Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Bobbo, Tania (2017) Udder health in dairy cattle: association with milk composition, cheese-making traits, and blood serum proteins. [Ph.D. thesis]

Full text disponibile come:

[img]
Preview
PDF Document
4Mb

Abstract (english)

The main objective of this PhD thesis was to study the association between udder health [focusing on subclinical cases of bovine mastitis identified by somatic cell count (SCC) and bacteriological analyses] and several milk quality and technological traits related to the cheese-making process, and blood serum proteins, as possible immune response indicators.
To achieve our goal, the work was splitted in 4 chapters. Two datasets were used: for the 1st chapter, milk samples from 1,271 Brown Swiss cows from 85 herds were used. In the subsequent 3 chapters, milk and blood samples were collected from 1,508 dairy specialized and dual-purpose cows of 6 different breeds (Holstein Friesian, Brown Swiss, Jersey, Simmental, Rendena and Grey Alpine) housed in 41 multi-breed herds.
The aim of the 1st chapter was to determine the effects of very low to very high SCC on milk yield, composition, coagulation properties [including traditional milk coagulation properties (MCP) and new curd firming model parameters (CFt)], cheese yield (CY) and recovery of milk nutrients in the curd (REC) at the individual cow level. The objective of the 2nd chapter was to investigate the association between blood serum proteins [i.e., total protein, albumin, globulin and the ratio of albumin-to-globulin (A:G)] and milk SCC. Since several factors should be considered to appropriately interpret serum proteins concentration in blood, we explored the effect of herd productivity (defined according to the average net energy of milk yielded daily by the cows), breed, and individual cow factors (i.e., stage of lactation and parity) on blood traits. In chapters 3 and 4, pathogen-specific information was included in the analysis to gain a better understanding of the specific changes in the traits previously investigated. Subclinical cases of mastitis were confirmed by bacteriological analysis and multiplex-PCR assays. In particular, in the 3rd chapter we investigated the association between pathogen-specific cases of subclinical mastitis and several milk quality and technological traits (i.e., milk yield, composition, detailed protein profile, coagulation properties and cheese-related traits). Based on the results of the 2nd chapter, the 4th chapter studied the association between pathogen-specific cases of subclinical mastitis and blood serum proteins, that in chapter 2 showed a correlation with SCC in milk.
Results of chapter 1 confirmed the negative effect of high SCC on milk yield, composition, MCP, CFt, CY and REC traits. As somatic cell score (SCS) increased, a linear loss of milk production and variations in milk composition (e.g., casein-to-protein ratio, lactose and pH) were observed. These changes decreased the quality and clotting ability of the processed milk, which showed a slower coagulation time and a weaker curd firmness. This, in turn, affected the cheese processing (as confirmed by reductions in the CY and the recovery of milk nutrients in the curd). Our findings showed nonlinear trends for some milk traits with respect to SCS, highlighting the negative effect of very low SCC on some milk technological traits.
Our 2nd chapter showed that cows in high producing herds had greater serum albumin concentrations. Breed differences in serum protein profile could be associated with individual genetic variation and could also be explained by the different selective breeding programs to which breeds have been subjected. Changes in blood serum proteins were observed throughout the entire lactation and according to the parity order. Linear relationships between blood serum proteins and SCS confirmed the importance of SCC as an indicator of mammary gland inflammation. Moreover, our results highlighted the potential use of blood serum proteins as indicators of immune response of the mammary gland to infections and their analysis represents a possible initial screening test to identify animals which need further clinical investigations. Such non-genetic factors affecting variation in blood serum proteins should also be considered in future genetics/genomics investigations.
Results of the 3rd chapter revealed that compared with normal milk, all culture-positive samples and culture-negative samples with medium to high SCC presented significant variations in the casein-to-protein ratio and lactose content. Given that no differences were observed comparing milk infected by contagious, environmental and opportunistic pathogens, our findings suggested an effect of inflammation rather than infection. The greatest impairment in milk yield and composition, clotting ability and cheese production was observed for milk samples with the highest SCC (i.e., culture-positive samples where contagious pathogens were recovered, and culture-negative samples with high SCC), revealing a discrepancy between inflammatory status and bacteriological results, and thus confirming the important role of SCC as udder health indicator. Culture-negative samples with high SCC were possibly undergoing a strong inflammatory response and pathogens could not be isolated because engulfed by macrophages.
In the 4th chapter, culture-negative samples with high milk SCC, which we hypothesized to be infected by contagious bacteria engulfed by neutrophils, and milk samples infected by contagious and environmental bacteria were associated with greater globulin content (and lower A:G) in blood. In accordance with the results in chapter 3 for milk traits, variation in blood serum proteins seemed to be associated with inflammation rather than infection, as globulin significantly increased in the blood of cows whose milk samples had the highest SCC, independently from intramammary infection pathogens.

Abstract (italian)

L’obiettivo principale di questa tesi di dottorato è stato quello di studiare l'associazione tra stato sanitario della mammella [con particolare riferimento a casi subclinici di mastite bovina identificati attraverso conta delle cellule somatiche (SCC) e analisi batteriologica] e una serie di caratteri qualitativi e tecnologici del latte legati al processo di caseificazione, e le proteine del siero, quali possibili indicatori di risposta immunitaria dell’animale.
Per raggiungere tale obiettivo, il lavoro è stato suddiviso in 4 capitoli. Due diversi datasets sono stati utilizzati: nel 1° capitolo sono stati utilizzati campioni di latte raccolti da 1,271 bovine di razza Bruna provenienti da 85 allevamenti. Nei successivi 3 capitoli, i campioni di latte e di sangue sono stati raccolti da 1,508 bovine da latte e a doppia attitudine di 6 diverse razze (Frisona, Bruna, Jersey, Pezzata Rossa, Rendena e Grigio Alpina) provenienti da 41 allevamenti multi-razza.
Nel 1° capitolo di questa tesi sono stati analizzati, a livello individuale, gli effetti di un contenuto variabile di SCC nel latte (da molto basso a molto alto) sulla produzione di latte, la composizione chimica, le proprietà di coagulazione [includendo le proprietà di coagulazione tradizionali (MCP) e nuovi parametri modellizzati di consistenza della cagliata (CFt)], la resa casearia (CY) e il recupero di nutrienti nella cagliata (REC). Lo scopo del 2° capitolo è stato quello di studiare l'associazione tra proteine del siero [proteine totali, albumina, globulina e il rapporto tra albumina e globulina (A:G)] e SCC nel latte. Tuttavia, per interpretare in modo appropriato la concentrazione delle proteine nel sangue, devono essere presi in considerazione diversi fattori. Pertanto, è stato valutato l'effetto del livello produttivo dell’allevamento (definito sulla base dell'energia netta del latte prodotta in media giornalmente dalle bovine), della razza, dello stadio di lattazione e dell’ordine di parto sulle proteine ematiche. Nei capitoli 3 e 4, sono state incluse nelle analisi informazioni a livello patogeno-specifico allo scopo di acquisire una migliore comprensione dei cambiamenti precedentemente osservati nei caratteri tecnologici e di qualità del latte e nei parametri ematici esaminati. I casi subclinici di mastite sono stati confermati attraverso analisi batteriologica e saggi PCR in multiplex. In particolare, l'obiettivo del 3° capitolo è stato quello di studiare l'associazione tra i casi di mastite subclinica a livello patogeno-specifico e i diversi caratteri qualitativi e tecnologici del latte (produzione, composizione chimica, profilo proteico dettagliato, proprietà di coagulazione e caratteri legati al processo di caseificazione). Sulla base dei risultati ottenuti nel capitolo 2, nel 4° capitolo è stata valutata l'associazione tra i casi di mastite subclinica a livello patogeno-specifico e le proteine del siero, che nel capitolo 2 erano risultate correlate alle SCC nel latte.
I risultati ottenuti nel capitolo 1 hanno confermato l'effetto negativo di un alto contenuto di SCC sulla produzione di latte, la composizione e i caratteri MCP, CFt, CY e REC. All’aumentare del punteggio di cellule somatiche (SCS), sono state osservate una diminuzione lineare della quantità di latte prodotto e alcune variazioni nella composizione (in particolare nel rapporto tra caseina e proteina, nel contenuto di lattosio e nel pH). Questi cambiamenti hanno causato una riduzione della qualità e dell’attitudine casearia del latte trasformato, caratterizzato da una coagulazione più lenta e una ridotta consistenza del coagulo. Di conseguenza, tali variazioni hanno avuto ripercussioni negative sul processo di caseificazione, ovvero ridotta resa in formaggio e minor recupero di nutrienti nella cagliata. I risultati ottenuti hanno inoltre evidenziato andamenti non lineari per alcuni caratteri del latte rispetto ad SCS, mettendo in evidenza l'effetto negativo di un contenuto molto basso di SCC su alcuni caratteri tecnologici del latte.
Nel 2° capitolo è stato dimostrato che le bovine allevate in allevamenti ad alta produttività presentavano una maggiore concentrazione di albumina sierica. Le differenze nel profilo proteico osservate tra le diverse razze potrebbero essere associate alla variazione genetica individuale e ai diversi programmi di selezione a cui tali razze sono state sottoposte. Variazioni del contenuto di proteine ematiche sono state riportate all’avanzare della lattazione e a seconda dell’ordine di parto. Le relazioni lineari tra proteine del siero e SCS hanno confermato l'importanza delle SCC come indicatore di infiammazione della mammella. I risultati ottenuti hanno evidenziato inoltre il potenziale uso delle proteine del siero come indicatori di risposta immunitaria della ghiandola mammaria alle infezioni e la loro analisi rappresenta un possibile test iniziale di screening per identificare animali che hanno bisogno di ulteriori indagini cliniche. Tali fonti di variazione non-genetiche delle proteine del siero dovrebbero essere prese in considerazione anche in future analisi genetiche e genomiche.
I risultati del 3° capitolo hanno mostrato che, rispetto al latte di bovine sane, tutti i campioni di latte risultati positivi all’esame batteriologico e i campioni che non hanno evidenziato crescita batterica ma con un contenuto medio-alto di SCC presentavano significative variazioni nel rapporto tra caseina e proteina, nonchè nel contenuto di lattosio. Poiché non sono state osservate differenze significative confrontando latte infetto da patogeni contagiosi, ambientali e opportunisti, i risultati ottenuti hanno evidenziato un deterioramento del latte dovuto alla risposta infiammatoria dell’animale piuttosto che all'infezione stessa. Un peggioramento più pronunciato per quanto riguarda produzione e composizione chimica del latte, attitudine alla coagulazione e resa in formaggio è stato osservato per i campioni di latte con il più alto contenuto di SCC (ovvero i campioni infettati da patogeni contagiosi e i campioni risultati negativi all’esame batteriologico ma con un alto contenuto di SCC). Questo ha rivelato una discrepanza tra stato infiammatorio e risultati batteriologici, confermando così il ruolo importante delle SCC quale indicatore dello stato di salute della mammella. É possibile che, nei campioni risultati negativi all’esame batteriologico ma con un alto contenuto di SCC, una risposta infiammatoria intensa abbia impedito l’isolamento degli agenti patogeni in quanto internalizzati dai macrofagi.
Nel capitolo 4, i campioni che non hanno evidenziato crescita batterica ma con un alto contenuto di SCC, che abbiamo ipotizzato essere infettati da batteri contagiosi internalizzati dai neutrofili, e i campioni di latte infettati da batteri contagiosi e ambientali sono risultati associati a un maggior contenuto di globulina (e a un valore inferiore del rapporto A:G) nel sangue. In accordo con i risultati relativi ai caratteri del latte ottenuti nel capitolo 3, la variazione del profilo proteico del sangue sembra essere associata al processo infiammatorio piuttosto che all'infezione. Infatti è stata osservata una concentrazione elevata di globulina nel sangue di bovine il cui latte presentava un contenuto elevato di SCC, indipendentemente dal tipo di patogeno causa di infezione.

Statistiche Download - Aggiungi a RefWorks
EPrint type:Ph.D. thesis
Tutor:Cecchinato, Alessio
Ph.D. course:Ciclo 29 > Corsi 29 > SCIENZE ANIMALI E AGROALIMENTARI
Data di deposito della tesi:27 January 2017
Anno di Pubblicazione:27 January 2017
Key Words:udder health, milk composition, cheese-making, blood serum proteins, dairy
Settori scientifico-disciplinari MIUR:Area 07 - Scienze agrarie e veterinarie > AGR/17 Zootecnica generale e miglioramento genetico
Struttura di riferimento:Dipartimenti > Dipartimento di Agronomia Animali Alimenti Risorse Naturali e Ambiente
Codice ID:9998
Depositato il:14 Nov 2017 12:27
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Aeberhard, K., R. M. Bruckmaier, and J. W. Blum. 2001. Metabolic, Enzymatic and Endocrine Status in High‐Yielding Dairy Cows–Part 2. J. Vet. Med. Ser. A. 48:111-127. Cerca con Google

Alberghina, D., C. Giannetto, I. Vazzana, V. Ferrantelli, and G. Piccione. 2011. Reference intervals for total protein concentration, serum protein fractions, and albumin/globulin ratios in clinically healthy dairy cow. J. Vet. Diagn. Invest. 23:111–114. Cerca con Google

Alberghina, D., S. Casella, I. Vazzana, V. Ferrantelli, C. Giannetto, and G. Piccione. 2010. Analysis of serum proteins in clinically healthy goats (Capra hircus) using agarose gel electrophoresis. Vet. Clin. Pathol. 39:317–321. Cerca con Google

Aleandri, R., J. C. Schneider, and L. G. Buttazzoni. 1989. Evaluation of milk for cheese production based on milk characteristics and formagraph measures. J. Dairy Sci. 72:1967–1975. Cerca con Google

Ali, A. E., A. T. Andrews, and G. C. Cheeseman. 1980. Influence of elevated somatic cell count on casein distribution and cheese-making. J. Dairy Res. 47:393-400. Cerca con Google

Ali, A. K. A., and G. E. Shook. 1980. An optimum transformation for somatic cell concentration in milk. J. Dairy Sci. 63:487-490. Cerca con Google

Andreatta, E., A. M. Fernandes, M. Veiga Dos Santos, C. Goncalves De Lima, C. Mussarelli, M. C. Marques, and C. Auguste Fernandes De Oliveira. 2007. Effects of milk somatic cell count on physical and chemical characteristics of mozzarella cheese. Aust J Dairy Technol. 62:166-170. Cerca con Google

Annibaldi, S., F. Ferri, and R. Morra. 1977. Nuovi orientamenti nella valutazione tecnica del latte: Tipizzazione lattodinamografica. Sci. Tecn. Latt. Cas. 28:115–126. Cerca con Google

Auldist, M. J., and I. B. Hubble. 1998. Effects of mastitis on raw milk and dairy products. Aust. J. Dairy Technol. 53:28–36. Cerca con Google

Auldist, M. J., S. Coats, B. J. Sutherland, J. J. Mayes, G. H. McDowell, and G. L. Rogers. 1996. Effects of somatic cell count and stage of lactation on raw milk composition and the yield and quality of Cheddar cheese. J. Dairy Res. 63:269–280. Cerca con Google

Auldist, M. J., S. Coats, G. L. Rogers, and G. H. McDowell. 1995. Changes in the composition of milk from normal and mastitic dairy cows during lactational cycle. Aust J. Exp. Agric. 35:427–436. Cerca con Google

Banks, J. M. 2007. Cheese yield. Pages 100–114 in Cheese Problems Solved. P. L. H. McSweeney, ed. Woodhead Publishing Ltd., Cambridge, UK. Cerca con Google

Bannerman, D. D., M. J. Paape, J. W. Lee, X. Zhao, J. C. Hope, and P. Rainard. 2004. Escherichia coli and Staphylococcus aureus elicit differential innate immune responses following intramammary infection. Clin. Diagn. Lab. Immunol. 11:463–472. Cerca con Google

Barbano, D. M., R. R. Rasmussen, and J. M. Lynch. 1991. Influence of milk somatic cell count and milk age on cheese yield. J. Dairy Sci. 74:369–388. Cerca con Google

Barłowska, J., Z. Litwińczuk, A. Wolanciuk, and A. Brodziak. 2009. Relationship of somatic cell count to daily yield and technological usefulness of milk from different breeds of cows. Pol. J. Vet. Sci. 12:75–79. Cerca con Google

Batavani, R. A., S. Asri, and H. Naebzade. 2007. The effect of subclinical mastitis on milk composition in dairy cows. Iranian J. Vet. Res. 8:205–211. Cerca con Google

Bertocchi, L., F. Vismara, T. Hathaway, F. Fusi, A. Scalvenzi, G. Bolzoni, G. Zanardi, G. Varisco. 2012. Evoluzione dell’eziologia della mastite bovina nel Nord Italia dal 2005 al 2011 (Evolution of the aetiology of bovine mastitis in Northern Italy from 2005 to 2011). Large Anim Rev. 18: 51-58. Cerca con Google

Bertoni, G., E. Trevisi, X. Han, and M. Bionaz. 2008. Effects of inflammatory conditions on liver activity in puerperium period and consequences for performance in dairy cows. J. Dairy Sci. 91:3300–3310. Cerca con Google

Bittante, G. 2011. Modeling rennet coagulation time and curd firmness of milk. J. Dairy Sci. 94:5821–5832. Cerca con Google

Bittante, G., B. Contiero, and A. Cecchinato. 2013. Prolonged observation and modelling of milk coagulation, curd firming, and syneresis. Int. Dairy J. 29:115–123. Cerca con Google

Bittante, G., C. Cipolat-Gotet, F. Malchiodi, E. Sturaro, F. Tagliapietra, S. Schiavon, and A. Cecchinato. 2015. Effect of dairy farming system, herd, season, parity, and days in milk on modeling of the coagulation, curd firming, and syneresis of bovine milk. J. Dairy Sci. 98: 2759-2774. Cerca con Google

Bittante, G., M. Penasa, and A. Cecchinato. 2012. Invited review: Genetics and modeling of milk coagulation properties. J. Dairy Sci. 95:6843-6870. Cerca con Google

Blum, J. W., P. Kunz, H. Leuenberger, K. Gautschi, and M. Keller. 1983. Thyroid hormones, blood plasma metabolites and haematological parameters in relationship to milk yield in dairy cows. Anim Sci. 36:93-104. Cerca con Google

Bobbo, T., C. Cipolat-Gotet, G. Bittante, and A. Cecchinato. 2016. The nonlinear effect of somatic cell count on milk composition, coagulation properties, curd firmness modeling, cheese yield, and curd nutrient recovery. J. Dairy Sci. 99:5104-5119. Cerca con Google

Bobe, G., D. C. Beitz, A. E. Freeman, and G. L. Lindberg. 1998. Separation and quantification of bovine milk proteins by reversed-phase High Performance Liquid Chromatography. J Agric Food Chem. 46:458-463. Cerca con Google

Bonfatti, V., M. Tuzzato, G. Chiarot, and P. Carnier. 2014. Variation in milk coagulation properties does not affect cheese yield and composition of model cheese. Int. Dairy J. 39:139–145. Cerca con Google

Bortolami, A., E. Fiore, M. Gianesella, M. Corro, S. Catania, and M. Morgante. 2015. Evaluation of the udder health status in subclinical mastitis affected dairy cows through bacteriological culture, somatic cell count and thermographic imaging. Pol. J. Vet. Sci. 18:799-805. Cerca con Google

Brscic, M., G. Cozzi, I. Lora, A. L. Stefani, B. Contiero, L. Ravarotto, and F. Gottardo. 2015. Short communication: Reference limits for blood analytes in Holstein late-pregnant heifers and dry cows: Effects of parity, days relative to calving, and season. J. Dairy Sci. 98:7886-7892. Cerca con Google

Bruckmaier, R. M., C. E. Ontsouka, and W. Blum. 2004. Fractionized milk composition in dairy cows with subclinical mastitis. Vet. Med. – Czech. 49:283–290. Cerca con Google

Burke, C. R., S. Meier, S. McDougall, C. Compton, M. Mitchell, and J. R. Roche. 2010. Relationships between endometritis and metabolic state during the transition period in pasture-grazed dairy cows. J. Dairy Sci. 93:5363–5373. Cerca con Google

Burton, J. L., and R. J. Erskine. 2003. Immunity and mastitis. Some new ideas for an old disease. Vet. Clin. North Am. Food Anim. Pract. 19:1–45. Cerca con Google

Bynum, D. G., and N. F. Olson. 1982. Influence of curd firmness at cutting on the Cheddar cheese yield and recovery of milk constituents. J. Dairy Sci. 65:2281-2290. Cerca con Google

Cecchinato, A., A. Albera, C. Cipolat-Gotet, A. Ferragina, and G. Bittante. 2015. Genetic parameters of cheese yield and curd nutrient recovery or whey loss traits predicted using Fourier-transform infrared spectroscopy of samples collected during milk recording on Holstein, Brown Swiss and Simmental dairy cows. J. Dairy Sci. 98:4914–4927. Cerca con Google

Cecchinato, A., and G. Bittante. 2016. Genetic, herd/date and environmental relationships of different measures of individual cheese yield and curd nutrients recovery/whey loss and with coagulation properties of bovine milk. J. Dairy Sci. 99:1975–1989. Cerca con Google

Cecchinato, A., C. Cipolat-Gotet, J. Casellas, M. Penasa, A. Rossoni, and G. Bittante. 2013. Genetic analysis of rennet coagulation time, curd-firming rate, and curd firmness assessed on an extended testing period using mechanical and near-infrared instruments. J. Dairy Sci., 96:50-62. Cerca con Google

Chagunda, M. G., T. Larsen, M. Bjerring, and K. L. Ingvartsen. 2006. L-lactate dehydrogenase and N-acetyl-beta-d-glucosaminidase activities in bovine milk as indicators of non-specific mastitis. J. Dairy Res. 73:431–440. Cerca con Google

Chaneton, L., L. Tirante, J. Maito, J. Chaves, and L. E. Bussmann. 2008. Relationship between milk lactoferrin and etiological agent in the mastitic bovine mammary gland. J. Dairy Sci. 91:1865–1873. Cerca con Google

Chorfi, Y., A. Lanevs.chi-Pietersma, V. Girard, and A. Tremblay. 2004. Evaluation of variation in serum globulin concentrations in dairy cattle. Vet. Clin. Pathol. 33,122-127. Cerca con Google

Cipolat-Gotet, C., A. Cecchinato, M. De Marchi, and G. Bittante. 2013. Factors affecting variation of different measures of cheese yield and milk nutrient recovery from an individual model cheese-manufacturing process. J. Dairy Sci. 96:7952–7965. Cerca con Google

Cipolat-Gotet, C., A. Cecchinato, M. De Marchi, M. Penasa, and G. Bittante. 2012. Comparison between mechanical and near-infrared optical methods for assessing milk coagulation properties. J. Dairy Sci. 95:6806–6819. Cerca con Google

Cornelius, C. E. and J. J. Kaneko. 1963. Clinical Biochemistry of Domestic Animals. Academic Press, New York. Cerca con Google

Coulon, J. B., C. Hurtaud, B. Remond, and R. Verite. 1998. Factors contributing to variation in the proportion of casein in cows’ milk true protein: a review of recent INRA experiments. J. Dairy Res. 65:375–387. Cerca con Google

Coulon, J. B., P. Gasqui, J. Barnouin, A. Ollier, P. Pradel, and D. Pomies. 2002. Effect of mastitis and related-germ on milk yield and composition during naturally-occurring udder infections in dairy cows. Anim Res. 51:383–393. Cerca con Google

Cozzi, G., L. Ravarotto, F. Gottardo, A. L. Stefani, B. Contiero, L. Moro, M. Brscic, and P. Dalvit. 2011. Short communication: Reference values for blood parameters in Holstein dairy cows: Effects of parity, stage of lactation, and season of production. J. Dairy Sci. 94:3895-3901. Cerca con Google

Dalgleish, D. G. 1993 Bovine milk protein properties and the manufacturing quality of milk. Livest. Prod. Sci. 35:75-93. Cerca con Google

de Haas, Y., H. W. Barkema, and R. F. Veerkamp. 2002. The effect of pathogen-specific clinical mastitis on the lactation curve for somatic cell count. J Dairy Sci 85:1314–1323. Cerca con Google

de los Campos, G., D. Gianola, and B. Heringstad. 2006. A structural equation model for describing relationships between somatic cell count and milk yield in first-lactation dairy cows. J. Dairy Sci.89:4445–4455. Cerca con Google

Dohoo, I. R, and K. E. Leslie. 1991. Evaluation of changes in somatic cell counts as indicators of new intra-mammary infections. Prev. Vet. Med.10: 225-237. Cerca con Google

Dohoo, I. R., and A. H. Meek. 1982. Somatic cell counts in bovine milk. Can. Vet. J. 23:119–125. Cerca con Google

Duarte, C. M., P. P. Freitas, and R. Bexiga. 2015. Technological advances in bovine mastitis diagnosis an overview. J. Vet. Diagn. Invest. 27:665-72. Cerca con Google

Eberhart, R. J., H. C. Gilmore, L. J. Hutchinson, and S. B. Spencer. 1979. Somatic cell counts in DHI samples. Proc. Ann. Mtg. Natl. Mastitis Counc. p. 32-40. Cerca con Google

Eckersall, P. D. 2008. Proteins, Proteomics, and the Dysproteinemias. Pages 117-155 in Clinical biochemistry of domestic animals. J. J. Kaneko, J.W. Harvey, and M. L. Bruss, 6th ed., Elsevier Academic Press, London. Cerca con Google

Eckersall, P. D., and R. Bell. 2010. Acute phase proteins: Biomarkers of infection and inflammation in veterinary medicine. Vet. J. 185:23-27. Cerca con Google

Erskine, R. J., S. Wagner, and F. J. DeGraves. 2003. Mastitis therapy and pharmacology. Vet. Clin. North Am. Food Anim. Pract. 19:109-138. Cerca con Google

Fleminger, G., R. Heftsi, U. Merin, N. Silanikove, and G. Leitner. 2011. Chemical and structural characterization of bacterially-derived casein peptides that impair milk clotting. Int. Dairy J. 21: 914–920. Cerca con Google

Fox L. K., G. E. Shook, and L. H. Schultz. 1985. Factors related to milk loss in quarters with low somatic cell counts. J. Dairy Sci. 68:2100–2107. Cerca con Google

Franceschi, P., P. Formaggioni, M. Malacarne, A. Summer, S. Fieni, and P. Mariani. 2003. Variations of nitrogen fractions, proteolysis and rennet-coagulation properties of milks with different somatic cell values. Scienza e Tecnica Lattiero-Casearia. 54:301–310. Cerca con Google

Gain, S., J. Mukherjee, S. Chatterjee, S. Batabyal, and C. Guha. 2015. Alteration in the activity of blood and milk leukocytes together with the serum enzyme profile during sub-clinical mastitis in cross-bred cows. Indian J. Anim. Sci. 85:856-860. Cerca con Google

Geary, U., N. Lopez-Villalobos, B. O’Brien, D J. Garrick, and L. Shalloo. 2013. Meta-analysis to investigate relationships between somatic cell count and raw milk composition, Cheddar cheese processing characteristics and cheese composition. Irish J. Agr. Food Res. 52:119–133. Cerca con Google

Gibson, J. P., A. C. Field, and G. Wiener. 1987. Concentrations of blood constituents in genetically high and low milk-production lines of British Friesian and Jersey cattle around calving and in early lactation. Anim. Prod. 44:183-199. Cerca con Google

Giuliotti, L., J. Goracci, M. N. Benvenuti, I. Facdouelle, and A. Profumo. 2004. Blood parameters: potential welfare indicators in dairy cows. Annali della Facolta di Medicina Veterinaria di Pisa 57: 281-289. Cerca con Google

Gonçalves, J. L., T. Tomazi, J. R. Barreiro, D. C. Beuron, M. A. Arcari, S. H. I. Lee, C. M. M. R. Martins, J. P. Araújo JR and M. V. dos Santos. 2016. Effects of bovine subclinical mastitis caused by Corynebacterium spp. on somatic cell count, milk yield and composition by comparing contralateral quarters. Vet J. 209:87-92. Cerca con Google

Grandison, A. S., and G. D. Ford. 1986. Effects of variations in somatic cell count on the rennet coagulation properties of milk and on the yields, composition and quality of cheddar cheese. J. Dairy Res. 53:645–655. Cerca con Google

Gröhn, Y. T., D. J. Wilson, R. N. Gonzalez, J. A. Hertl, H. Schulte, G. Bennett, and Y. H. Schukken. 2004. Effect of pathogen-specific clinical mastitis on milk yield in dairy cows. J Dairy Sci 87:3358–3374. Cerca con Google

Guidry, A. J. 1985. Mastitis and the immune system of the mammary gland. Page 249 in Lactation. B. L. Larson, ed. Iowa State Univ. Press, Ames. Cerca con Google

Haenlein, G. F. W., L. H. Schultz, and J. P. Zikakis. 1973. Composition of proteins in milk with varying leukocyte contents. J. Dairy Sci. 56:1017–1024. Cerca con Google

Halasa, T., K. Huijps, O. Østerås, and H. Hogeveen. 2007. Economic effects of bovine mastitis and mastitis management: a review. Vet. Quart. 29:18–31. Cerca con Google

Halasa, T., M. Nielen, R. B. M. Huirne, and H. Hogeveen. 2009. Stochastic bio-economic model of bovine intramammary infection. Livest Sci 124:295–305. Cerca con Google

Hamann, J. 2003. Definition of the physiological cell count threshold based on changes in milk composition. IDF Mastitis Newsl. 25:9–12. Cerca con Google

Harmon, R. J. 1994. Physiology of mastitis and factors affecting somatic cell counts. J. Dairy Sci. 77:2103–2112. Cerca con Google

Harmon, R. J. 2001. Somatic cell counts: a primer. Pp 3-9 in Proc. Natl. Mastitis Coun. 40th Annual Meeting, Feb 11-14, 2001 Reno, NV. Cerca con Google

Hertl, J. A., Y. H. Schukken, F. L. Welcome, L. W. Tauer, and Y. T. Gröhn. 2014. Pathogen-specific effects on milk yield in repeated clinical mastitis episodes in Holstein dairy cows. J. Dairy Sci. 97:1465–1480. Cerca con Google

Hill, A. W., A. L. Shears, and K. G. Hibbitt. 1978. The elimination of serum-resistant Escherichia coli from experimentally infected single mammary glands of healthy cows. Res. Vet. Sci. 25:89–93. Cerca con Google

Hiss, S., U. Mueller, A. Neu-Zahren, and H. Sauerwein. 2007. Haptoglobin and lactate dehydrogenase measurements in milk for the identification of subclinically diseased udder quarters. Vet. Med. 52:245–252. Cerca con Google

Hoffman, P. C., N. M. Esser, L. M. Bauman, S. L. Denzine, M. Engstrom, and H. Chester-Jones. 2001. Short communication: effect of dietary protein on growth and nitrogen balance of Holstein heifers. J. Dairy Sci. 84:843-847. Cerca con Google

Hogan, J. S., R. Gonzalez, R. Harmon, S. Nickerson, S. Oliver, J. Pankey, and K. Smith. 1999. Laboratory handbook on bovine mastitis. National Mastitis Council, Madison, WI. Cerca con Google

Horadagoda, N. U., K. M. G. Knox, H. A. Gibbs, S. W. J. Reid, A. Horadagoda, S. E. R. Edwards, and P. D. Eckersall. 1999. Acute phase proteins in cattle: discrimination between acute and chronic inflammation. Vet. Rec. 144:437 – 441. Cerca con Google

Hortet, P., and H. Seegers. 1998. Calculated milk production losses associated with elevated somatic cell counts in dairy cows: review and critical discussion. Vet Res. 29:497–510. Cerca con Google

Ikonen, T., O. Ruottinen, E. L. Syväoja, K. Saarinen, E. Pahkala, and M. Ojala. 1999. Effect of milk coagulation properties of herd bulk milk on yield and composition of Emmental cheese. Agric. Food Sci. Finl. 8:411–422. Cerca con Google

Ingvartsen, K. L., R. J. Dewhurst, and N. C. Friggens. 2003. On the relationship between lactational performance and health: is it yield or metabolic imbalance that causes diseases in dairy cattle? A position paper. Livest. Prod. Sci. 83:277-308. Cerca con Google

International Dairy Federation, Brussels, Belgium. International Dairy Federation, 2013. The world dairy situation. Bulletin 470/2013. Cerca con Google

Irfan, M. 1967. The electrophoretic pattern of serum proteins in normal animals. Res. Vet. Sci. 8:137–142. Cerca con Google

Jensen, N. E., and K. Knudsen. 1991. Inter-quarter comparison of markers of subclinical mastitis: somatic cell count, electrical conductivity, N-acetyl-β-D-glucosaminidase and antitrypsin. J. Dairy Res. 58:389–399. Cerca con Google

Kehrli, M. E., and D. E. Shuster. 1994. Factors affecting milk somatic cells and their role in health of the bovine mammary gland. J. Dairy Sci. 77:619–627. Cerca con Google

Kester, H. J., D. E. Sorter, and J. S. Hogan. 2015. Activity and milk compositional changes following experimentally induced Streptococcus uberis bovine mastitis. J. Dairy Sci. 98:999-1004. Cerca con Google

Kitchen, B. J. 1981. Review of the progress of dairy science - bovine mastitis - milk compositional changes and related diagnostic tests. J. Dairy Res. 48:167–188. Cerca con Google

Kitchenham, B. A., and G. J. Rowlands. 1976. Differences in the concentrations of certain blood constituents among cows in dairy herd. J. Agric. Sci. 86:171. Cerca con Google

Klei, L., J. Yun, A. Sapru, J. Lynch, D. M. Barbano, P. Sears, and D. Galton. 1998. Effect of milk somatic cell count on cottage cheese and quality. J. Dairy Sci. 81:1205–1213. Cerca con Google

Koldeweij, E., U. Emanuelson, and L. Janson. 1999. Relation of milk production loss to somatic cell count. Acta Vet. Scand. 40: 47-56. Cerca con Google

Korhonen, H., P. Marnila, and H. S. Gill. 2000. Milk immunoglobulins and complement factors. Br. J. Nutr. 84:S75–S80. Cerca con Google

Krömker, V., N. T. Grabowski, R. Redetzky, and J. Hamann, 2001. Detection of mastitis using selected quarter milk parameters. 2nd Intl. Symp. Bovine Mastitis and Milk Quality. Vancouver, Canada, pp:486-487. Cerca con Google

Laben, R. C. 1963. Factor responsible for variation in milk composition. J. Dairy Sci. 46:1293-1296. Cerca con Google

Lahouassa, H., E. Moussay, P. Rainard, and C. Riollet. 2007. Differential cytokine and chemokine responses of bovine mammary epithelial cells to Staphylococcus aureus and Escherichia coli. CYTOKINE. 38:12-21. Cerca con Google

Larsen, L. B., M. D. Rasmussen, M. Bjerring, and J. H. Nielsen. 2004. Proteases and protein degradation in milk from cows infected with Streptococcus uberis. Int. Dairy J. 14:899–907. Cerca con Google

Larson, B. L., and K. A. Kendall. 1957. Changes in specific blood serum protein levels associated with parturition in the bovine. J. Dairy Sci. 40:659-666. Cerca con Google

Larson, B. L., and R. W. Touchberry. 1959. Blood serum protein level as a function of age. J. Anim. Sci. 18:983. Cerca con Google

Law, R. A., F. J. Young, D. C. Patterson, D. J. Kilpatrick, A. R. G. Wylie, and C. S. Mayne. 2009. Effect of dietary protein content on animal production and blood metabolites of dairy cows during lactation. J. Dairy Sci. 92:1001–1012. Cerca con Google

Le Maréchal, C., R. Thiéry, E. Vautor, and Y. Le Loir. 2011 Mastitis impact on technological properties of milk and quality of milk products – a review. Dairy Sci. Technol. 91:247–282. Cerca con Google

Le Roux, Y., O. Colin, and F. Laurent. 1995. Proteolysis in samples of quarter milk with varying somatic cell counts: 1. Comparison of some indicators of endogenous proteolysis in milk. J. Dairy Sci.78:1289–1297. Cerca con Google

Lee, A. J., A. R. Twardock, R. H. Bubar, J. E. Hall, and C. L. Davis. 1978. Blood metabolic profiles: their use and relation to nutritional status of dairy cows., J. Dairy Sci. 61:1652-1670. Cerca con Google

Leitner, G., O. Krifucks, U. Merin, Y. Lavi, and N. Silanikove. 2006. Interactions between bacteria type, proteolysis of casein and physico-chemical properties of bovine milk. Int Dairy J. 16:648–654. Cerca con Google

Leitner, G., U. Merin, and N. Silanikove. 2011. Effects of glandular bacterial infection and stage of lactation on milk clotting parameters: comparison among cows, goats and sheep. Int. Dairy J. 21:279–285. Cerca con Google

Makovec, J. A. and P. L. Ruegg. 2003. Results of milk samples submitted for microbiological examination in Wisconsin from 1994 to 2001. J. Dairy Sci. 86:3466-3472. Cerca con Google

Malacarne, M., A. Summer, E. Fossa, P. Formaggioni, P. Franceschi, M. Pecorari, and P. Mariani. 2006. Composition, coagulation properties and Parmigiano-Reggiano cheese yield of Italian Brown and Italian Friesian herd milks. J. Dairy Res. 73:171–177. Cerca con Google

Malek dos Reis, C. B., J. R. Barreiro, L. Mestieri, M. A. de Feltcio Porcionato, M. V. dos Santos. 2013. Effect of somatic cell count and mastitis pathogens on milk composition in Gyr cows. BMC Vet Res. 9: 67. Cerca con Google

Mallard, B. A., E. B. Burnside, J. H. Burton, and B. N. Wilkie. 1983. Variation in serum immunoglobulins in Canadian Holstein-Friesians. J. Dairy Sci. 66:862–866. Cerca con Google

Mallard, B. A., J. C. Dekkers, M. J. Ireland, K. E. Leslie, S. Sharif, C. Lacey-Vankampen, L. Wagter, and B. N. Wilkie. 1998. Alteration in immune responsiveness during the peripartum period and its ramification on dairy cow and calf health. J. Dairy Sci. 81:585–595. Cerca con Google

Marino, R., T. Considine, A. Sevi, P. L. H. McSweeney, and A. L. Kelly. 2005. Contribution of proteolytic activity associated with somatic cells in milk to cheese ripening. Int. Dairy J. 15:1026–1033. Cerca con Google

Maurmayr A., A. Cecchinato, L. Grigoletto, and G. Bittante. 2013. Detection and Quantification of αS1-, αS2-, β-, κ-casein, α-lactalbumin, β-lactoglobulin and Lactoferrin in Bovine Milk by Reverse-Phase High-Performance Liquid Chromatography. Agric. conspec. sci. Vol. 78 No. 3. Cerca con Google

Mazal, G., P. C. B. Vianna, M. V. Santos, and M. L. Gigante. 2007. Effect of somatic cell count on Prato cheese composition. J. Dairy Sci. 90:630–636. Cerca con Google

McMahon, D. J., and R. J. Brown. 1982. Evaluation of Formagraph for comparing rennet solutions. J. Dairy Sci. 65:1639-1642. Cerca con Google

Merin, U., G. Fleminger, J. Komanovsky, N. Silanikove, S. Bernstein, and G. Leitner. 2008. Subclinical udder infection with Streptococcus dysgalactiae impairs milk coagulation properties: the emerging role of proteose peptones. Dairy Sci. Technol. 88:407–419. Cerca con Google

Miglior, F., B. L. Muir, and B. J. Van Doormaal. 2005. Selection Indices in Holstein Cattle of Various Countries. J. Dairy Sci. 88:1255–1263. Cerca con Google

Moussaoui, F., F. Vangroenweghe, K. Haddadi, Y. Le Roux, F. Laurent, L. Duchateau, and C. Burvenich. 2004. Proteolysis in milk during experimental Escherichia coli mastitis. J. Dairy Sci. 87:2923–2931. Cerca con Google

Munro, G. L., P. A. Grieve, and B. J. Kitchen. 1984. Effects of mastitis on milk yield, milk composition, processing properties and yield and quality of milk products. Aust J Dairy Technol. 39:7-16. Cerca con Google

Murata, H., N. Shimada, and M. Yoshioka. 2004. Current research on acute phase proteins in veterinary diagnosis: an overview. Vet. J. 168:28-40. Cerca con Google

Nansen, P. 1972. Selective immunoglobulin deficiency in cattle and susceptibility to infection. Acta Pathol Microbiol Scand. 80:49–54. Cerca con Google

National Mastitis Council. 1999. Pages 171–173 in Laboratory Handbook on Bovine Mastitis. rev. ed. Natl. Mastitis Council, Inc.,Madison, WI. Cerca con Google

Newbould, F. H. S., and F. K. Neave. 1965. The recovery of small numbers of Staphylococcus aureus infused into the bovine teat cistern. J. Dairy Res. 32:157–162. Cerca con Google

Ng-Kwai-Hang, K. F., I. Politis, R. I. Cue, and A. S. Marziali. 1989. Correlations between coagulation properties of milk and cheese yielding capacity and cheese composition. Can Inst Food Sci Technol J. 22:291-294. Cerca con Google

Norberg, E., H. Hogeveen, I. R. Korsgaard, N. C. Friggens, K. Sloth, and P. Løvendahl. 2004. Electrical conductivity of milk: Ability to predict mastitis status. J. Dairy Sci. 87:1099–1107. Cerca con Google

Nyman, A.-K., K. Persson Waller, T. W. Bennedsgaard, T. Larsen, and U. Emanuelson. 2014. Associations of udder-health indicators with cow factors and with intramammary infection in dairy cows. J. Dairy Sci. 97:5459–5473. Cerca con Google

Oliver, S. P., R. A. Almeida, and G. M. Pighetti. 2011. Mastitis pathogens (b) Environmental pathogens. In: Fuquay J.W., P. F. Fox, P. L. H. McSweeney (eds.), Encyclopedia of Dairy Sciences, Second Edition, vol. 3, pp. 415–421. San Diego: Academic Press. Cerca con Google

Oltenacu, P. A., and D. M. Broom. 2010. The impact of genetic selection for increased milk yield on the welfare of dairy cows. Anim. Welf. 19:39-49. Cerca con Google

Oviedo-Boyso, J., J. J. Valdez-Alarcon, M. Cajero-Juarez, A. Ochoa-Zarzosa, J. E. Lopez-Meza, A. Bravo-Patino, and V. M. Baizabal-Aguirre. 2007. Innate immune response of bovine mammary gland to pathogenic bacteria responsible for mastitis. J. Infect. 54:399–409. Cerca con Google

Paradis, M.-E., E. Bouchard, F. Miglior, and J.-P. Roy. 2010. Impact of non-clinical Staphylococcus aureus or coagulase-negative staphylococci intramammary infection during the first month of lactation on SCC and milk yield in heifers. J. Dairy Sci. 93:2989–2997. Cerca con Google

Pearson, L. J., J. H. Williamson, S. A. Turner, S. J. Lacy-Hulbert, and J. E. Hillerton. 2013. Peripartum infection with Streptococcus uberis but not coagulase-negative staphylococci reduced milk production in primiparous cows. J. Dairy Sci. 96:158–164. Cerca con Google

Pellegrini, O., M. R. Aurel, G. Lagriffoul, C. Marie-Etancelin, F. Remeuf, M. Rivemale, and F. Barillet. 1994. Relations entre les comptages de cellules somatiques, les caractéristiques physico-chimiques et l'aptitude à la coagulation par la présure de laits individuels de brebis de race Lacaune. In: Somatic cells and milk of small ruminants (p. 6 p.). Presented at International symposium, Bella, ITA (1994-09-25 - 1994-09-27). Cerca con Google

Petersen, H. H., J. P. Nielsen, and P. M. H. Heegaard. 2004. Application of acute phase protein measurements in veterinary clinical chemistry. Vet. Res. 35:163-187. Cerca con Google

Petzl, W., H. Zerbe, J. Günther, W. Yang, H. M. Seyfert, G. Nürnberg, and H. J. Schuberth. 2008. Escherichia coli, but not Staphylococcus aureus triggers an early increased expression of factors contributing to the innate immune defense in the udder of the cow. Vet. Res. 39:18. Cerca con Google

Piccinini, R., E. Binda, M. Belotti, G. Casirani, and A. Zecconi. 2004. The evaluation of non-specific immune status of heifers in field conditions during the periparturient period. Vet. Res. 35:539–550. Cerca con Google

Piccione, G., V. Messina, A. Schembari, S. Casella, C. Giannetto, and D. Alberghina. 2011. Pattern of serum protein fractions in dairy cows during different stages of gestation and lactation. J. Dairy Res. 78:421-425. Cerca con Google

Politis, I., and K. F. Ng-Kwai-Hang. 1988. Effects of somatic cell count and milk composition on cheese composition and cheese making efficiency. J. Dairy Sci. 71:1711-1719. Cerca con Google

Prescott, S.C., and R.S. Breed. 1910. The determination of the number of body cells in milk by a direct method. J. Infect. Dis. 7:632-640. Cerca con Google

Pyörälä, S. 2003. Indicators of inflammation in the diagnosis of mastitis. Vet. Res. 34:565–578. Cerca con Google

Raggio, G., G. E. Lobley, R. Berthiaume, D. Pellerin, G. Allard, P. Dubreuil, and H. Lapierre. 2007. Effect of protein supply on hepatic synthesis of plasma and constitutive proteins in lactating dairy cows. J. Dairy Sci. 90:352-359. Cerca con Google

Rainard, P., and C. Riollet. 2006. Innate immunity of the bovine mammary gland. Vet. Res. 37:369–400. Cerca con Google

Reksen, O., L. Solverod, and O. Osteras. 2007. Relationships between milk culture results and milk yield in Norwegian dairy cattle. J. Dairy Sci. 90:4670–4678. Cerca con Google

Reyher, K. K., and I. R. Dohoo. 2011. Diagnosing intramammary infections: evaluation of composite milk samples to detect intramammary infections. J. Dairy Sci. 94:3387-3396. Cerca con Google

Reyher, K. K., I. R. Dohoo, D. T. Scholl, and G. P. Keefe. 2012. Evaluation of minor pathogen intramammary infection, susceptibility parameters, and somatic cell counts on the development of new intramammary infections with major mastitis pathogens. J. Dairy Sci. 95:3766–3780. Cerca con Google

Riollet, C., P. Rainard, and B. Poutrel. 2001. Cell subpopulations and cytokine expression in cow milk in response to chronic Staphylococcus aureus infection, J. Dairy Sci. 84:1077–1084. Cerca con Google

Rogers, S. A., and G. E. Mitchell. 1994. The relationship between somatic cell count, composition and manufacturing properties of bulk milk 6. Cheddar cheese and skim milk yoghurt. Aust. J. Dairy Technol. 49:70–74. Cerca con Google

Rowlands, G. J., R. Manston, R. M. Pocock, and S. M. Dew. 1975. Relationship between stage of lactation and pregnancy and blood composition in a herd of dairy cow and the influences of seasonal changes in management of these relationships. J. Dairy Res. 42:349-362. Cerca con Google

Rowlands, G. J., W. Little, and B. A Kitchenham. 1977. Relationships between blood composition and fertility in dairy cows–a field study. J Dairy Res. 44:1-7. Cerca con Google

Ruegg, P. L. and J. C. F. Pantoja. 2013. Understanding and using somatic cell counts as an indicator of milk quality. Irish J Agr Food Res. 52:101-117. Cerca con Google

Schallibaum, M. 2001. Impact of SCC on the quality of fluid milk and cheese. 40th Annual Meeting, National Mastitis Council, Madison, WI, USA. pp:38-46. Cerca con Google

Schukken, Y. H., D. J. Wilson, F. Welcome, L. Garrison-Tikofsky, and R. N. Gonzalez. 2003. Monitoring udder health and milk quality using somatic cell counts. Vet. Res. 34:579-596. Cerca con Google

Schukken, Y. H., J. Günthe, J. Fitzpatrick, M. C. Fontaine, L. Goetze, O. Holst, J. Leigh, W. Petzl, H.-J. Schuberth., A. Sipka, D. G. E. Smith, R. Quesnell, J. Watts, R. Yancey, H. Zerbe, A. Gurjar, R. N. Zadoks, H.-M. Seyfert, and members of the Pfizer mastitis research consortium. 2011. Host-response patterns of intramammary infections in dairy cows. Vet. Immunol. Immunop. 144: 270-289. Cerca con Google

Schukken, Y. H., J. Hertl, D. Bar, G. J. Bennett, R. N. Gonzalez, B. J. Rauch, C. Santisteban, H. F. Schulte, L. Tauer, F. L. Welcome, Y. T. Gröhn. 2009a. Effects of repeated gram-positive and gram-negative clinical mastitis episodes on milk yield loss in Holstein dairy cows. J Dairy Sci 92:3091–3105. Cerca con Google

Schukken, Y. H., R. N. Gonzalez, L. L. Tikofsky, H. F. Schulte, C. G. Santisteban, F. L. Welcome, G. J. Bennett, M. J. Zurakowski, and R. N. Zadoks. 2009b. CNS mastitis: Nothing to worry about? Vet. Microbiol. 134:9–14. Cerca con Google

Schwarz, D., U. S. Diesterbeck, K. Failing, S. König, K. Brügemann, M. Zschöck, W. Wolter, and C.-P. Czerny. 2010. Somatic cell counts and bacteriological status in quarter foremilk samples of cows in Hesse, Germany—A longitudinal study. J. Dairy Sci. 93:5716–5728. Cerca con Google

Seegers, H., C. Fourichon, and F. Beaudeau. 2003. Production effects related to mastitis and mastitis economics in dairy cattle herds. Vet. Res. 34:475–491. Cerca con Google

Seifi, H., M. Gorji-Dooz, M. Mohri, B. Dalir-Naghadeh, and N. Farzaneh. 2007. Variations of energy-related biochemical metabolites during transition period in dairy cows. Comp. Clin. Pathol.16:253–258. Cerca con Google

Sevinc, M., A. Basoglu, F. M. Birdane, and M. Boydak. 2001. Liver function in dairy cows with fatty liver. Revue Méd. Vét. 152, 297-300. Cerca con Google

Shaffer, L., J. D. Roussel, and K. L. Koonce. 1981. Effects of age, temperature-season, and breed on blood characteristics of dairy cattle. J. Dairy Sci. 64:62–70. Cerca con Google

Sharif, A., and G. Muhammad. 2008. Somatic cell count as an indicator of udder health status under modern dairy production: A review. Pakistan Vet. J. 28:194-200. Cerca con Google

Shome, B. R., S. Das Mitra, M. Bhuvana, N. Krithiga, D. Velu, R. Shome, S. Isloor, S. B. Barbuddhe, and H. Rahman. 2011. Multiplex PCR assay for species identification of bovine mastitis pathogens. J. Appl. Microbiol. 111:1349–1356. Cerca con Google

Shuster, D. E., R. J. Harmon, J. A. Jackson, and R. W. Hemken. 1991. Suppression of milk production during endotoxin-induced mastitis. J. Dairy Sci. 74:3763-3774. Cerca con Google

Silanikove, N., U. Merin, F. Shapiro, and G. Leitner. 2014. Milk metabolites as indicators of mammary gland functions and milk quality. J. Dairy Res. 81:358-363. Cerca con Google

Smith, K. L., D. A. Todhunter, and P. S. Shoenberger. 1985. Environmental mastitis: Cause, prevalence, prevention. J. Dairy Sci. 68:1531–1553. Cerca con Google

Sordillo, L.M. 2005. Factors affecting mammary gland immunity and mastitis susceptibility. Livestock Prod. Sci. 98:89–99. Cerca con Google

Stocco, G., C. Cipolat-Gotet, A. Cecchinato and G. Bittante. 2016a. Effects of breed and herd productivity on milk nutrient recovery in curd, and cheese yield, efficiency and daily production in six breeds of cow. Submitted to J. Dairy Sci. Cerca con Google

Stocco, G., C. Cipolat-Gotet, A. Cecchinato, L. Calamari, and G. Bittante. 2015. Milk skimming, heating, acidification, lysozyme, and rennet affect the pattern, repeatability, and predictability of milk coagulation properties and of curd-firming model parameters: A case study of Grana Padano. J. Dairy Sci. 98:5052-5067. Cerca con Google

Stocco, G., C. Cipolat-Gotet, T. Bobbo, A. Cecchinato, and G. Bittante. 2016b. Breed of cow and herd productivity affect milk composition and modeling of coagulation, curd firming and syneresis. J. Dairy Sci. dx.doi.org/10.3168/jds.2016-11662 Cerca con Google

Sturaro, E., E. Marchiori, G. Cocca, M. Penasa, M. Ramanzin, and G. Bittante. 2013. Dairy systems in mountainous areas: Farm animal biodiversity, milk production and destination, and land use. Livest. Sci. 158:157-168. Cerca con Google

Summer, A., P. Franceschi, P. Formaggioni, and M. Malacarne. 2015. Influence of milk somatic cell content on Parmigiano-Reggiano cheese yield. J. Dairy Res. 82:222-227. Cerca con Google

Suriyasathaporn, W., Y. H. Schukken, M. Nielen, and A. Brand. 2000. Low somatic cell count: a risk factor for subsequent clinical mastitis in a dairy herd. J. Dairy Sci. 83:1248-1255. Cerca con Google

Swaisgood, H. E. 1982. Chemistry of milk proteins. Pages 1--52 in Development in dairy chemistry. I.P.F. Fox, ed. Appl. Sci. Publ., London, UK. Cerca con Google

Thorberg, B. M., M. L. Danielsson-Tham, U. Emanuelson, and K. P. Waller. 2009. Bovine subclinical mastitis caused by different types of coagulase-negative staphylococci. J. Dairy Sci. 92:4962–4970. Cerca con Google

Toffanin, V., M. De Marchi, M. Penasa, D. Pretto, M. Cassandro. 2012. Characterization of milk coagulation ability in bulk milk samples. Acta Argic. Slovenica, Suppl. 3, 93–98. Cerca con Google

Tomazi, T., J. L. Gonçalves, J. R. Barreiro, M. A. Arcari, and M. V. Santos. 2015. Bovine subclinical intramammary infection caused by coagulase-negative staphylococci increases somatic cell count but has no effect on milk yield or composition. J. Dairy Sci. 98:3071–3078. Cerca con Google

Torres A. H., P. J. Rajala-Schultz, and F. J. DeGraves. 2009. Diagnosis of intramammary infections at dry-off based on sampling strategy, epidemiology of pathogens, and agreement beyond chance. Vet. Diagn. Invest. 21:427–436. Cerca con Google

Tuck, M. K., D. W. Chan, D. Chia, A. K. Godvwin, W. E. Grizzle, K. E. Kreuger, W. Rom, M. Sanda, L. Sorbara, S. Stass, W. Wang, and D. E. Brenner. 2009. Standard Operating Procedures for Serum and Plasma Collection: Early Detection Research Network Consensus Statement Standard Operating Procedure Integration Working Group. J. Proteome Res. 8(1):113-117. Cerca con Google

Tyrrell, H. F., and J. T. Reid. 1965. Prediction of the energy value of cow’s milk. J. Dairy Sci. 48:1215– 1223. Cerca con Google

Urech, E., Z. Puhan, and M. Schällibaum. 1999. Changes in milk protein fraction as affected by subclinical mastitis. J. Dairy Sci. 82:2402–2411. Cerca con Google

Van Dorland, H. A., S. Richter, I. Morel, M. G. Doherr, N. Castro, and R. M. Bruckmaier. 2009. Variation in hepatic regulation of metabolism during the dry period and in early lactation in dairy cows. J. Dairy Sci. 92:1924–1940. Cerca con Google

VanRaden, P. M. 2004. Invited Review: Selection on Net Merit to Improve Lifetime Profit. J. Dairy Sci. 87:3125–3131. Cerca con Google

Vásquez, J. A., C. F. Novoa, and J. E. Carulla. 2014. Efecto del recuento de células somáticas sobre la aptitud quesera de la leche y la calidad fisicoquímica y sensorial del queso campesino. Rev Fac Med Vet Zoot. 61:171-185. Cerca con Google

Verdi, R J., D. M. Barbano. M. E. DellaValle, and G. F. Senyk. 1987. Variability in true protein. casein, nonprotein nitrogen, and proteolysis in high and low somatic cell milks. J. Dairy Sci. 70:230-242. Cerca con Google

Vianna, P. C. B., G. Mazal, M. V. Santos, H. M. A. Bolini, and M. L. Gigante. 2008. Microbial and sensory changes throughout the ripening of Prato cheese made from milk with different levels of somatic cells J. Dairy Sci. 91:1743–1750. Cerca con Google

Viguier, C., S. Arora, N. Gilmartin, K. Welbeck, and R. O’Kennedy. 2009. Mastitis detection: current trends and future perspectives. Trends Biotechnol. 27:486–493. Cerca con Google

Wagter, L. C., B. A. Mallard, B. N. Wilkie, K. E. Leslie, P. J. Boettcher, and J. C. M. Dekkers. 2000. A quantitative approach to classifying Holstein cows based on antibody responsiveness and its relationship to peripartum mastitis occurrence. J. Dairy Sci. 83:488-498. Cerca con Google

Walsh, S., F. Buckley, K. Pierce, N. Byrne, J. Patton, and P. Dillon. 2008. Effects of breed and feeding system on milk production, body weight, body condition score, reproductive performance, and postpartum ovarian function. J. Dairy Sci. 91: 4401-4413. Cerca con Google

Weaver, D. M., J. W. Tyler, D. C. VanMetre, D. E. Hostetler, and G. M. Barrington. 2000. Passive transfer of colostral immunoglobulins in calves. J. Vet. Intern. Med. 14:569-577. Cerca con Google

Wellnitz, O., A. Baumert, M. Saudenowa, and R. M. Bruckmaier. 2010. Immune response of bovine milk somatic cells to endotoxin in healthy quarters with normal and very low cell counts. J. Dairy Res. 77:452–459. Cerca con Google

Wellnitz, O., and R. M. Bruckmaier. 2012. The innate immune response of the bovine mammary gland to bacterial infection. Vet. J. 192:148–152. Cerca con Google

Whitlock, R. H., and C. Buergelt. 1996. Preclinical and clinical manifestations of paratuberculosis (including pathology). VET. CLIN. N. AM.-FOOD. A. 12:345-356. Cerca con Google

Wickstrom, E., K. Persson-Waller, H. Lindmark-Mansson, K. Ostensson, and A. Sternesjo. 2009. Relationship between somatic cell count, polymorphonuclear leucocyte count and quality parameters in bovine bulk tank milk. J. Dairy Res. 76:195–201. Cerca con Google

Wu, X. L., B. Heringstad, Y. M. Chang, G. De los Campos, and D. Gianola. 2007. Inferring relationships between somatic cell score and milk yield using simultaneous and recursive models. J. Dairy Sci. 90:3508-3521. Cerca con Google

Yun, S. E., K. Ohmiya, and S. Shimizu. 1982. Role of phosphoryl group of β-casein in milk curdling. Agric. Biol. Chem. 46:1505-1511. Cerca con Google

Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record