Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Biral, Andrea (2017) Novel Network Paradigms: Microfluidic and M2M Communications. [Ph.D. thesis]

Full text disponibile come:

[img]
Preview
PDF Document (Tesi PhD Andrea Biral) - Accepted Version
2355Kb

Abstract (english)

The present thesis focuses on two appealing paradigms that are expected to characterize the next generation of communication systems: microfluidic networking and Machine to Machine (M2M) Communications. Concerning the former topic, we show how it is possible to introduce switching and routing mechanism in microfluidic systems. We define some simple mathematical models that capture the macroscopic behavior of droplets in microfluidic networks. Then, we use them to implement a simulator that is able to reproduce the motion and predict the path of droplets in a generic microfluidic system. We validate the simulator and apply it to design a network with bus topology. Finally, we prove the feasibility of attaining molecular communication in this domain by describing a simple protocol that exploits droplets length/interdistance modulation to send information.
The research activity on M2M, instead, is aimed at the investigation of two critical issues that are expected to affect Machine-Type Communication (MTC), i.e. energy efficiency and massive access. Regarding energy efficiency, we address the problem of delivering a fixed data payload over a Rayleigh fading wireless channel with the purpose of minimizing the average total energy cost, given by the sum of the transmit energy and an overhead circuit energy, to complete it. This scenario is well suited for uplink cellular MTC in future 5G Internet of Things (IoT) use cases, where the focus is more on device energy efficiency than on throughput. We describe the optimal transmission policies to be used under various coordinated access scenarios with different levels of channel state information and transmitter/receiver capabilities, and show the corresponding theoretical bounds. In the last part of the work, we study the asymptotic performance of uncoordinated access schemes with Multi Packet Reception (MPR) and Successive Interference Cancellation (SIC) techniques for contention resolution at the receiver. The corresponding results in terms of throughput in a massive access M2M scenario are finally evaluated and discussed.

Abstract (italian)

La presente tesi si focalizza sullo studio di due importanti paradigmi che si prevede possano caratterizzare i sistemi di comunicazione di prossima generazione: le reti microfluidiche e le comunicazioni Machine to Machine (M2M). Riguardo alle reti microfluidiche, in questo lavoro illustriamo come sia possibile introdurre elementi di switch e meccanismi di routing all’interno di sistemi microfluidici. Definiamo poi alcuni semplici modelli matematici che descrivono il comportamento macroscopico di gocce all’interno di tali reti. Questi ultimi sono quindi sfruttati per implementare un simulatore che è capace di riprodurre il movimento e predire il percorso delle gocce in un generico sistema microfluidico. Dopo averlo validato sperimentalmente, il simulatore è impiegato per progettare una rete microfluidica con topologia a bus. Infine, viene dimostrato come sia possibile realizzare comunicazioni molecolari in questo ambito tramite la formalizzazione e la descrizione di un protocollo che sfrutta la modulazione della lunghezza/interdistanza delle gocce per trasferire informazione.
L’attività di ricerca in merito alle comunicazioni M2M, invece, è finalizzata allo studio di due importanti criticità insite nelle Machine-Type Communications (MTCs), ovvero l’efficienza energetica e l’accesso simultaneo di massa (massive access). Per quanto concerne l’efficienza energetica, viene affrontato il problema di trasmettere un payload di una certa lunghezza fissata attraverso un canale wireless affetto da Rayleigh fading con lo scopo di minimizzare il costo totale medio dell’utente finale, dato dalla somma dell’energia di trasmissione e di quella di circuito, per completare l’operazione. Tale scenario ben si applica al contesto di trasmissioni cellulari per applicazioni di tipo IoT nelle future reti 5G, dove l’attenzione è rivolta maggiormente all’efficienza energetica dei dispositivi rispetto al throughput, in quanto le UE hanno tipicamente capacità computazionali ed energetiche esigue e si limitano ad inviare sporadicamente pacchetti molto brevi. Vengono quindi descritte le strategie ottime di trasmissione da adottare in un contesto di accesso coordinato a seconda del livello di dettaglio sulle informazioni di canale e delle potenzialità di trasmettitore/ricevitore, illustrando i corrispondenti limiti teorici. Nell’ultima parte del lavoro vengono studiate le prestazioni asintotiche di schemi di accesso non coordinati quando si utilizzano tecniche di Multi Packet Reception (MPR) e Successive Interference Cancellation (SIC) per la risoluzione delle collisioni al ricevitore. I risultati corrispondenti, in termini di throughput, per uno scenario M2M con massive access sono infine ricavati e discussi.

Statistiche Download - Aggiungi a RefWorks
EPrint type:Ph.D. thesis
Tutor:Zanella, Andrea
Ph.D. course:Ciclo 29 > Corsi 29 > INGEGNERIA DELL'INFORMAZIONE
Data di deposito della tesi:27 January 2017
Anno di Pubblicazione:26 January 2017
Key Words:Droplet-based microfluidics, Lab-on-a-Chip, microfluidic networking, T-junction switch, bypass channel, microfluidic/electric duality, droplets routing, bus topology, throughput, droplets generation, Pulse Amplitude Modulation, information encoding, Machine to Machine (M2M) communication, energy efficiency, circuit overhead, Internet of Things (IoT), uplink cellular network, resource allocation, Channel State Information (CSI), Automatic Repeat-reQuest (ARQ), water-filling algorithm, dynamic programming, massive access, Multiple Packet Reception (MPR), Successive Interference Cancellation (SIC).
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-INF/03 Telecomunicazioni
Struttura di riferimento:Dipartimenti > Dipartimento di Ingegneria dell'Informazione
Codice ID:9958
Depositato il:14 Nov 2017 12:25
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] A. Biral and A. Zanella, “Introducing purely hydrodynamic networking mechanisms in microfluidic systems,” in IEEE International Workshop on Molecular and Nanoscale Communication (ICC MoNaCom), June 2013, pp. 798–803. Cerca con Google

[2] A. Biral and A. Zanella, “Introducing purely hydrodynamic networking functionalities into microfluidic systems,” Nano Communication Networks, vol. 4, no. 4, pp. 205–215, 2013. Cerca con Google

[3] A. Zanella and A. Biral, “Design and analysis of a microfluidic bus network with bypass channels,” in IEEE International Conference on Communications (ICC), June 2014, pp. 3993–3998. Cerca con Google

[4] A. Biral, D. Zordan, and A. Zanella, “Modeling, simulation and experimentation of droplet-based microfluidic networks,” IEEE Transactions on Molecular, Biological and Multi-Scale Communications, vol. 1, no. 2, pp. 122–134, June 2015. Cerca con Google

[5] A. Biral, D. Zordan, and A. Zanella, “Simulating “Macroscopic” Behavior of Droplet-Based Microfluidic Systems,” in IEEE Global Communications Conference (Globecom) 2015, December 2015, pp. 1–7. Cerca con Google

[6] A. Biral, D. Zordan, and A. Zanella, “Transmitting information with microfluidic systems,” in IEEE International Conference on Communications (ICC), June 2015, pp. 1103–1108. Cerca con Google

[7] A. Biral, M. Centenaro, A. Zanella, L. Vangelista, and M. Zorzi, “The challenges of M2M massive access in wireless cellular networks,” Digital Communications and Networks, vol. 1, no. 1, pp. 1–19, 2015. Cerca con Google

[8] A. Biral, H. Huang, A. Zanella, and M. Zorzi, “Uplink resource allocation in cellular systems: An energy-efficiency perspective,” in IEEE Global Communications Conference (Globecom) 2015, December 2015, pp. 1–7. Cerca con Google

[9] A. Biral, H. Huang, A. Zanella, and M. Zorzi, “On the Impact of Transmitter Channel Knowledge in Energy-Efficient Machine-Type Communication,” in IEEE Globecom Workshop on Energy Efficiency in the IoT, December 2016. Cerca con Google

[10] A. Zanella, A. Biral, and M. Zorzi, “Asymptotic Throughput Analysis of Massive M2M Access,” in Information Theory and Applications Workshop (ITA) 2015, February 2015, pp. 64–69. Cerca con Google

[11] S. Y. Teh, R. Lin, L. H. Hung, and P. L. Abraham, “Droplet microfluidics,” Lab Chip, vol. 8, no. 2, pp. 198–220, 2008. Cerca con Google

[12] P. Tabeling, Introduction to Microfluidics. Oxford University Press, 2005. Cerca con Google

[13] H. B. Thu and T. C. Duc, “Microfluidic injector simulation with saw sensor for 3d integration,” in IEEE Sensors Applications Symposium (SAS) 2014, February 2014, pp. 213–218. Cerca con Google

[14] L. K. Chin, A. Q. Liu, J. B. Zhang, C. S. Lim, and Y. C. Soh, “An on-chip liquid tunable grating using multiphase droplet microfluidics,” Applied Physics Letters, vol. 93, no. 16, 2008. Cerca con Google

[15] P. S. Dittrich and A. Manz, “Lab-on-a-chip: microfluidics in drug discovery,” Nature Reviews Drug Discovery, vol. 5, pp. 210–218, March 2006. Cerca con Google

[16] A. Huebner, S. Sharma, M. Srisa-Art, F. Hollfelder, J. B. Edel, and A. J. Demello, “Microdroplets: a sea of applications?” Lab on a Chip, vol. 8, pp. 1244–1254, August 2008. Cerca con Google

[17] V. Ananthanarayanan and W. Thies, “Towards a high-level programming language for standardizing and automating biology protocols,” in 1st International Workshop on Biodesign Automation, 2009. Cerca con Google

[18] C. G. Yang, Z. R. Xu, and J. H.Wang, “Manipulation of droplets in microfluidic systems,” Trends in Analytical Chemistry, vol. 29, no. 2, pp. 141–157, 2010. Cerca con Google

[19] H. Wu, T. W. Odom, D. T. Chiu, and G. M. Whitesides, “Fabrication of complex three-dimensional microchannel systems in pdms,” Journal of the American Chemical Society, vol. 125, no. 2, pp. 554–559, 2003. Cerca con Google

[20] P. Abgrall and A. Gue, “Lab-on-chip technologies: making a microfluidic network and coupling it into a complete microsystem – a review,” Journal of Micromechanics and Microengineering, vol. 17, no. 5, p. R15, April 2007. Cerca con Google

[21] ThinXXS Microtechnology, Date Accessed: 15 November 2016. [Online]. Available: http://www.thinxxs.com/main/thinxxs/mailing-california.html Vai! Cerca con Google

[22] D. R. Link, E. Grasland-Mongrain, A. Duri, F. Sarrazin, Z. Cheng, G. Cristobal, M. Marquez, and D. A. Weitz, “Electric control of droplets in microfluidic devices,” Angewandte Chemie Int. Ed., vol. 45, no. 16, pp. 2556–2560, 2006. Cerca con Google

[23] P. H. Yuh, C. L. Yang, and Y. W. Chang, “Bioroute: A network-flow-based routing algorithm for the synthesis of digital microfluidic biochips,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 27, no. 11, pp. 1928–1941, November 2008. Cerca con Google

[24] A. Wixforth, “Acoustically driven planar microfluidics,” Superlattices and Microstructures, vol. 33, no. 5-6, pp. 389–396, 2003. Cerca con Google

[25] D. Mark, S. Haeberle, G. Roth, F. von Stetten, and R. Zengerle, “Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications,” Chem. Soc. Rev., vol. 39, pp. 1153–1182, 2010. Cerca con Google

[26] C. N. Baroud, F. Gallaire, and R. Dangla, “Dynamics of microfluidic droplets,” Lab Chip, vol. 10, pp. 2032–2045, 2010. Cerca con Google

[27] T. Thorsen, R. Roberts, F. H. Arnold, and S. R. Quake, “Dynamic pattern formation in a vesicle-generating microfluidic device,” Physical Review Letters, vol. 86, no. 18, pp. 4163–4166, April 2001. Cerca con Google

[28] P. Garstecki, M. J. Fuerstman, H. A. Stone, and G. M. Whitesides, “Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up,” Lab Chip, vol. 6, pp. 437–446, 2006. Cerca con Google

[29] M. de Menech, P. Garstecki, F. Jousse, and H. A. Stone, “Transition from squeezing to dripping in a microfluidic T-shaped junction,” Journal of Fluid Mechanics, vol. 595, pp. 141–161, 2008. Cerca con Google

[30] A. Gupta and R. Kumar, “Flow regime transition at high capillary numbers in a microfluidic T-junction: Viscosity contrast and geometry effect,” Physics of Fluids, vol. 22, no. 12, 2010. Cerca con Google

[31] M. J. Fuerstman, P. Garstecki, and G. M. Whitesides, “Coding/Decoding and Reversibility of Droplet Trains in Microfluidic Networks,” Science, vol. 315, no. 5813, pp. 828–832, 2007. Cerca con Google

[32] M. J. Fuerstman, A. Lai, M. E. Thurlow, S. S. Shevkoplyas, H. A. Stone, and G. M. Whitesides, “The pressure drop along rectangular microchannels containing bubbles,” Lab Chip, vol. 7, pp. 1479–1489, 2007. Cerca con Google

[33] A. A. Carlson, M. Do-Quang, and G. Amberg, “Droplet dynamics in a bifurcating channel,” International Journal of Multiphase Flow, vol. 36, no. 5, pp. 397–405, 2010. Cerca con Google

[34] D. R. Link, S. L. Anna, D. A. Weitz, and H. A. Stone, “Geometrically mediated breakup of drops in microfluidic devices,” Physical Review Letters, vol. 92, p. 054503, February 2004. Cerca con Google

[35] A. M. Leshansky and L. M. Pismen, “Breakup of drops in a microfluidic T junction,” Physics of Fluids, vol. 21, no. 2, p. 023303, 2009. Cerca con Google

[36] W. O. Kwang, K. Lee, B. Ahn, and E. P. Furlani, “Design of pressure-driven microfluidic networks using electric circuit analogy,” Lab Chip, vol. 12, pp. 515–545, 2012. Cerca con Google

[37] A. Ajdari, “Steady flows in networks of microfluidic channels: building on the analogy with electrical circuits,” Comptes Rendus Physique, vol. 5, no. 5, pp. 539–546, 2004. Cerca con Google

[38] G. F. Christopher, J. Bergstein, N. B. End, M. Poon, C. Nguyen, and S. L. Anna, “Coalescence and splitting of confined droplets at microfluidic junctions,” Lab on a Chip, vol. 9, no. 8, pp. 1102–1109, 2009. Cerca con Google

[39] M. C. Jullien, M. J. Tsang Mui Ching, C. Cohen, L. Menetrier, and P. Tabeling, “Droplet breakup in microfluidic T-junctions at small capillary numbers,” Physics of Fluids, vol. 21, no. 7, p. 072001, 2009. Cerca con Google

[40] D. A. Sessoms, M. Belloul, W. Engl, M. Roche, L. Courbin, and P. Panizza, “Droplet motion in microfluidic networks: Hydrodynamic interactions and pressure-drop measurements,” Physical Review E, vol. 80, p. 016317, July 2009. Cerca con Google

[41] E. De Leo, L. Galluccio, A. Lombardo, and G. Morabito, “On the feasibility of using microfluidic technologies for communications in Labs-on-a-Chip,” in IEEE International Conference on Communications (ICC), June 2012, pp. 2526–2530. Cerca con Google

[42] G. Cristobal, J.-P. Benoit, M. Joanicot, and A. Ajdari, “Microfluidic bypass for efficient passive regulation of droplet traffic at a junction,” Applied Physics Letters, vol. 89, no. 3, p. 034104, 2006. Cerca con Google

[43] M. Prakash and N. Gershenfeld, “Microfluidic Bubble Logic,” Science, vol. 315, no. 5813, pp. 832–835, 2007. Cerca con Google

[44] L. Donvito, L. Galluccio, A. Lombardo, and G. Morabito, “Microfluidic networks: Design and simulation of pure hydrodynamic switching and medium access control,” Nano Communication Networks, vol. 4, no. 4, pp. 164–171, 2013. Cerca con Google

[45] E. De Leo, L. Galluccio, A. Lombardo, and G. Morabito, “Networked Labs-on-a-Chip (NLoC): Introducing networking technologies in microfluidic systems,” Nano Communication Networks, vol. 3, no. 4, pp. 217–228, 2012. Cerca con Google

[46] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, “Internet of Things for Smart Cities,” IEEE Internet of Things Journal, vol. 1, no. 1, pp. 22–32, February 2014. Cerca con Google

[47] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A survey,” Computer Networks, vol. 54, no. 15, pp. 2787–2805, October 2010. Cerca con Google

[48] P. Bellavista, G. Cardone, A. Corradi, and L. Foschini, “Convergence of MANET and WSN in IoT urban scenarios,” IEEE Sensors Journal, vol. 13, no. 10, pp. 3558–3567, October 2013. Cerca con Google

[49] J. Zheng and M. J. Lee, “A comprehensive performance study of IEEE 802.15.4,” in Sensor Network Operations. IEEE Press Book, Wiley Interscience, 2006, ch. 4, pp. 218–237. Cerca con Google

[50] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler, “Transmission of IPv6 packets over IEEE 802.15.4 networks,” Tech. Rep. IETF Request for Comments 4944, September 2007. [Online]. Available: http://tools.ietf.org/pdf/rfc4944.pdf Vai! Cerca con Google

[51] P. Kinney et al., “Zigbee technology: Wireless control that simply works,” in Communications design conference, October 2003. Cerca con Google

[52] H. Merz, J. Backer, V. Moser, T. Hansemann, L. Greefe, and C. Hübner, Building Automation: Communication Systems with EIB/KNX, LON and BACnet. Springer, June 2009. Cerca con Google

[53] 3GPP, “Feasibility study for Proximity Services (ProSe),” Tech. Rep. TR 22.803 V12.2.0, June 2013. Cerca con Google

[54] H. Schaffers, N. Komninos, M. Pallot, B. Trousse, M. Nilsson, and A. Oliveira, “Smart Cities and the Future Internet: Towards Cooperation Frameworks for Open Innovation,” in The Future Internet. Springer, 2011, vol. 6656, pp. 431–446. Cerca con Google

[55] A. Laya, L. Alonso, and J. Alonso-Zarate, “Is the Random Access Channel of LTE and LTE-A Suitable for M2M Communications? A Survey of Alternatives,” IEEE Communications Surveys Tutorials, vol. 16, no. 1, pp. 4–16, January 2014. Cerca con Google

[56] 3GPP, “Study on RAN Improvements for Machine-type Communications,” Tech. Rep. TR 37.868 V11.0.0, September 2011. Cerca con Google

[57] A. Lo, Y. Law, M. Jacobsson, and M. Kucharzak, “Enhanced LTE-Advanced Random-Access Mechanism for Massive Machine-to-Machine (M2M) Communications.” 27th World Wireless Research Forum Meeting, October 2011. Cerca con Google

[58] K. S. Ko, M. J. Kim, K. Y. Bae, D. K. Sung, J. H. Kim, and J. Y. Ahn, “A Novel Random Access for Fixed-Location Machine-to-Machine Communications in OFDMA Based Systems,” IEEE Communications Letters, vol. 16, no. 9, pp. 1428–1431, September 2012. Cerca con Google

[59] T. Taleb and A. Kunz, “Machine type communications in 3GPP networks: potential, challenges, and solutions,” IEEE Communications Magazine, vol. 50, no. 3, pp. 178–184, March 2012. Cerca con Google

[60] L.M. Bello, P.Mitchell, and D. Grace, “Application of Q-Learning for RACH Access to Support M2M Traffic over a Cellular Network,” in European Wireless Conference, May 2014, pp. 1–6. Cerca con Google

[61] Y.-C. Pang, S.-L. Chao, G.-Y. Lin, and H.-Y. Wei, “Network access for M2M/H2H hybrid systems: a game theoretic approach,” IEEE Communications Letters, vol. 18, no. 5, pp. 845–848, June 2014. Cerca con Google

[62] C.-Y. Tu, C.-Y. Ho, and C.-Y. Huang, “Energy-Efficient Algorithms and Evaluations for Massive Access Management in Cellular Based Machine to Machine Communications,” in IEEE Vehicular Technology Conference (VTC Fall) 2011, September 2011, pp. 1–5. Cerca con Google

[63] C. Y. Ho and C.-Y. Huang, “Energy-Saving Massive Access Control and Resource Allocation Schemes for M2M Communications in OFDMA Cellular Networks,” IEEE Wireless Communications Letters, vol. 1, no. 3, pp. 209–212, June 2012. Cerca con Google

[64] S.-Y. Lien, K.-C. Chen, and Y. Lin, “Toward ubiquitous massive accesses in 3GPP machine-to-machine communications,” IEEE Communications Magazine, vol. 49, no. 4, pp. 66–74, April 2011. Cerca con Google

[65] S.-Y. Lien and K.-C. Chen, “Massive Access Management for QoS Guarantees in 3GPP Machine-to-Machine Communications,” IEEE Communications Letters, vol. 15, no. 3, pp. 311–313, March 2011. Cerca con Google

[66] P. Si, J. Yang, S. Chen, and H. Xi, “Adaptive Massive Access Management for QoS Guarantees in M2M Communications,” IEEE Transactions on Vehicular Technology, pp. 3152–3166, July 2015. Cerca con Google

[67] S. Zhenqi, Y. Haifeng, C. Xuefen, and L. Hongxia, “Research on uplink scheduling algorithm of massive M2M and H2H services in LTE,” in IET International Conference on Information and Communications Technologies (IETICT), April 2013, pp. 365–369. Cerca con Google

[68] S. Bayat, Y. Li, Z. Han, M. Dohler, and B. Vucetic, “Distributed massive wireless access for cellular machine-to-machine communication,” in IEEE International Conference on Communications (ICC) 2014, June 2014, pp. 2767–2772. Cerca con Google

[69] M. Hasan, E. Hossain, and D. Niyato, “Random access for machine-to-machine communication in LTE-advanced networks: issues and approaches,” IEEE Communications Magazine, vol. 51, no. 6, pp. 86–93, June 2013. Cerca con Google

[70] Y. Qi, A. Ijaz, A. Quddus, M. Imran, P. Navaratnam, Y. Ma, R. Tafazolli, M. Webb, and Y. Morioka, “On the Physical Layer Design for Low Cost Machine Type Communication in 3GPP LTE,” in IEEE Vehicular Technology Conference (VTC Fall), September 2014, pp. 1–5. Cerca con Google

[71] 3GPP, “LTE coverage enhancements,” Tech. Rep. TR 36.824 V11.0.0, June 2012. Cerca con Google

[72] General Dynamics Broadband UK, “Coverage extension for MTC UEs,” Tech. Rep. TSG RAN1#71 R1-125204, November 2012. Cerca con Google

[73] Y. Chan, J. Yang, and P. Zong, “Machine-to-machine communications over fixed wireless networks,” April 2013, US Patent 8,416,741. [Online]. Available: http://www.google.com/patents/US8416741 Vai! Cerca con Google

[74] G. Cocco, C. Ibars, and N. Alagha, “Cooperative coverage extension in heterogeneous machine-to-machine networks,” in IEEE Globecom Workshops, December 2012, pp. 1693–1699. Cerca con Google

[75] C. Stefanovic and P. Popovski, “ALOHA Random Access that Operates as a Rateless Code,” IEEE Transactions on Communications, vol. 61, no. 11, pp. 4653–4662, November 2013. Cerca con Google

[76] C. Stefanovic, M. Momoda, and P. Popovski, “Exploiting capture effect in frameless ALOHA for massive wireless random access,” in IEEE Wireless Communications and Networking Conference (WCNC), April 2014, pp. 1762–1767. Cerca con Google

[77] A. Zanella, M. Zorzi, A. dos Santos, P. Popovski, N. Pratas, C. Stefanovic, A. Dekorsy, C. Bockelmann, B. Busropan, and T. Norp, “M2M massive wireless access: Challenges, research issues, and ways forward,” in IEEE Globecom Workshops, December 2013, pp. 151–156. Cerca con Google

[78] F. Boccardi, R. Heath, A. Lozano, T. Marzetta, and P. Popovski, “Five disruptive technology directions for 5G,” IEEE Communications Magazine, vol. 52, no. 2, pp. 74–80, February 2014. Cerca con Google

[79] R. Min and A. Chandrakasan, “Top Five Myths about the Energy Consumption of Wireless Communication,” ACM Sigmobile Mobile Communication and Communications Review, vol. 6, pp. 65–67, 2002. Cerca con Google

[80] H. S. Dhillon, H. C. Huang, H. Viswanathan, and R. A. Valenzuela, “Power-Efficient System Design for Cellular-Based Machine-to-Machine Communications,” IEEE Transactions on Wireless Communications, vol. 12, no. 11, pp. 5740–5753, November 2013. Cerca con Google

[81] A. Marques, X. Wang, and G. Giannakis, “Optimizing Energy Efficiency of TDMA with Finite Rate Feedback,” in IEEE International Conference on Acoustics, Speech and Signal Processing, 2007, vol. 3, April 2007, pp. III–117–III–120. Cerca con Google

[82] X. Zhang, L. L. Xie, and X. Shen, “An Energy-Efficient Bit Allocation Scheme in Wireless Sensor Networks,” in IEEE Global Communications Conference (Globecom) 2010, December 2010, pp. 1–5. Cerca con Google

[83] A. El Gamal, C. Nair, B. Prabhakar, E. Uysal-Biyikoglu, and S. Zahedi, “Energy-efficient scheduling of packet transmissions over wireless networks,” in IEEE INFOCOM 2002, vol. 3, June 2002, pp. 1773–1782. Cerca con Google

[84] W. Yu and J. M. Cioffi, “On constant power water-filling,” in IEEE International Conference on Communications (ICC) 2001, vol. 6, 2001, pp. 1665–1669. Cerca con Google

[85] D. Bertsekas, Dynamic Programming and Optimal Control. 3rd ed. Athena Scientific, 2007. Cerca con Google

[86] D. Tse and P. Viswanath, Fundamentals of Wireless Communication. Cambridge University Press, 2005. Cerca con Google

[87] S. Ahmed, L.-L. Yang, and L. Hanzo, “Probability Distributions of Products of Rayleigh and Nakagami-m Variables Using Mellin Transform,” in IEEE International Conference on Communications (ICC) 2011, June 2011. Cerca con Google

[88] Q. Wang, M. Hempstead, and W. Yang, “A Realistic Power Consumption Model for Wireless Sensor Network Devices,” in IEEE Communications Society on Sensor and Ad Hoc Communications and Networks (SECON) 2006, vol. 1, September 2006, pp. 286–295. Cerca con Google

[89] J. J. Garcia-Luna-Aceves, H. R. Sadjadpour, and Z. Wang, “Challenges: Towards Truly Scalable Ad Hoc Networks,” in MobiCom ’07: Proceedings of the 13th annual ACM international conference on Mobile Computing and networking, 2007, pp. 207–214. Cerca con Google

[90] A. Zanella and M. Zorzi, “Theoretical Analysis of the Capture Probability in Wireless Systems with Multiple Packet Reception Capabilities,” IEEE Transactions on Communications, vol. 60, no. 4, pp. 1058–1071, April 2012. Cerca con Google

[91] S. Ghez, S. Verdu, and S. Schwartz, “Stability properties of slotted Aloha with multipacket reception capability,” IEEE Transactions on Automatic Control, vol. 33, no. 7, pp. 640–649, July 1988. Cerca con Google

[92] P. Minero and M. Franceschetti, “Throughput of Slotted ALOHA with Encoding Rate Optimization and Multipacket Reception,” in INFOCOM’09, 2009, pp. 2971–2975. Cerca con Google

[93] L. G. Roberts, “ALOHA Packet System With and Without Slots and Capture,” Communications Reviews, pp. 28–42, April 1975. Cerca con Google

[94] M. Zorzi and R. Rao, “Capture and retransmission control in mobile radio,” IEEE Journal on Selected Areas in Communications, vol. 12, no. 8, pp. 1289–1298, October 1994. Cerca con Google

[95] V. Naware, G. Mergen, and L. Tong, “Stability and delay of finite-user slotted ALOHA with multipacket reception,” IEEE Transactions on Information Theory, vol. 51, no. 7, pp. 2636–2656, July 2005. Cerca con Google

[96] N. Michelusi, P. Popovski, O. Simeone, M. Levorato, and M. Zorzi, “Cognitive Access Policies under a Primary ARQ Process via Forward-Backward Interference Cancellation,” IEEE Journal on Selected Areas in Communications, vol. 31, no. 11, pp. 2374–2386, November 2013. Cerca con Google

[97] NetWorld2020 ETP, “5G: Challenges, Research Priorities, and Recommendations,” Tech. Rep., August 2014. Cerca con Google

[98] A. Osseiran, F. Boccardi, V. Braun, K. Kusume, P. Marsch, M. Maternia, O. Queseth, M. Schellmann, H. Schotten, H. Taoka et al., “Scenarios for 5G mobile and wireless communications: the vision of the METIS project,” IEEE Communications Magazine, vol. 52, no. 5, pp. 26–35, May 2014. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record