Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Orioli, Giulia (2017) Peripersonal space representation in the first year of life: a behavioural and electroencephalographic investigation of the perception of unimodal and multimodal events taking place in the space surrounding the body. [Ph.D. thesis]

Full text disponibile come:

[img]
Preview
PDF Document
16Mb

Abstract (english)

In my PhD research project, I wanted to investigate infants’ representation of the peripersonal space, which is the portion of environment between the self and the others. In the last three decades research provided evidence on newborns’ and infants’ perception of their own bodies and of other individuals, whereas not many studies investigated infants’ perception of the portion of space where they can interact with both others and objects, namely the peripersonal space. Considering the importance of the peripersonal space, especially in light of its defensive and interactive functions, I decided to investigate the development of its representation focusing on two aspects. On one side, I wanted to study how newborns and infants processed the space around them, if they differentiated between near and far space, possibly perceiving and integrating depth cues across sensory modalities and when and how they started to respond to different movements occurring in the space surrounding their bodies. On the other side, I was interested in understanding whether already at birth the peripersonal space could be considered as a delimited portion of space with special characteristics and, relatedly, if its boundaries could be determined. In order to respond to my first question, I investigated newborns’ and infants’ looking behaviour in response to visual and audio-visual stimuli depicting different trajectories taking place in the space immediately surrounding their body. Taken together, the results of these studies demonstrated that humans show, since the earliest stages of their development, a rudimentary processing of the space surrounding them. Newborns seemed, in fact, to already differentiate the space around them, through an efficient discrimination of different moving trajectories and a visual preference for those directed towards their own body, possibly due to their higher adaptive relevance. They also seemed to integrate multimodal, audio-visual information about stimuli moving in the near space, showing a facilitated processing of congruent audio-visual approaching stimuli. Furthermore, the results of these studies could help understand the development of the integration of multimodal stimuli with an adaptive valence during infancy. When newborns’ and infants were presented with unimodal, visual stimuli, they all directed their visual preferences to the stimuli moving towards their bodies. Conversely, their pattern of looking times was more complex when they were presented with congruent and incongruent audiovisual stimuli. Right after birth infants showed a spontaneous visual preference for congruent audio-visual stimuli, which was challenged by a similarly strong visual preference for adaptively important visual stimuli moving towards their bodies. The looking behaviours of 5-month-old infants, instead, seemed to be driven only by a spontaneous preference for multimodal congruent stimuli, i.e. depicting motion along the same trajectory, irrespective of the adaptive value of the information conveyed by either of the two sensory components of the stimulus. Nine-month-old infants, finally, seemed to flexibly integrate multisensory integration principles with the necessity of directing their attention to ethologically salient stimuli, as shown by the fact that their visual preference for unexpected, incongruent audio-visual stimuli was challenged by the simultaneous presence of adaptively relevant stimuli. Similarly to what happened with newborns, presenting 9-month-old infants with the two categories of preferred stimuli simultaneously led to the absence of a visual preference. Within my project I also investigated the electroencephalographic correlates of the processing of unimodal, visual and auditory, stimuli depicting different trajectories in a sample of 5-month-old infants. The results seemed to provide evidence in support of the role of the primary sensory cortices in the processing of crossmodal stimuli. Furthermore, they seemed to support the possibility that infants’ brain could allocate, already during the earliest stages of processing, different amounts of attention to stimuli with different adaptive valence. Two further studies addressed my second question, namely whether already at birth the peripersonal space could be considered as a delimited portion of space with special characteristics and if its boundaries could be determined. In these studies I measured newborns’ saccadic reaction times (RTs) to tactile stimuli presented simultaneously to a sound perceived at different distances from their body. The results showed that newborns’ RTs were modulated by the perceived position of the sound and that their modulation was very similar to that shown by adults, suggesting that the boundary of newborns’ peripersonal space could be identified in the perceived sound position in whose correspondence the drop of RTs happened. This suggested that at birth the space immediately surrounding the body seems to be already invested of a special salience and characterised by a more efficient integration of multimodal stimuli. As a consequence, it might be considered as a rudimentary representation of the peripersonal space, possibly serving, as a working space representation, early interactions between newly born humans and their environment. Overall, these findings provide a first understanding of how humans start to process the space surrounding them, which, importantly, is the space linking them with others and the space where their first interactions will take place.

Abstract (italian)

Il mio progetto di Dottorato è nato con l’obiettivo di investigare la rappresentazione dello spazio peripersonale, cioè la porzione di spazio tra noi stessi e gli altri, durante l’infanzia. Nel corso degli ultimi trent’anni diversi studi hanno dimostrato la capacità di neonati ed infanti di percepire il proprio corpo, così come gli altri individui. Al contrario, non molti studi si sono interessati alla loro percezione della porzione di spazio dove essi possono interagire con gli oggetti e con gli altri, definita “spazio peripersonale”. Vista l’importanza dello spazio peripersonale, specialmente alla luce delle sue funzioni difensiva da un lato ed interattiva dall’altro, ho deciso di investigarne la rappresentazione concentrandomi su due aspetti. Da un lato, ho studiato come i neonati e gli infanti elaborino lo spazio intorno a loro, se differenzino tra spazio vicino e lontano, se percepiscano ed integrino gli indicatori di profondità provenienti da diverse modalità sensoriali, nonché come e quando inizino a rispondere ai diversi movimenti che hanno luogo nello spazio che circonda il loro corpo. Dall’altro lato, ero interessata a capire se già alla nascita lo spazio peripersonale potesse essere considerato come una porzione delimitata di spazio, contraddistinta da caratteristiche specifiche, e se i suoi confini potessero già essere stimati. Per rispondere alla mia prima domanda, ho analizzato il comportamento visivo di neonati ed infanti in risposta a stimoli visivi e audio-visivi raffiguranti diverse traiettorie che avevano luogo nello spazio immediatamente circostante il corpo. I risultati di questi studi, complessivamente, dimostrano che gli esseri umani mostrano, fin dai primi stadi dello sviluppo, una rudimentale capacità di elaborare lo spazio che circonda il loro corpo. I neonati sembrano, infatti, poter già differenziare lo spazio che li circonda, attraverso un’efficiente discriminazione di diverse traiettorie di movimento ed una preferenza visiva per quelle dirette verso il loro corpo, forse a causa della loro maggiore importanza adattiva. Inoltre, essi sembrano capaci di integrare informazioni multimodali rispetto al movimento di stimoli nello spazio circostante, mostrando un’elaborazione facilitata di stimoli in avvicinamento segnalati, al tempo stesso, da componenti visive ed uditive congruenti. Inoltre, i risultati di questi studi hanno permesso di aumentare la comprensione dello sviluppo della capacità di integrare stimoli multimodali caratterizzati da un’alta valenza adattiva durante l’infanzia. Quando ai neonati ed agli infanti sono stati presentati stimoli visivi (unimodali), essi hanno sempre rivolto la loro preferenza visiva agli stimoli che mostravano un movimento diretto verso il loro corpo. Diversamente, il loro comportamento visivo si è dimostrato più complesso quando sono stati presentati loro stimoli audiovisivi congruenti o incongruenti. Subito dopo la nascita, i neonati hanno mostrato una spontanea preferenza visiva per gli stimoli multimodali caratterizzati da una direzione di movimento congruente, a sua volta contrastata da un’altrettanta forte preferenza visiva per quegli stimoli che, muovendosi verso il loro corpo, erano caratterizzati da una grande salienza adattiva. Il comportamento visivo degli infanti di cinque mesi di età, invece, è sembrato essere guidato solamente da una spontanea preferenza per gli stimoli multimodali congruenti, cioè quelli che rappresentavano movimenti lungo la stessa traiettoria, indipendentemente dal valore adattivo delle informazioni trasmesse da ognuna delle due componenti sensoriali degli stimoli. Gli infanti di nove mesi di età, infine, sono sembrati capaci di integrare con flessibilità i principi dell’integrazione multisensoriale con la necessità di dirigere la loro attenzione verso gli stimoli etologicamente rilevanti, come dimostrato dal fatto che la loro preferenza visiva per gli stimoli audiovisivi incongruenti ed inaspettati è stata contrastata dalla simultanea presenza di stimoli importanti a livello adattivo. Come successo per i neonati, quando agli infanti di questa età venivano presentati contemporaneamente stimoli facenti parte delle due categorie preferite, essi non hanno mostrato alcuna preferenza visiva. All’interno del mio progetto ho anche investigato i correlati elettroencefalografici dell’elaborazione di stimoli unimodali, visivi ed uditivi, raffiguranti diverse traiettorie in un campione di infanti di cinque mesi di età. I risultati sembrano supportare il ruolo delle cortecce sensoriali primarie nell’elaborazione di stimoli provenienti da diverse modalità sensoriali, così come la possibilità che il cervello degli infanti possa assegnare diversi quantitativi di attenzione a stimoli di diversa importanza adattiva, già durante i primissimi stadi dell’elaborazione. Due ulteriori studi hanno indirizzato la mia seconda domanda, ovvero se già alla nascita lo spazio peripersonale possa essere considerato quale una porzione delimitata di spazio contraddistinta da particolari caratteristiche e se i suoi confini possano essere determinati. In questi studi ho misurato i tempi di reazione saccadici ad una stimolazione tattile accompagnata da un suono percepito a diverse distanze dal corpo. I risultati hanno mostrato che i tempi di reazione dei neonati sono stati modulati dalla distanza percepita del suono dal corpo. Inoltre, la modulazione dei tempi di reazione nei neonati è risultata molto simile a quella mostrata dagli adulti, suggerendo che i confini dello spazio peripersonale dei neonati possono essere identificati nella posizione in corrispondenza della quale i tempi di reazione sono drasticamente diminuiti. Questo dato suggerisce che alla nascita lo spazio immediatamente circostante il corpo sembra possedere già un’importanza particolare e sembra essere caratterizzato da una più efficace integrazione di stimoli multimodali. Di conseguenza, potrebbe essere considerato come una rudimentale rappresentazione dello spazio peripersonale, che può essere considerata al servizio delle interazioni precoci tra i neonati ed il loro ambiente. Complessivamente, questi risultati forniscono una prima comprensione di come gli esseri umani inizino a processare lo spazio che li circonda, cioè è lo spazio che li unisce agli altri, nonché lo spazio nel quale le loro prime interazioni avranno luogo.

Statistiche Download - Aggiungi a RefWorks
EPrint type:Ph.D. thesis
Tutor:Farroni, Teresa
Supervisor:Arfe', Barbara
Ph.D. course:Ciclo 29 > Corsi 29 > SCIENZE PSICOLOGICHE
Data di deposito della tesi:27 January 2017
Anno di Pubblicazione:27 January 2017
Key Words:peripersonal space; newborns; infants; infancy; cognitive development; trajectories; impending collision; multisensory integration; EEG
Settori scientifico-disciplinari MIUR:Area 11 - Scienze storiche, filosofiche, pedagogiche e psicologiche > M-PSI/04 Psicologia dello sviluppo e psicologia dell'educazione
Struttura di riferimento:Dipartimenti > Dipartimento di Psicologia dello Sviluppo e della Socializzazione
Codice ID:9931
Depositato il:16 Nov 2017 10:54
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Abrams, R. A., & Christ, S. E. (2005). The onset of receding motion captures attention: comment on Franconeri and Simons (2003). Perception and Psychophysics, 67(2), 219-223. Cerca con Google

Abrams, R. A., & Christ, S. E. (2006). Motion onset captures attention: a rejoinder to Franconeri and Simons (2005). Perception and Psychophysics, 68(1), 114-117. Cerca con Google

Atkinson, J., & Braddick, O. (1989). Development of basic visual functions. In A. Slater, & G. Bremner, Infant development (pp. 7-41). London: Lawrence Erlbaum Associates. Cerca con Google

Atkinson, J., Braddick, O., Rose, F. E., Searcy, Y. M., attam-Bell, J., & Bellugi, U. (2006). Dorsal-stream motion processing deficits persist into adulthood in Williams syndrome. Neuropsychologia, 44, 828-833. Cerca con Google

Bach, D. R., Schächinger, H. N., Esposito, F., Di Salle, F., Lehmann, C., Herdener, M., . . . Seifritz, E. (2008). Rising Sound Intensity: An Intrinsic Warning Cue Activating the Amygdala. Cerebral Cortex, 18, 145-150. Cerca con Google

Bahrick, L. E., & Lickliter, R. (2000). Intersensory Redundancy Guides Attentional Selectivity and Perceptual Learning in Infancy. Developmental Psychology, 36(2), 190-201. Cerca con Google

Bahrick, L. E., & Lickliter, R. (2012). The role of intersensory redundancy in early perceptual, cognitive, and social development. In A. Bremner, D. J. Lewkowicz, & C. Spence (Eds.), Multisensory Development (pp. 183-205). Oxford, England: Oxford University Press. Cerca con Google

Bahrick, L. E., Lickliter, R., & Flom, R. (2004). Intersensory Redundancy Guides the Development of Selective Attention, Perception, and Cognition in Infancy. Current Directions in Psychological Science, 13(3), 99-102. Cerca con Google

Ball, W., & Tronick, E. (1971). Infant Responses to Impending Collision: Optical and Real. Science, 171, 818-820. Cerca con Google

Banks, M. S., & Ginsberg, A. P. (1985). Infant visual preferences: A review and new theoretical treatment. In H. W. Reese, Advances in child development & behavior (Vol. 19, pp. 20-246). New York: Academic Press. Cerca con Google

Bassolino, M., Serino, A., Ubaldi, S., & Làdavas, E. (2010). Everyday use of the computer mouse extends peripersonal space representation. Neuropsychologia, 48, 803-811. Cerca con Google

Beer, A. L., Plank, T., & Greenlee, M. W. (2011). Diffusion tensor imaging shows white matter tracts between human auditory and visual cortex. Experimental Brain Research, 213(2-3), 299-308. Cerca con Google

Beer, A. L., Plank, T., Meyer, G., & Greenlee, M. W. (2013). Combined diffusion-weighted and functional magnetic resonance imaging reveals a temporal-occipital network involved in auditory-visual object processing. Frontiers in Integrative Neuroscience, 7(5). Cerca con Google

Begleiter, H., Gross, M. M., & Kissin, B. (1967). Evoked cortical responses to affective visual stimuli. Psychophysiology, 3(4), 336-344. Cerca con Google

Begleiter, H., Gross, M. M., Porjesz, B., & Kissin, B. (1969). The effects of awareness on cortical evoked potentials to conditioned affective stimuli. Psychophysiology, 5(5), 517-529. Cerca con Google

Berlyne, D. B. (1958). The influence of the albedo and complexity of stimuli on visual fixation in the human infant. British Journal of Psychology, 49(4), 315-318. Cerca con Google

Billington, J., & Wilkie, R. M. (2011). Neural processing of imminent collision in humans. Proceedings of the Royal Society B: Biological Sciences, 278, 1476–1481. Cerca con Google

Bornstein, M. H. (1985). Colour-name versus shape-name learning in young children. Journal of Child Language, 12(2), 387-393. Cerca con Google

Bower, T. G., Broughton, J. M., & Moore, M. K. (1970). Infant responses to approaching objects: An indicator of response to distal variables. Perception and Psychophysics, 9, 193-196. Cerca con Google

Bremner, A. J., Holmes, N. P., & Spence, C. (2008). Infants lost in (peripersonal) space? Trends in Cognitive Sciences, 12(8), 298-305. Cerca con Google

Bremner, A. J., Lewkowicz, D. J., & Spence, C. (2012). The multisensory approach to development. In A. J. Bremner, D. J. Lewkowicz, & C. Spence (Eds.), Multisensory Development (pp. 1-26). Oxford, England: Oxford University Press. Cerca con Google

Bremner, A. J., Mareschal, D., Lloyd-Fox, S., & Spence, C. (2008). Spatial Localization of Touch in the First Year of Life: Early Influence of a Visual Spatial Code and the Development of Remapping Across Changes in Limb Position. Journal of Experimental Psychology, 137(1), 149-162. Cerca con Google

Brozzoli, C., Cardinali, L., Pavani, F., & Farnè, A. (2010). Action-specific remapping of peripersonal space. Neuropsychologia, 48, 796-802. Cerca con Google

Brozzoli, C., Ehrsson, H. H., & Farnè, A. (2014). Multisensory Representation of the Space Near the Hand: From Perception to Action and Interindividual Interactions. The Neuroscientist, 20(2), 122-135. Cerca con Google

Brozzoli, C., Gentile, G., Bergouignan, L., & Ehrsson, H. H. (2013). A Shared Representation of the Space Near Oneself and Others in the Human Premotor Cortex. Current Biology, 23, 1764-1768. Cerca con Google

Brozzoli, C., Pavani, F., Urquizar, C., Cardinali, L., & Farnè, A. (2009). Grasping actions remap peripersonal space. NeuroReport, 20, 913-917. Cerca con Google

Bushnell, E. W., & Boudreau, J. P. (1993). Motor Development and the Mind: The Potential Role of Motor Abilities as a Determinant of Aspects of Perceptual Development. Child Development, 64, 1005-1021. Cerca con Google

Canzoneri, E., Magosso, E., & Serino, A. (2012). Dynamic Sounds Capture the Boundaries of Peripersonal Space Representation in Humans. PLoS ONE, 7(9), 1-8. Cerca con Google

Canzoneri, E., Ubaldi, S., Rastelli, V., Finisguerra, A., Bassolino, M., & Serino, A. (2013). Tool-use reshapes the boundaries of body and peripersonal space representations. Experimental Brain Research, 228, 25-42. Cerca con Google

Cappe, C., Thelen, A., Romei, V., Thut, G., & Murray, M. M. (2012). Looming Signals Reveal Synergistic Principles of Multisensory Integration. The Journal of Neuroscience , 32(4), 1171-1182. Cerca con Google

Cappe, C., Thut, G., Romei, V., & Murray, M. M. (2009). Selective integration of auditory-visual looming cues by humans. Neuropsychologia, 47(4), 1045-1052. Cerca con Google

Cappe, C., Thut, G., Romei, V., & Murray, M. M. (2010). Auditory-visual integration of auditory-visual looming cues by humans: timing, topography, directionality and sources. Journal of Neuroscience, 30, 12572-12580. Cerca con Google

Carretié, L., Hinojosa, J. A., Martín-Loeches, M., Mercado, F., & Tapia, M. (2004). Automatic Attention to Emotional Stimuli: Neural Correlates. Human Brain Mapping, 22, 290-299. Cerca con Google

Carver, L. J., & Vaccaro, B. G. (2007). 12-month-old infants allocate increased neural resources to stimuli associated with negative adult emotion. Developmental Psychology, 43(1), 54-69. Cerca con Google

Cecere, R., Romei, V., Bertini, C., & Làdavas, E. (2014). Crossmodal enhancement of visual orientation discrimination by looming sounds requires functional activation of primary visual areas: A case study. Neuropsychologia, 56, 350-358. Cerca con Google

Clery, J., Guipponi, O., Odouard, S., Wardak, C., & Ben Hamed, S. (2015). Impact Prediction by Looming Visual Stimuli Enhances Tactile Detection. The Journal of Neuroscience, 35(10), 4179-4189. Cerca con Google

Coello, Y., Bourgeois, J., & Iachini, T. (2012). Embodied perception of reachable space: how do we manage threatening objects? Cognitive Processing, 13 (Suppl 1), S131-S135. Cerca con Google

Colombo, J., & Mitchell, D. W. (2009). Infant visual habituation. Neurobiology of Learning and Memory, 92, 225-234. Cerca con Google

Costantini, M., Ambrosini, E., Tieri, G., Sinigaglia, C., & Committeri, G. (2010). Where does an object trigger an action? An investigation about affordances in space. Experimental Brain Research, 207, 95-103. Cerca con Google

Csibra, G., & Johnson, M. H. (2007). Investigating event-related oscillations in infancy. In M. de Haan (Ed.), Infant EEG and event related potentials (pp. 289-304). Hove, England: Psychology Press. Cerca con Google

Csibra, G., Kushnerenko, E., & Grossmann, T. (2008). Electrophysiological Methods in Studying Infant Cognitive Development. In C. A. Nelson, & M. Luciana (Eds.), Handbook of developmental cognitive neuroscience (2nd ed., pp. 247-262). Cambridge, MA: MIT Press. Cerca con Google

da Haan, M., & Thomas, K. M. (2002). Applications of ERP and fMRI techniques to developmental science . Developmental Science, 5(3), 335–343. Cerca con Google

de Haan, M., & Nelson, C. A. (1997). Recognition of the mother’s face by six-month-old infants: A neurobehavioral study. Child Development, 68(2), 187-210. Cerca con Google

de Vignemont, F., & Iannetti, G. D. (2015). How many peripersonal spaces? Neuropsychologia, 70, 327-334. Cerca con Google

di Pellegrino, G., & Làdavas, E. (2015). Peripersonal space in the brain. Neuropsychologia, 66, 126-133. Cerca con Google

Dolcos, F., & Cabeza, R. (2002). Event-related potentials of emotional memory: Encoding pleasant, unpleasant, and neutral pictures. Cognitive, Affective, & Behavioral Neuroscience, 2(3), 252-263. Cerca con Google

Ernst, M. O., & Banks, M. S. (2002). Humans integrate visual and haptic information in a statistically optimal fashion. Nature, 415, 429-433. Cerca con Google

Fagard, J., Spelke, E., & von Hofsten, C. (2009). Reaching and grasping a moving object in 6-, 8-, and 10-month-old infants: Laterality and performance . Infant Behavior and Development, 32, 137-146. Cerca con Google

Fantz, R. L. (1956). A method for studying early visual development. Perceptual and motor skills, 6, 13-15. Cerca con Google

Fantz, R. L. (1957). Form preferences in newly hatched chicks. Journal of Comparative and Physiological Psychology, 50(5), 422-430. Cerca con Google

Fantz, R. L. (1958a). Depth discrimination in dark-hatched chicks. Perceptual and Motor Skills, 8, 47-50. Cerca con Google

Fantz, R. L. (1958b). Visual discrimination in a neonate chimpanzee. Perceptual and Motor Skills, 8, 59-66. Cerca con Google

Fantz, R. L. (1958c). Pattern vision in young infants. The Psychological Record, 8, 43-47. Cerca con Google

Fantz, R. L. (1961a). A method for studying depth perception in infants under six months of age. The Psychological Record, 11, 27-32. Cerca con Google

Fantz, R. L. (1961b). The origin of form perception. Scientific American, 204(5), 66-72. Cerca con Google

Fantz, R. L., & Ordy, J. M. (1959). A visual acuity test for infants under six months of age. The Psychological Record, 9, 159-164. Cerca con Google

Fantz, R. L., Ordy, J. M., & Udelf, M. S. (1962). Maturation of pattern vision in infants during the first six months. Journal of Comparative and Physiological Psychology, 55(9), 907-917. Cerca con Google

Farnè, A., Pavani, F., Meneghello, F., & Làdavas, E. (2000). Left tactile extinction following visual stimulation of a rubber hand. Brain, 123, 2350-2360. Cerca con Google

Farroni, T., Csibra, G., Simion, F., & Johnson, M. H. (2002). Eye contact detection in humans from birth. PNAS, 99, 9602-9605. Cerca con Google

Farroni, T., Johnson, M. H., Menon, E., Zulian, L., Faraguna, D., & Csibra, G. (2005). Newborns' preference for face-relevant stimuli: effects of constrast polarity. PNAS, 102, 17245-17250. Cerca con Google

Farroni, T., Menon, E., & Johnson, M. H. (2006). Factors influencing newborns' preference for faces with eye contact. Journal of Experimental Child Psuchology, 95, 298-308. Cerca con Google

Farroni, T., Menon, E., Rigato, S., & Johnson, M. H. (2007). The perception of facial expressions in newborns. European Journal of Developmental Psychology, 4, 2-13. Cerca con Google

Farroni, T., Simion, F., Umiltà, C., & Dalla Barba, B. (1999). The gap effect in newborns. Developmental Science, 2(2), 174-186. Cerca con Google

Farzin, F., & Rivera, S. M. (2010). Dynamic object representations in infants with and without fragile X syndrome. Frontiers in Human Neuroscience, 4, 12. Cerca con Google

Farzin, F., Whitney, D., Hagerman, R. J., & Rivera, S. M. (2008). Contrast detection in infants with fragile X syndrome. Vision Research, 48, 1471-1478. Cerca con Google

Ferri, F., Tajadura-Jiménez, A., Väljamäe, A., Vastano, R., & Costantini, M. (2015). Emotion-inducing approaching sounds shape the boundaries of multisensory peripersonal space . Neuropsychologia. Cerca con Google

Field, D. T., & Wann, J. P. (2005). Perceiving time to collision activates the sensorimotor cortex. Current Biology, 15(5), 453-458. Cerca con Google

Filippetti, M. L., Johnson, M. H., Lloyd-Fox, S., Dragovic, D., & Farroni, T. (2013). Body Perception in Newborns. Current Biology, 23, 2413-2416. Cerca con Google

Filippetti, M. L., Orioli, G., Johnson, M. H., & Farroni, T. (2015). Newborn Body Perception: Sensitivity to Spatial Congruency . Infancy, 1-11. Cerca con Google

Finisguerra, A., Canzoneri, E., Serino, A., Pozzo, T., & Bassolino, M. (2015). Moving sounds within the peripersonal space modulate the motor system. Neuropsychologia, 70, 421-428. Cerca con Google

Flom, R., & Bahrick, L. E. (2007). The Development of Infant Discrimination of Affect in Multimodal and Unimodal Stimulation: The Role of Intersensory Redundancy. Developmental Psychology, 43(1), 238-252. Cerca con Google

Foxe, J. J., McCourt, M. E., & Javitt, D. C. (2003). Right hemisphere control of visuospatial attention: line-bisection judgments evaluated with high-density electrical mapping and source analysis. Neuroimage, 19, 710-726. Cerca con Google

Franconeri, S. L., & Simons, D. J. (2003). Moving and looming stimuli capture attention. Perception & Psychophysics, 65(7), 999-1010. Cerca con Google

Franconeri, S. L., & Simons, D. J. (2005). The dynamic events that capture visual attention: A reply to Abrams and Christ (2005). Perception & Psychophysics, 67(6), 962-966. Cerca con Google

Freiberg, K., Tually, K., & Crassini, B. (2001). Use of an auditory looming task to test infants’ sensitivity to sound pressure level as an auditory distance cue Authors . British Journal of Developmental Psychology, 19(1), 1-10. Cerca con Google

Friedman, S. (1972). Habituation and recovery of visual response in the alert human newborn. Journal of Experimental Child Psycholoy, 13(2), 339-349. Cerca con Google

Gallego, P. K., Burris, J. L., & Rivera, S. M. (2014). Visual motion processing deficits in infants with the fragile X premutation. Journal of Neurodevelopmental Disorders, 6(29). Cerca con Google

Gamberini, L., Seraglia, B., & Priftis, K. (2008). Processing of peripersonal and extrapersonal space using tools: Evidence from visual line bisection in real and virtual environments. Neurpsychologya, 46, 1298-1304. Cerca con Google

Gentile, G., Petkova, V. I., & Ehrsson, H. H. (2011). Integration of Visual and Tactile Signals From the Hand in the Human Brain: An fMRI Study. Journal of Neurophysiology, 105, 910-922. Cerca con Google

Ghazanfar, A. A., Neuhoff, J. G., & Logothetis N, K. (2002). Auditory looming perception in rhesus monkeys. PNAS, 99(24), 15755-15757. Cerca con Google

Gibson, E. J. (1988). Exploratory behavior in the development of perceiving, acting and the acquiring of knowledge. Annual Review of Psychology, 39, 1-41. Cerca con Google

Grassi, M., & Darwin, C. J. (2006). The subjective duration of ramped and damped sounds. Perception & Psychophysics, 68(8), 1382–1392. Cerca con Google

Grassi, M., & Pavan, A. (2012). The subjective duration of audiovisual looming and receding stimuli. Attention, Perception & Psychophysics, 74, 1321–1333. Cerca con Google

Graziano, M. S., & Cooke, D. F. (2006). Parieto-frontal interactions, personal space, and defensive behavior. Neuropsychologia, 44(6), 845-859. Cerca con Google

Graziano, M. S., Reiss, L. A., & Gross, C. G. (1999). A neuronal representation of the location of nearby sounds. Nature, 397, 428-430. Cerca con Google

Graziano, M. S., Yap, G. S., & Gross, C. G. (1994). Coding of visual space by premotor neurons. Science, 266(5187), 1054-1057. Cerca con Google

Grinter, E. J., Maybery, M. T., & Badcock, D. R. (2010). Vision in developmental disorders: Is there a dorsal stream deficit? Brain Research Bulletin, 82, 147-160. Cerca con Google

Guthrie, D., & Buchwald, J. S. (1991). Significance Testing of Difference Potentials. Psychophysiology, 28(2), 240-244. Cerca con Google

Hall, D., & Moore, D. (2003). Auditory neuroscience: the salience of looming sounds. Current Biology, 13, R91-R93. Cerca con Google

Heed, T., Habets, B., Sebanz, N., & Knoblich, G. (2010). Others' Actions Reduce Crossmodal Integration in Peripersonal Space. Current Biology, 20, 1-5. Cerca con Google

Hershenson, M. (1964). Visual discrimination in the human newborn. Journal of Comparative and Physiological Psychology, 58(2), 270-276. Cerca con Google

Hoehl, S., & Striano, T. (2008). Neural processing of eye gaze and threat-related emotional facial expressions in infancy. Child Development, 79(6), 1752–1760. Cerca con Google

Hoehl, S., & Wahl, S. (2012). Recording Infant ERP Data for Cognitive Research. Developmental Neuropsychology, 37(3), 187-209. Cerca con Google

Iarocci, G., & McDonald, J. (2006). Sensory Integration and the Perceptual Experience of Persons with Autism. Journal of Autism and Developmental Disorders, 36(1), 77-90. Cerca con Google

Iriki, A., Tanaka, M., & Iwamura, Y. (1996). Coding of modified body schema during tool use by macaque postcentral neurons. Neuroreport, 7, 2325-2330. Cerca con Google

Ishida, H., Nakajima, K., Inase, M., & Murata, A. (2010). Shared mapping of own and others’ bodies in visuotactile bimodal area of monkey parietal cortex. Journal of Cognitive Neuroscience, 22, 83-96. Cerca con Google

Johnson, M. H. (1990). Cortical maturation and the development of visual attention in early infancy. Journal of Cognitive Neuroscience, 2(2), 81-95. Cerca con Google

Johnson, M. H. (2000). Functional brain development in infants: Elements of an interactive specialization framework. Child Development, 71, 75-81. Cerca con Google

Johnson, M. H. (2001). Functional brain development in humans. Nature Reviews Neuroscience, 2, 475-483. Cerca con Google

Johnson, M. H. (2005). Subcortical face processing. Nature Reviews Neuroscience, 6, 766-774. Cerca con Google

Johnson, M. H. (2011a). Developmental Cognitive Neuroscience: an Introduction (3rd ed.). John Wiley & Sons. Cerca con Google

Johnson, M. H. (2011b). Interactive specialization: a domain-general framework for human functional brain development? . Developmental Cognitive Neuroscience, 1(1), 7-21. Cerca con Google

Johnson, M. H., & Morton, J. (1991). Biology and Cognitive Development: The Case of Face Recognition. Oxford: Blackwell. Cerca con Google

Johnson, M. H., de Haan, M., Oliver, A., Smith, W., Hatzakis, H., Tucker, L. A., & Csibra, G. (2001). Recording and Analyzing High-Density Event-Related Potentials With Infants Using the Geodesic Sensor Net. Developmental Neuropsychology, 19(3), 295-323. Cerca con Google

Johnson, M. H., Dziurawiec, S., Ellis, H., & Morton, J. (1991). Newborns’ preferential tracking of face-like stimuli and its subsequent decline*. Cognition, 40, 1-19. Cerca con Google

Johnson, M. H., Senju, A., & Tomalski, P. (2015). The two-process theory of face processing: Modifications based on two decades of data from infants and adults. Neuroscience and Biobehavioral Reviews, 50, 169-179. Cerca con Google

Kandula, M., Hofman, D., & Dijkerman, H. C. (2015). Visuo-tactile interactions are dependent of the predictive value of the visual stimulus. Neuropsychologia, 70, 358-366. Cerca con Google

Kayed, N. S., & van der Meer, A. L. (2000). Timing strategies used in defensive blinking to optical collisions in 5- to 7-month-old infants. Infant Behavior and Development, 23, 253-270. Cerca con Google

Kayed, N. S., & van der Meer, A. L. (2007). Infants’ timing strategies to optical collisions: A longitudinal study . Infant Behavior and Development, 50-59. Cerca con Google

Kayser, C., Petkov, C. I., & Logothetis, N. K. (2009). Multisensory interactions in primate auditory cortex: fMRI and electrophysiology. Hearing Research, 258(1-2), 80-88. Cerca con Google

Konczak, J., & Dichgans, J. (1997). The development toward stereotypic arm kinematics during reaching in the first 3 years of life. Experimental Brain Research, 117, 346-354. Cerca con Google

Kouider, S., Long, B., Le Stanc, L., Charron, S., Fievet, A. C., Barbosa, L. S., & Gelskov, S. V. (2015). Neural dynamics of prediction and surprise in infants. Nature Communications, 6(8537). Cerca con Google

Kushnerenko, E., Ceponiene, R., Balan, P., Fellman, V., Huotilainen, M., & Näätänen, R. (2001). Maturation of the auditory event-related potentials during the ¢rst year of life . Neuroreport, 13(1), 47-51. Cerca con Google

Làdavas, E. (2002). Functional and dynamic properties of visual peripersonal space. Trends in Cognitive Sciences, 6(1), 17-22. Cerca con Google

Làdavas, E., di Pellegrino, G., Farnè, A., & Zeloni, G. (1998). Neuropsychological evidence of an integrated visuotactile representation of peripersonal space in humans. Journal of Cognitive Neuroscience, 10(5), 581-589. Cerca con Google

Làdavas, E., Zeloni, G., & Farnè, A. (1998). Visual peripersonal space centred on the face in humans. Brain, 121, 2317-2326. Cerca con Google

Lang, P. J., Bradley, M. M., & Cuthbert, B. N. (1997). Motivated attention: affect, activation, and action. In P. J. Lang, R. F. Simons, & M. Balaban (Eds.), Attention and Emotion: Sensory and Motivational Processes (pp. 97-135). Mahwah, NJ: Erlbaum. Cerca con Google

Lawrence, R. D., Carrello, C., & Pastore, R. E. (1987). Relative effectiveness of three stimulus variabiles for locating a moving sound source. Perception, 16, 175-186. Cerca con Google

Leo, F., Romei, V., Freeman, E., Làdavas, E., & Driver, J. (2011). Looming sounds enhance orientation sensitivity for visual stimuli on the same side as such sounds. Experimental Brain Research, 213, 193-201. Cerca con Google

Lewkowicz, D. (2008). Perception of Dynamic and Static Audiovisual Sequences in 3- and 4-Month-Old Infants. Child Development, 79(5), 1538-1554. Cerca con Google

Lewkowicz, D. J. (2014). Early Experience & Multisensory Perceptual Narrowing. Developmental Psychobiology, 56(2), 292-315. Cerca con Google

Lewkowicz, D. J., & Ghazanfar, A. A. (2006). The decline of cross-species intersensory perception in human infants. PNAS, 103(17), 6771-6774. Cerca con Google

Lewkowicz, D. J., & Ghazanfar, A. A. (2009). The emergence of multisensory systems through perceptual narrowing. Trends in Cognitive Sciences, 13(11), 470-478. Cerca con Google

Lewkowicz, D. J., Leo, I., & Simion, F. (2010). Intersensory Perception at Birth: Newborns Match Nonhuman Primate Faces and Voices. Infancy, 15(1), 46-60. Cerca con Google

Libertus, K., & Landa, R. J. (2013). The Early Motor Questionnaire (EMQ): a parental report measure of early motor development. Infant Behavior and Development, 36(4), 833-842. Cerca con Google

Libertus, K., & Needham, A. (2004). Face preference in infancy and its relation to motor activity. International Journal of Behavioral Development, 38(6), 529-538. Cerca con Google

Libertus, K., & Needham, A. (2010). Teach to reach: the effects of active vs. passive reaching experiences on action and perception. Vision Research, 50(24), 2750-2757. Cerca con Google

Libertus, K., & Needham, A. (2011). Reaching experience increases face preference in 3-month-old infants. Developmental Science, 14(6), 1355-1364. Cerca con Google

Lloyd-Fox, S., Blasi, A., & Elwell, C. (2010). Illuminating the developing brain: The past, present and future of functional near infrared spectroscopy. Neuroscience and Biobehavioral Reviews, 34, 269-284. Cerca con Google

Longo, M. R., & Lourenco, S. F. (2006). On the nature of near space: Effects of tool use and the transition to far space. Neuropsychologia, 44, 977-981. Cerca con Google

Longo, M. R., Trippier, S., Vagnoni, E., & Lourenco, S. F. (2015). Right hemisphere control of visuospatial attention in near space. Neuropsychologia, 70, 350-357. Cerca con Google

Lourenco, S. F., Longo, M. R., & Pathman, T. (2011). Near space and its relation to claustrophobic fear. Cognition, 119, 448-453. Cerca con Google

Luck, S. J. (2014). An Introduction to the Event-Related Potential Technique (2nd ed.). London, England: The MIT Press. Cerca con Google

Maier, J. X., & Ghazanfar, A. A. (2007). Looming biases in monkey auditory cortex. Journal of Neuroscience, 27(15), 4093-4100. Cerca con Google

Maier, J. X., Chandrasekaran, C., & Ghazanfar, A. A. (2008). Integration of bimodal looming signals through neuronal coherence in the temporal lobe. Current Biology, 18, 963-968. Cerca con Google

Maier, J. X., Neuhoff, J. G., Logothetis, N. K., & Ghanzafar, A. A. (2004). Multisensory Integration of Looming Signals by Rhesus Monkeys. Neuron, 43, 177-181. Cerca con Google

Makin, T. R., Holmes, N. P., & Zohary, E. (2007). Is that near my hand? Multisensory representation of peripersonal space in human intraparietal sulcus. The Journal of Neuroscience, 27(4), 731-740. Cerca con Google

McCulloch, D. L. (2007). Visual evoked potentials in infants. In M. De Haan (Ed.), Infant EEG and Event-Related Potentials (pp. 39-76). Hove, England: Psychology Press - Taylor & Francis Group. Cerca con Google

Middlebrooks, J. C., & Green, D. M. (1991). Sound Localization by Human Listeners. Annual Review of Psychology, 42, 135-139. Cerca con Google

Morton, J., & Johnson, M. H. (1991). CONSPEC and CONLERN: A Two-Process Theory of Infant Face Recognition. Psychological Review, 98(2), 164-181. Cerca con Google

Murray, M. M., Thelen, A., Thut, G., Romei, V., Martuzzi, R., & Matusz, P. J. (2016). The multisensory function of primary visual cortex in humans. Neuropsychologia, 83, 161-169. Cerca con Google

Náñez, J. (1988). Perception of Impending Collision in 3-to 6-Week-Old Human Infants . Infant Behavior and Development, 11, 447-463. Cerca con Google

Neuhoff, J. G. (1998). Perceptual bias for rising tones. Scientific Correspondence, 395(6698), 123-124. Cerca con Google

Neuhoff, J. G. (2001). An Adaptive Bias in the Perception of Looming Auditory Motion. Ecological Psychology, 13(2), 87-110. Cerca con Google

Noel, J. P., Grivaz, P., Marmaroli, P., Lissek, H., Blanke, O., & Serino, A. (2015). Full body action remapping of peripersonal space: the case of walking. Neuropsychologia, 70, 375-384. Cerca con Google

Olofsson, J. K., Nordin, S., Sequeira, H., & Polich, J. (2008). Affective picture processing: An integrative review of ERP findings. Biological Psychology, 77, 247-265. Cerca con Google

Olsho, L. W., Koch, E. G., Carter, E. A., Halpin, C. F., & Spetner, N. B. (1988). Pure-tone sensitivity of human infants. The Journal of the Acoustical Society of America, 84, 1316-1324. Cerca con Google

Orekhova, E. V., Stroganova, T. A., Posikera, I. N., & Elam, M. (2006). EEG theta rhythm in infants and preschool children. Clinical Neurophysiology , 117, 1047–1062. Cerca con Google

Reid, V. M., Hoehl, S., Landt, J., & Striano, T. (2008). Human infants dissociate structural and dynamic information in biological motion: Evidence from neural systems. Social Cognitive and Affective Neuroscience, 3(2), 161-167. Cerca con Google

Ricciardi, E., Bonino, D., Pellegrini, S., & Pietrini, P. (2014). Mind the blind brain to understand the sighted one! Is there a supramodal cortical functional architecture? Neuroscience & Biobehaviorual Reviews, 41, 64-77. Cerca con Google

Rigato, S., Begum Ali, J., van Velzen, J., & Bremner, A. J. (2014). The Neural Basis of Somatosensory Remapping Develops in Human Infancy. Current Biology, 24, 1224-1226. Cerca con Google

Rizzolatti, G., Scandolara, C., Matelli, M., & Gentilucci, M. (1981). Afferent properties of periarcuate neurons in macaque monkeys. II. Visual responses. Behavioural Brain Research, 2, 147-163. Cerca con Google

Rochat, P., & Goubet, N. (1995). Development of Sitting and Reaching in 5- to &Month-Old Infants. Infant Behaviour and Development, 18, 53-68. Cerca con Google

Romei, V., Murray, M. M., Cappe, C., & Thut, G. (2009). Preperceptual and Stimulus-Selective Enhancement of Low-Level Human Visual Cortex Excitability by Sounds. Current Biology, 19, 1799-1805. Cerca con Google

Rosenblum, L. D., Carello, C., & Pastore, R. E. (1987). Relative effectiveness of three stimulus variables for locating a moving sound source. Perception, 16, 175-186. Cerca con Google

Rosenblum, L. D., Wuestefeld, A. P., & Saldaña, H. M. (1993). Auditory looming perception: Influences on anticipatory judgments. Perception, 22, 1467-1482. Cerca con Google

Rossini, J. C. (2014). Looming motion and visual attention. Psychology and Neuroscience, 7(3), 425-431. Cerca con Google

Sambo, C. F., & Iannetti, G. D. (2013). Better Safe Than Sorry? The Safety Margin Surrounding the Body Is Increased by Anxiety. The Journal of Neuroscience,, 33(35), 14225–14230. Cerca con Google

Schiff, W., & Oldak, R. (1990). Accuracy of judging time to arrival: Effects of modality trajectory and gender. Journal of Experimental Psychology: Human Perception and Performance, 16, 303-316. Cerca con Google

Schiff, W., Caviness, J. A., & Gibson, J. J. (1962). Persistent fear responses in rhesus monkeys to the optical stimulus of "looming". Science, 36(3520), 982-983. Cerca con Google

Schlauch, R. S., Ries, D. T., & DiGiovanni, J. (2001). Duration discrimination and subjective duration for ramped and damped sounds. Journal of the Acoustical Society of America, 109, 2880-2887. Cerca con Google

Schmuckler, M. A., Collimore, L. M., & Dannemiller, J. L. (2007). Infants’ Reactions to Object Collision on Hit and Miss Trajectories. Infancy, 12(1), 105-118. Cerca con Google

Schupp, H. T., Cuthberg, B. N., Bradley, M. M., Cacioppo, J. T., Ito, T., & Lang, P. J. (2000). Affective picture processing: The late positive potential is modulated by motivational relevance. Psychophysiology, 37, 257-261. Cerca con Google

Schupp, H. T., Junghöfer, M., Weike, A. I., & Hamm, A. O. (2004). The selective processing of briefly presented affective pictures: An ERP analysis. Psychophysiology, 41, 441-449. Cerca con Google

Seifritz, E., Neuhoff, J. G., Bilecen, D., Scheffler, K., Mustovic, H., Schächinger, H., . . . Di Salle, F. (2002). Neural Processing of Auditory Looming in the Human Brain. Current Biology, 12, 2147-2151. Cerca con Google

Serino, A., Annella, L., & Avenanti, A. (2009). Motor properties of peripersonal space in humans. PLos ONE, 4, e6582. Cerca con Google

Serino, A., Bassolino, M., Farnè, A., & Làdavas, E. (2007). Extended Multisensory Space in Blind Cane Users. Psychological Science, 18, 642-648. Cerca con Google

Shams, L., Kamitani, Y., & Shimojo, S. (2000). Illusions: what you see is what you hear. Nature, 408(6814), 788. Cerca con Google

Simon, O., Mangin, J. F., Cohen, L., Le Bihan, D., & Dehaene, S. (2002). Topographical layout of hand, eye, calculation, and language-related areas in the human parietal lobe. Neuron, 33, 475-487. Cerca con Google

Slater, A. (2002). Visual perception in the newborn infant: issues and debates. Intellectica, 57-76. Cerca con Google

Smith, N. K., Cacioffo, J. T., Larsen, J. T., & Chartrand, T. L. (2003). May I have your attention, please: Electrocortical responses to positive and negative stimuli. Neuropsychologya, 41, 171-183. Cerca con Google

Spears, W. C. (1966). Visual preference in the four-month old infant. Psychonomic Science, 4, 237-238. Cerca con Google

Spencer, J., O'Brien, J., Riggs, K., Braddick, O., Atkinson, J., & Wattam-Bell, J. (2000). Motion processing in autism: evidence for a dorsal stream deficiency. NeuroReport, 11(12), 2765-2767. Cerca con Google

Tajadura-Jiménez, A., Väljamäe, A., & Vastfjall, D. (2008). Emotional bias for the perception of rising tones. The Journal of the Acoustical Society of America, 123, 3245. Cerca con Google

Taylor, M. J., & Baldeweg, T. (2002). Application of EEG, ERP and intracranial recordings to the investigation of cognitive functions in children. Developmental Science, 5(3), 318–334. Cerca con Google

Teneggi, C., Canzoneri, E., di Pellegrino, G., & Serino, A. (2013). Social modulation of peripersonal space boundaries. Current Biology, 23(5), 406-411. Cerca con Google

Tharpe, A. M., & Ashmead, D. H. (2001). A longitudinal investigation of infant auditory sensitivity. American journal of audiology, 10, 104-112. Cerca con Google

Thelen, E., & Spencer, J. P. (1998). Postural Control During Reaching in Young Infants: A Dynamic Systems Approach. Neuroscience and Biobehavioral Reviews, 22(4), 507-514. Cerca con Google

Thelen, E., Corbetta, D., & Spencer, J. P. (1996). Development of Reaching During the First Year: Role of Movement Speed. Journal of Experimental Psychology, 22(5), 1059-1076. Cerca con Google

Trehub, S. E., Schneider, B. A., Thorpe, L. A., & Hudge, P. (1991). Observational measures of auditory sensitivity in early infancy. Developmental Psychology, 27, 40-49. Cerca con Google

Tucker, D. M. (1993). Spatial sampling of head electrical fields: The geodesic sensor net. Electroencephalography and Clinical Neurophysiology, 87, 154-163. Cerca con Google

Tyll, S., Bonath, B., Schoenfeld, M. A., Heinze, H., Ohl, F. W., & Noesselt, T. (2013). Neural basis of multisensory looming signals. Neuroimage, 13-22. Cerca con Google

Vagnoni, E., Lourenco, S. F., & Longo, M. R. (2012). Threat modulates perception of looming visual stimuli. Current Biology, 22(19), R826-827. Cerca con Google

Vagnoni, E., Lourenco, S. F., & Longo, M. R. (2015). Threat modulates neural responses to looming visual stimuli. European Journal of Neuroscience, 42, 2190-2202. Cerca con Google

van der Meer, A. L., Fallet, G., & van der Weel, F. R. (2008). Perception of structured optic Xow and random visual motion in infants and adults: a high-density EEG study . Experimental Brain Research, 186, 493-502. Cerca con Google

van der Meer, A. L., Svantesson, M., & van der Weel, F. R. (2012). Longitudinal Study of Looming in Infants with High-Density EEG. Developmental Neuroscience, 34, 488–501. Cerca con Google

Van der Stoep, N., Nijboera, T. C., Van der Stigchel, S., & Spence, C. (2015). Multisensory interactions in the depth plane in front and rear space: A review. Neuropsychologia, 70, 335-349. Cerca con Google

van der Weel, F. R., & van der Meer, A. L. (2009). Seeing it coming: infants’ brain responses to looming danger. Naturwissenschaften, 96, 1385–1391. Cerca con Google

Vetter, P., Smith, F. W., & Muckli, L. (2014). Decoding sound and imagery content in early visual cortex. Current Biology, 24(11), 1256-1262. Cerca con Google

von Hofsten, C. (1979). Development of visually directed reaching: the approach phase. Journal of Human Movement Studies, 5, 160-178. Cerca con Google

von Hofsten, C. (1980). Predictive Reaching for Moving Objects by Human Infants. Journal of Experimental Child Psychology, 30, 369-382. Cerca con Google

von Hofsten, C. (1991). Structuring of Early Reaching Movements: A Longitudinal Study. Journal of Motor Behaviour, 23(4), 280-292. Cerca con Google

von Hofsten, C. (2004). An action perspective on motor development. TRENDS in Cognitive Sciences, 8(6), 266-272. Cerca con Google

von Hofsten, C., & Rönnqvist, L. (1988). Preparation for Grasping an Object: A Developmental Study. Journal of Experimental Psychology: Human Perception and Performance, 14(4), 610-621. Cerca con Google

Von Mühlenen, A., & Lleras, A. (2007). No-Onset Looming Motion Guides Spatial Attention. Journal of Experimental Psychology: Human Perception and Performance, 33(6), 1297-1310. Cerca con Google

Waberski, T. D., Gobbelé, R., Lamberty, K., Buchner, H., Marshall, J. C., & Fink, G. R. (2008). Timing of visuo-spatial information processing: electrical source imaging related to line bisection judgements. Neuropsychologia, 46, 1201-1210. Cerca con Google

Walker-Andrews, A. S., & Lennon, E. M. (1985). Auditory-Visual Perception of Changing Distance by Human Infants. Child Development, 56(3), 544-548. Cerca con Google

Weir, C. (1976). Auditory frequency sensitivity in the neonate: A signal detection analysis. Journal of Experimental Child Psychology, 21, 219-225. Cerca con Google

Weir, C. (1979). Auditory frequency sensitivity of human newborns: Some data with improved acoustic and behavioral controls. Perceptual Psychophysics, 26, 287-294. Cerca con Google

Werner, L. A. (2002). Infant auditory capabilities. Current Opinion in Otolaryngology & Head and Neck Surgery, 10, 398-402. Cerca con Google

Werner, L. A. (2007). Human auditory development. In R. Hoy, P. Dallos, & D. Oertel (Eds.), The Senses: A Comprehensive Reference (Vols. 3 - Audition, pp. 871-894). St. Louis: Elsevier. Cerca con Google

Werner, L. A., & Gillenwater, J. M. (1990). Pure tone sensitivity of 2- to 5-week-old infants. Infant Behaviour and Development, 13, 355-375. Cerca con Google

Wetherford, M. J., & Cohen, L. B. (1973). Developmental Changes in Infant Visual Preferences for Novelty and Familiarity. Child Development, 44, 416-424. Cerca con Google

Yonas, A. (1981). Infants’ responses to optical information for collision. In R. N. Aslin, J. R. Alberts, & M. R. Petersen, Development of perception: Vol. 2. The visual system (pp. 313-334). New York: Academic Press. Cerca con Google

Yonas, A., Bechtold, A. G., Frankel, D., Gordon, R. F., McRoberts, G., Norcia, A., & Sternfels, S. (1977). Development of sensitivity to information for impending collision. Perception & Psychophysics, 21(2), 97-104. Cerca con Google

Yonas, A., Pettersen, L., & Lockman, J. (1979). Young infants' sensitivity to optical information for collision. Canadian Journal of Psychology, 33, 268-276. Cerca con Google

Zmyj, N., Jank, J., Schütz-Bosbach, S., & Daum, M. M. (2011). Detection of visual–tactile contingency in the first year after birth. Cognition, 120(1), 82-89. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record