google

[169] W.-Y. Huang, A. Bettayeb, R. Kaczmarek, and J.-C. Vannier, “Optimization of magnet segmentation for reduction of eddy-current losses in permanent magnet synchronous machine,” IEEE Transactions on Energy Conversion, vol. 25, no. 2, pp. 381–387, June 2010. Cerca con Google

[170] M. Mirzaei, A. Binder, B. Funieru, and M. Susic, “Analytical calculations of induced eddy currents losses in the magnets of surface mounted PM machines with consideration of circumferential and axial segmentation effects,” IEEE Transactions on Magnetics, vol. 48, no. 12, pp. 4831–4841, Dec 2012. Cerca con Google

[171] M. Shah and S.-B. Lee, “Optimization of shield thickness of finite length rotors for eddy current loss minimization,” in Conference Record of the 41st IEEE Industry Applications Annual Meeting, vol. 5, Oct 2006, pp. 2368–2373. Cerca con Google

[172] Z. Zhu, L. Wu, and Z. Xia, “An accurate subdomain model for magnetic field computation in slotted surface-mounted PM machines,” IEEE Trans. on Magnetics, vol. 46, no. 4, pp. 1100–1115, April 2010. Cerca con Google

[173] T. Lubin, S. Mezani, and A. Rezzoug, “2-d exact analytical model for surface-mounted permanent-magnet motors with semi-closed slots,” IEEE Transactions on Magnetics, vol. 47, no. 2, pp. 479–492, Feb 2011. Cerca con Google

[174] T. Lubin, S. Mezani, and A. Rezzoug, “Analytic calculation of eddy currents in the slots of electrical machines: Application to cage rotor induction motors,” IEEE Trans. on Magnetics, vol. 47, no. 11, pp. 4650–4659, Nov 2011. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record